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Abstract—The Big Data revolution has promised to build
a data-driven ecosystem where better decisions are supported
by enhanced analytics and data management. However, critical
issues still need to be solved in the road that leads to com-
modization of Big Data Analytics, such as the management of
Big Data complexity and the protection of data security and
privacy. In this paper, we focus on the first issue and propose
a methodology based on Model Driven Engineering (MDE) that
aims to substantially lower the amount of competences needed
in the management of a Big Data pipeline and to support
automation of Big Data analytics. The proposal is experimentally
evaluated in a real-world scenario: the implementation of novel
functionality for Threat Detection Systems.

Index Terms—Big Data, Model-Driven Architecture, OWL-S

I. INTRODUCTION

Big Data management and analytics are among the most
critical pressing needs for all organisations that want to move
their business a step forward. Big Data market is expected to
substantially grow in the next years [1] and its technologies
are introducing a Copernican revolution in the areas of data
storage, processing, and analytics. However, the impact and
diffusion of Big Data technologies are lowered, on one side, by
complex and not standardised technologies, and, on the other
side, by the lack of professional profiles with the necessary
background and competence, especially in SMEs.

A recent trend has underlined the relevance of users’
requirements and developed the idea that achieving the full
potential of Big Data analytics needs to embrace a data model
approach [15]. Traditional data modeling, which focused on re-
solving the complexity of relationships among schema-enabled
data [14], has been discarded as no longer applicable to Big
Data scenarios. In fact, in addition to data representation,
Big Data models should provide a shared specification of the
process to manage data resources (including anonymization
and privacy-preservation procedures) and of the computations
to be done over them. They also need to provide all the
information to carry out Big Data analytics over commodity
execution platforms.

A practical goal for next-generation Big Data is to provide
solutions where end-users define their expectations on goals
to be achieved with Big Data analytics, while smarter engines

manage and compose solutions to deploy Big Data architec-
tures and carry out the expected analytics.

In this paper, we propose a framework for Model-based Big
Data Analytics-as-a-Service (MBDAaaS) [2], which supports
customers lacking Big Data expertise in managing big data
analytics and deploying a full big data pipeline that addresses
their goals. The proposed approach is based on a declara-
tive model (Section IV-B), specifying the goals of a given
analytics in the form of pairs indicators/objectives. The cus-
tomers navigate and prioritize indicators through an interface,
which can guide her in implementing consistent selections
by choosing the objective values of low-priority indicators to
maximize the objectives of high-priority indicators. Indicators
and objectives are then used to incrementally refine a platform-
independent procedural model (Section IV-C) specifying how
analytics should be carried out in terms of an abstract OWL-S
workflow. Procedural models are finally compiled in a ready-
to-be-executed deployment model (Section IV-D) specifying
Big Data platform-dependent configurations and supporting
automatic provisioning of computational components and re-
sources. Such transformations are implemented in a method-
ology providing a semi-automatic process to MBDAaaS (Sec-
tion V), which is practically evaluated (Section VI) in a real-
world scenario (Section III).

II. RELATED WORK

Model-based Big Data Analytics-as-a-Service
(MBDAaaS) [2] is interconnecting two trends that are
currently shaping the Big Data ecosystem. On one side,
Big Data technologies perform the best in on-demand and
scalable computing infrastructures. On the other side, the
high complexity and side-costs of designing, developing
and deploying such infrastructures suggest the adoption of
model-driven approaches that foster modularity, reusability,
and automatisation of design and implementation tasks.

The first aspect is largely discussed in the literature [22],
[6]. Recent research has focused on incorporating Cloud com-
puting negotiation models based on Service Level Agreement
(SLA) [21], opening the door to self-configuration [7], and
cost models for evaluating alternative Big Data-as-a-Service
solutions [18].



The second aspect, was intended by several authors in
connection to software engineering methodologies operating
at design time [11]. However, other authors have investi-
gated methods that operate at execution time. For exam-
ple, workflow orchestration frameworks were placed on top
of distributed data processing applications [8], model-driven
approaches were adopted to configure runtime observability
frameworks [10], to adapt the data storage model for improv-
ing I/O performances [12], or to design visual analytics [4].
In such a context, where multiple parties are involved in
the provisioning, processing, and sharing of heterogeneous
data, the conciliation of non-functional requirements related
to data protection and information privacy is also a demand-
ing challenge. A compete survey on the different strategies
implemented for data protection is available in [20]. For
example, the processing procedures of data mining algorithms
can be masked, using generalization, suppression, permutation
or perturbation [13], or adopting differential privacy [5], giving
to the data provider the guarantee that the data collector will
not be able to consistently read data.

Although all these aspects were considered in the litera-
ture, there is a lack of a comprehensive approach addressing
the whole lifecycle of MBDAaaS, from the specification of
declarative goals to the deployment of a big data analytics,
via the definition of a procedural model representing how the
expected analytics should work.

III. REFERENCE SCENARIO: THREAT DETECTION
SYSTEMS

Threat detection and prevention in software ecosystems [16]
have recently been extended to the application layer. Threat
Detection System (TDS)1 detects potential attacks on the
application landscape by gathering and analyzing log data,
such as user change logs, security audit logs, remote function
call gateway logs, and transaction logs. Logs are usually
pre-processed, anonymized, translated into a common format,
and analyzed by pattern or anomaly detection algorithms,
which can highlight suspicious events. Finally, a detailed
investigation is performed by a human expert to decide if
a real attack is detected or it is a false positive. However,
with the increasing size and complexity of software systems,
the volume and diversity of log data are becoming major
issues. Customers have in place a large spectrum of different
systems and a wide range of data security policies. As a result,
including and managing these heterogeneous log files currently
need a significant customization effort, especially when they
contain sensitive and personal information (e.g., user IDs, IP
addresses) coming from logs of multiple customers or are
accessed by the third party (e.g., cloud provider) running TDS.
Similarly, customers often need different security analysis,
depending on the security context, industrial sector, risk man-
agement policies, and the analytics functionality need to be

1We refer to these systems as TDS, to distinguish them from network level
intrusion detection systems (called IDS or SIEM) [9]. In addition, we base our
description on the SAP Enterprise Threat Detection, but the analysis could be
applied to other solutions, including IDS.

often customized too. Accordingly, major challenges for data
analysis by TDS systems are related to devising a flexible
framework supporting:

• the provisioning of customized analytics and reporting
approach for stakeholders;

• data anonymization (at different levels, for different cus-
tomers);

• a scaling approach for variable data loads;
• a limited effort (i.e., semi-automatic) for the integration

of new and diverse log files, which also adapts corre-
sponding analytics;

In this paper, we present how MBDAaaS approach can
support the design of a TDS system, or its extension to include
novel functionality, and illustrate the results of a realization
of this approach (Section VI). For sake of simplicity, we
will focus on a simple, but relevant, analytics scenario for
TDS: advanced anomaly detection analytics, able to limit the
number of false positives in alerts. In fact, since TDS are
set to minimize the likelihood that a threat is not detected,
they often suffer of a large number of false positives, which
result in additional investigation effort for security experts.
For example, a typical approach for anomaly detection is
using deviations from the normalized mean computed from
previous events, using metric as z-score (see [3]) or fixed
thresholds. It can be done focusing on a single type of
event (e.g., the amount of data sent by a user/system in one
day) or a combination of event types (e.g., data sent and
received). However, the high variability in human and system
activities can lead to a large number of outliers, and more
sophisticated approaches are needed, such as automatically
detecting specific activities (via clustering) and considering
outliers from the clusters as anomaly.

IV. MODELS FOR BIG DATA ANALYTICS-AS-A-SERVICE

The methodology proposed in this paper, building on MDE
paradigm [17], aims to provide an approach that decouples
high-level goals of a Big Data campaign from low-level details
of the Big Data architecture. Our methodology defines three
models as described in the following of this section: i) a
declarative model representing the computation-independent
model, ii) a procedural model representing the platform-
independent model, and iii) a deployment model representing
the platform-dependent model.

A. Structuring the Big Data Pipeline

The systematisation proposed by several authors [6], [19]
describes a Big Data process along different conceptual areas
that structure the deployment in interdependent pipelines. A
complete process can be split in 5 main areas driving the whole
MBDAaaS.

• Data preparation area specifies all activities aimed to
prepare data for analytics. For instance, it defines how to
guarantee data owner privacy using anonymization (e.g.,
hashing, obfuscation), and identifies data cleaning and
integration techniques.



• Data representation area specifies how data are repre-
sented and expresses representation choices for each anal-
ysis process. For instance, it defines the data model (e.g.,
document-oriented, graph-based, relational) and the data
structure (e.g., structured, semi-structured, unstructured).

• Data analytics area specifies the analytics to be com-
puted. For instance, it defines the expected outcome (e.g.,
descriptive, prescriptive, predictive, diagnostic), the type
of analytics (e.g., cluster, classifier, predictor), and the
learning approach (e.g., supervised, unsupervised, semi-
supervised).

• Data processing area specifies how data are routed and
parallelized. For instance, it defines the processing type
(e.g., real-time, near real-time, batch) and the elasticity
level (e.g. full, bounded, none).

• Data visualisation and reporting area specifies an ab-
stract representation of how the results of analytics are
organised for display and reporting. For instance, it
defines data display type (e.g., composition, order).

B. Declarative Models
Declarative models are platform- and vendor-independent

models specifying user goals related to the conceptual areas in
Section IV-A. They describe customers’ goals expressing the
properties a Big Data Campaign (BDC) has to fulfil. On the
other side, goals express commitments on service properties
made by ICT providers to their customers. A goal G (e.g., data
source properties) is measured by an indicator I, which is a
label expressing a way to assess the goal (e.g., consistency),
and an objective O, which is a threshold on certain scale,
either ordinal or metric (e.g., weak, normal, or strong), for I.
A declarative model is defined as a set of prioritised goals
annotated with metadata specifying constraints on procedural
and deployment models, as formally presented in the following
definition.

Definition IV.1 (Declarative Model). A declarative model
di∈D consists of five elements (ai , G), one for each conceptual
area ai∈A, where G specifies a set of prioritised goals
Gi={(Ii ,Oi), Ci, pri}, with Ii a label representing an indi-
cator of Gi , Oi the value (objective) of Ii , Ci={c1,. . .,cn} a
set of constraints on Ii driving the configuration of procedural
and deployment models, and pri the priority of the goal Gi .

We note that, to support users with different big data
competences, each constraint cj∈Ci can be either defined
by the user or enforced by the selected technological plat-
form. A constraint is defined as a boolean formula of ex-
pressions of the form op(attr,value), where op is an op-
erator in {=, 6=,<,>,≤,≥,∈}, attr represents an attribute
referring to a procedural/deployment model, and value a
(set of) value for the given attribute. For instance, a
goal Gi=(Anonimization_Technique, k-anonymity) on
property anonymity may set a constraint c on the cardinality
of k. This constraint will be considered when configuring
the procedural model or when implementing quality assurance
controls for the BDC.

C. Procedural Models

Procedural models are platform-independent models that
formally and unambiguously describe how analytics should
be configured and executed. Procedural models are generated
following goals and constraints specified in the declarative
models. They provide a workflow in the form of a service
orchestration that composes, in an arbitrary way, services
falling in the areas presented in Section IV-A, as formally
defined below.

Definition IV.2 (Procedural Model). A procedural model m is
a direct acyclic graph G(V,E,λ), where a vertex vi∈V refers
to a service (e.g., an algorithm, mechanism, or component) in
a specific area area(vi ), an edge (vi ,vj )∈E is annotated with
function call fi to the service represented by vj , and λ:V→SC
is a labeling function that associates a set {cp1,. . .,cpn}∈SC
of configuration parameters with each vi∈V.

We note that a configuration parameter cpi either derives
from constraints c in Definition IV.1 or is given as input by the
customers during procedural model definition. For instance,
cpi can specify the cardinality k of a data anonymization
based on k-anonymity. We also note that each function call
annotating an edge in G triggers a state transition and cor-
responding mechanism execution. For instance, a common
procedural model consists of a three-step, sequential workflow
that first prepares data (area data preparation), then runs
the analytics (area data analytics), and finally presents the
results (area display and reporting). Services are selected and
orchestrated within the procedural workflow according to the
goals stated in the declarative model. For instance, in case
goal G =(Analytics_Task, crisp_clustering) is defined,
only services implementing a crisp clustering procedure (e.g.,
k-means) will be available for area data analytics.

D. Deployment Models

Deployment models specify how procedural models are
instantiated and configured on a target platform (platform-
dependent models), and drive analytics execution in real sce-
narios. A deployment model G is an instance of a procedural
model G, defined as follows.

Definition IV.3 (Deployment Model md). Let m=G(V,E,λ)
be a procedural model. A deployment model md is a direct
acyclic graph G (V ,E ,λ) where:

• each vertex v i∈V contains the implementation of the
corresponding platform-independent service vi∈V,

• each edge (v i ,v j )∈E , corresponding to edge (vi ,vj )∈E,
is annotated with the endpoint fi referring to the
platform-dependent implementation of the service repre-
sented by v j , and

• λ:V→SC associates a set {cp1,. . .,cpn}∈SC of
platform-dependent configurations with each v i∈V .

We note that a there exists an isomorphism between proce-
dural model m and deployment model md.
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Fig. 1. MBDAaaS Methodology: Execution steps

V. MODEL-DRIVEN BIG DATA ANALYTICS

MBDAaaS implements the methodology in Section V-A
and is responsible for all activities aimed to configure and
execute the Big Data analytics involving: i) Big Data customer
specifying the goals of its BDC, ii) Big Data consultant
helping the Big Data customer in specifying all customizations
needed to execute her analytics, iii) MBDAaaS platform that
is responsible for semi-automatically managing and executing
a BDC on a Big Data platform.

A. MBDAaaS Methodology

MBDAaaS methodology is based on different building
blocks which are described in the following.

Declarative Model. It allows customers to define a set of goals
shaping a BDC and retrieve a set of services compatible with
these goals.

OWL-S Ontology. It specifies the set of abstract services
that are available to Big Data customers and consultants for
building their BDC. For each service, it defines the interface, a
link to the goals in the declarative model, and some constraints
driving the definition of a procedural model.

OWL-S Workflow. It is the procedural model providing
all artifacts for specifying an abstract Big Data workflow.
It defines how relevant OWL-S services can be composed
to carry out the Big Data analytics. It supports traditional
composition patterns, such as sequence, alternative, parallel.

Platform-Dependent Workflow. It is the platform-dependent
version (deployment model) of an abstract OWL-S workflow,
which is ready to be executed on the target Big Data platform.
he corresponding platform-dependent workflow.

MBDAaaS Compiler. It is the component that takes as input
an abstract OWL-S workflow and produces as output the
corresponding platform-dependent workflow.

Figure 1 presents the process of our MBDAaaS that is
composed of five main steps as follows. In the first step
(Declarative Model Definition), the Big Data customer pro-
duces a declarative model d specifying the goals of a Big
Data campaign (see Definition IV.1). In the second step (OWL-
S Service selection), the OWL-S services compatible with
the declarative model specification are selected. We note that
service selection is done on the basis of the annotations

{
[...]
"preparation": {

"Govern and stewards": {
"Anonymization Model": "Privacy preserving data publishing",
"Anonymization Technique": "Hashing",
"Constraints":
{ "Algorithm": "SHA−256",

"Target": "UserID" }}
},

"analytics": {
"Analytics Aim": {

"Models": "Diagnostic",
"Task": "Clustering",
"Constraints":

{"Algorithm": "Crisp Clustering "}, },
"Analytics Quality": {

"Positive Predictive Value (Precision)": "Medium",
"True Positive Rate (Recall, Sensitivity)": "Medium",
"True Negative Rate (Specificity)": "Medium",
"False Positive Rate (Fall−out)": "Medium",}
},

"processing": {
"Mode": {

"Analysis Goal": "Near Real−time",
"Rounds": "Multiple",
"Locality": "Distributed"},},

"display": {
"Data display": {

"Processing Type": "Relationship",
"Dimensionality": "nD",
"Data Density": "Low",
"Data Type": "Ratio" },

"Operations": {
"Interaction": "Filter",
"User": "Techie",
"Goal": "Cluster/Categorize"}

},
[...]

}

Fig. 2. A fragment of the declarative model in JSON.

to the services in the OWL-S ontology, mapping them to
indicators/objectives in the declarative model. In the third step
(OWL-S Workflow Definition), the Big Data consultant uses
the MBDAaaS platform to define the abstract workflow of
the Big Data campaign. It is generated by composing the
selected OWL-S services and represents the procedural model
in Definition IV.2. In the fourth step (MBDAaaS Compiler),
MBDAaaS platform transforms the OWL-S workflow in a
platform-dependent workflow. The latter represents the deploy-
ment model in Definition IV.3. This step is crucial to build a
semi-automatic MBDAaaS and puts some strong constraints
on the generality of the compiler, which needs to adapt to
the selected target Big Data platform. Finally, in the fifth
step (Workflow Execution), MBDAaaS platform executes the
analytics on the target Big Data platform.

B. From Declarative to Procedural Models

The methodology in Figure 1 first transforms a declarative
model in a procedural model as described in the following.

1) Declarative Model Definition: The process starts with
the definition of the declarative model (step 1 in Figure 1),
which is presented in this paper using a JSON format. Figure 2
propose an excerpt of a declarative model for areas data
preparation, analytics and processing, visualization.



<owl:NamedIndividual
rdf:about="tdm:spark:hashing">

<rdf:type
rdf:resource="tdm:MaterialService"/>

<realizeSpecification
rdf:resource="tdm:data_preparation:anonymization"/>

</owl:NamedIndividual>
<owl:NamedIndividual

rdf:about="tdm:data_preparation:anonymization">
<rdf:type

rdf:resource="tdm:Anonymization"/>
<hasArea

rdf:resource="tdm:dataPreparation"/>
<hasConstraint

rdf:resource="tdm:OWLNamedIndividual_00000"/>
<hasIndicator

rdf:resource="tdm:data_preparation:anonymization:technique"/>
<hasObjective

rdf:resource="tdm:data_preparation:anonymization:technique:hashing"/>
</owl:NamedIndividual>

<owl:NamedIndividual
rdf:about="tdm:OWLNamedIndividual_00000">

<rdf:type rdf:resource="tdm:Constraint"/>
<hasURIValue rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://toreador−project.eu/example/dataset.csv
</hasURIValue>
<onParameter

rdf:resource="tdm:normalizedDataset"/>
</owl:NamedIndividual>

Fig. 3. OWL-S based Hashing Anonymization service profile.

• Area preparation. The Govern and stewards goal requires
the dataset produced at the previous step to undergo an
anonymization process driven by goals anonymization
model and anonymization techniques. It requires the
adoption of a hashing techniques with constraints on
the type of algorithm (i.e., SHA-256) and the target of
anonymization (i.e., UserID).

• Areas Analytics and Processing. For simplicity, we con-
sider the subset of the goals that drives the transfor-
mation from declarative to procedural model: (Task,
crisp_ clustering), (Analysis Goal, near_real_time),
(True Positive Rate, medium). This portion of the
declarative model requires the adoption of a clustering
algorithm to be applied in near real time (e.g., micro-
batches), with an expected quality measured through true
positive rate.

• Area Visualization and Reporting. It specifies goals Data
display and Operations, which drive the selection of
the visualization approach. This selection considers also
specifications in other areas, in particular the need to
visualize the results of a clustering analytics.

2) OWL-S Service Selection: The process retrieves those
services available in the platform that are compatible with
the goals and constraints specified in the declarative model
(step 2 in Figure 1), using an extended version of OWL-
S. The OWL-S ontology is structured in three interrelated
sub-ontologies, known as the profile, process model, and
grounding. The profile ontology is used to express what “does”
the service; the process model describes “how it works”; and
the grounding maps the constructs of the process model onto
detailed specifications of message formats, protocols, and so
forth. In addition to specifying the service, in our methodology,

<process:AtomicProcess rdf:about="#AnonymizationService:Process">
<process:hasOutput>

<process:Output rdf:ID="Dataset">
<process:parameterType rdf:datatype="http://www.w3.org/2001/

XMLSchema#anyURI">
&tdm;#AnonimyzedDataset

</process:parameterType>
</process:Output>

</process:hasOutput>
<service:describes rdf:resource="#AnonymizationService"/>
<process:hasInput>

<process:Input rdf:ID="Dataset">
<process:parameterType rdf:datatype="http://www.w3.org/2001/

XMLSchema#anyURI">
&tdm;#Dataset

</process:parameterType>
</process:Input>

</process:hasInput>
<process:hasInput>

<process:Input rdf:ID="Field">
<process:parameterType rdf:datatype="http://www.w3.org/2001/

XMLSchema#anyURI">
&tdm;#Field

</process:parameterType>
</process:Input>

</process:hasInput>
<rdfs:label>Process</rdfs:label>

</process:AtomicProcess>

Fig. 4. OWL-S based Hashing Anonymization service process.

OWL-S is extended to describe a mapping with the goals of
the declarative model, which are used for service selection.
Figure 3 shows an example of the OWL-S modeling of SHA-
256 hashing service of Spark that is mapped to declarative
goals (Anonymization Model, privacy preserving data
publishing) and (Anonymization Technique, hashing)
with constraint Algorithm: SHA-256. On the basis of this anno-
tation, SHA-256 hashing service is selected as a service com-
patible with the specified declarative model. Figure 4 presents
the process model of the hashing anonymization service where
a dataset is taken as input and the anonymization algorithm
is applied to the “field" parameter. The “AnonymizedDataset"
is then returned as output. Figure 5 presents an example of
grounding, where the function of the anonymization process is
specified. In our example, a reference to the WSDL file of the
service ("‘HashingAnonymizationService.wsdl"’) is used as a
placeholder that points to the functionality/library provided
by the target Big Data platform and implementing the service
itself.

Following the above approach, a k-means service is se-
lected for area analytics, a map-reduce parallel processing for
area processing, and two visualization techniques, namely, a
dimension-reduced plane visualization based on scatter-plot
and an independent coordinates visualization based on scatter-
plot matrices, for area visualization.

3) OWL-S Workflow Definition: The last step of this process
consists in the definition of an OWL-S workflow, representing
the procedural model in this paper (step 3 in Figure 1).
Here, we present a basic workflow example that composes the
Anonymization Service and the Clustering Service (Figure 6).



<grounding:WsdlGrounding rdf:about="#Grounding">
<service:supportedBy rdf:resource="#Service"/>
<grounding:hasAtomicProcessGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:ID="AtomicProcessGrounding"/>
</grounding:hasAtomicProcessGrounding>

</grounding:WsdlGrounding>
<grounding:WsdlAtomicProcessGrounding rdf:about="#AtomicProcessGrounding">

<grounding:wsdlInput>
<grounding:WsdlInputMessageMap>

<grounding:owlsParameter rdf:resource="#Dataset"/>
<grounding:wsdlMessagePart rdf:datatype="http://...#anyURI">

file:HashingAnonymizationService.wsdl#Dataset
</grounding:wsdlMessagePart>

</grounding:WsdlInputMessageMap>
</grounding:wsdlInput>

<grounding:wsdlOutput>
<grounding:WsdlOutputMessageMap>

<grounding:owlsParameter rdf:resource="#HashingAnonymizedDataset"/>
<grounding:wsdlMessagePart rdf:datatype="http://...#anyURI">

file:HashingAnonymizationService.wsdl#anonymizedDataset
</grounding:wsdlMessagePart>

</grounding:WsdlOutputMessageMap>
</grounding:wsdlOutput>
[...]
</rdf:RDF>

Fig. 5. OWL-S based Hashing Anonymization service grounding.

<process:CompositeProcess rdf:about="tdm:CompositeProcess00001">
<process:composedOf>

<process:Sequence>
<process:components>

<process:ControlConstructList>
<list:first> <process:Perform>

<process:process rdf:resource="tdm:AnonymizationService"/>
</process:Perform> </list:first>
[...]

<process:ControlConstructList>
<list:first> <process:Perform>

<process:process rdf:resource="tdm:ClusteringService"/>
</process:Perform> </list:first>
[...]

</process:ControlConstructList>
</process:components>

</process:Sequence>
</process:composedOf>

</process:CompositeProcess>

Fig. 6. Example of an OWL-S workflow.

C. From Procedural to Deployment Models

The methodology in Figure 1 then transforms the procedural
model returned in Section V-B in a deployment model that
can be directly executed on the target platform. This trans-
formation is based on a compiler (step 4 in Figure 1) that
takes as input the OWL-S workflow returned in step 3 (Fig-
ure 6) and information on the target platform (e.g., installed
services/algorithms), and produces as output a technology-
dependent workflow. This is achieved using a stylesheet-based
transformation. We note that, in case no workflow engine
is available on the target platform, the compiler returns the
specific calls to the services in the platform matching activities
in the OWL-S workflow.

Figure 7 shows an example of technology-dependent work-
flow corresponding to the OWL-S workflow in Figure 6 and
compatible with the Oozie workflow engine. The workflow
in Figure 7 is composed of three activities in a sequence
that execute i) SHA-256 anonymization, ii) k-means analytics,

<workflow−app xmlns = "uri:oozie:workflow:0.4" name = "CompositeProcess00001">
[...]
<!Step preparation −−>
<action name="Preparation:Anonymization">

<spark xmlns="uri:oozie:spark−action:0.1">
<job−tracker>toreador−project.eu:8088</job−tracker>
<name−node>node1:8020</name−node>
<configuration>

<property>
<name>mapred.compress.map.output</name>
<value>true</value>

</property>
<property>

<name>field</name>
<value>UserID</value>

</property>
</configuration>
<master>local[∗]</master>
<mode>client</mode>
<name>Spark anonymization</name>
<class>org.apache.spark.anonymization</class>
<jar>/lib/spark−sha256.jar</jar>
<arg>inputpath=hdfs://localhost/input/anonymization/dataset.csv</arg>

</spark>
<ok to="Analytics:KMean"/>
<error to="kill_job"/>

</action>

<!Step analysis −−>
<action name="Analytics:KMeans">

<spark xmlns="uri:oozie:spark−action:0.1">
<job−tracker>toreador−project.eu:8088</job−tracker>
<name−node>node1:8022</name−node>
<configuration>

<property>
<name>mapred.compress.map.output</name>
<value>true</value>

</property>
<property>

<name>K</name>
<value>$p1</value>

</property>
<property>

<name>minInteraction</name>
<value>$p2</value>

</property>
</configuration>
<master>local[∗]</master>
<mode>client<mode>
<name>Spark kmeans</name>
<class>org.apache.spark.kmeans</class>
<jar>/lib/spark−kmeans.jar</jar>
<arg>inputpath=hdfs://localhost/input/kmeans/dataset.csv</arg>

</spark>
<ok to = "visualization:notebook" />
<error to = "kill_job" />

</action>
[...]

<kill name = "kill_job">
<message>Job failed</message>

</kill>
<end name = "end" />

</workflow−app>

Fig. 7. Example of an Oozie workflow.

iii) scatter-plot visualization.There is however a subtlety to
consider: the workflow in Figure 7 is not completely specified.
In fact, the scripts in the workflow refers to templates that need
to be instantiated with parameters in the OWL-S workflow.2

For instance, let us consider the reference to the k-means script
/lib/spark-kmeans.jar in Figure 7. The corresponding script is
completely specified unless the variables associated with the
parameters number of clusters ($p1) and numbers of iterations

2In case some parameters are missing, they are asked to the users.



($p2) in the oozie workflow. When $p1 and $p2 are filled with
real values, the workflow is completely specified and ready to
be executed.

VI. WORKFLOW EXECUTION: TDS SCENARIO

The methodology in Figure 1 finally executes the de-
ployment model returned in step 4 on the target big data
platform. In the following, we show the realization of the
anomaly detection TDS use case (Section III). We focused
on devising an anomaly detection functionality for TDS, with
a smaller false positive rate compared to traditional systems
based on z-score; in particular, we wanted to detect possible
anomalies in the amount of data transmitted by users within
a software landscape, which may indicate malicious behavior.
We used a log data set containing around 12 weeks of activity
collected from SAP systems deployed in a test environment.
We considered three features, extracted from the log files: Data
Sent, Data Received, Data Exchanged (all of them in bytes),
aggregated on a duration of 6 hours and per user. For testing
purpose, we artificially generated a data set with multi-variate
Gaussian distribution having the same average and covariance
matrix as the original data points.

We considered two target platforms for execution of the
analytics process that resemble the scenarios presented in
Section V-C. The first platform is an open Big Data platform
(platform 1) installing Apache components (e.g., Hadoop
YARN, Hbase, Spark, Zeppelin) and including the Oozie
workflow engine. The second platform is the SAP proprietary
Big Data platform (platform 2), installing HANA, XS Engine,
APL, and Jupyter, but with no workflow engine on board. The
process execution on platform 1 simply required to execute
the Oozie workflow in Figure 7, while the one on platform
2 required to manually generate and execute all service calls.
Automatic generation of service calls will be the topic of our
future work.

The process orchestrated the three steps in Figure 7:
1) Data preparation: log dataset was processed to address

data minimization privacy requirement removing the un-
necessary personal information. Specifically, the UserID
values were pseudo-anonymized by a hashing function.

2) Data processing and analytics, a k-means algorithm
was applied to our data points. For simplicity, here, we
focused on the key elements only. In the actual imple-
mentation, we also considered additional data processing
steps, such as a logarithmic transformation of the data,
to reduce skewness, scaling (dividing for the standard
deviation and subtracting the mean) and optimization of
the k value using the elbow method.

3) Data visualization, data were visualized as scatter-plot,
supporting visual inspection of data by expert users, to
select valid alerts.

For space restriction, in Figure 8, we only present the
results retrieved through our MBDAaaS using platform 2. Data
processing was realized by the APL HANA library, ran on
top of the HANA XS engine; data visualization was done
using the Jupyter (notebook) environment. Our experiments

Fig. 8. 2 dimensional projections of (a subset of) data points using SAP
platform (platform 2).

returned 6 clusters, representing similar events, with silhouette
values around 0.5. Red points indicate anomalous data points
(outliers) where the distance to the centroid is greater than
99th percentile of training data; colored data points repre-
sent the 6 different clusters; blue lines indicate the value
of thresholds computed with the z-score method (using z-
values optimized for each dimension). We can observe that
the number of identified outliers is reduced compared to z-
score method (see the number of red dots versus the points
above the thresholds). Our experiments show the suitability
of a MBDAaaS methodology, where Big Data analytics are
automated with a little involvement of customers that only
define goals in a declarative model and are possibly queried
for additional parameters of the analytics.

VII. CONCLUSIONS

This paper proposed a model for managing a MBDAaaS
platform and demonstrated its feasibility in addressing a TDS
scenario. Evolving from this point we plan to enrich the set
of services supported in our platform to offer an environment,
insisting on vertical scenarios, for testing real-life BDC. Users
will be requested to deal with the different design stages
typically addressed in preparing a BDC, to then compare
alternative options and investigating the consequences of their
choices.
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