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Abstract—Mobile communication is one of the most ubiqui-
tously used technologies in contemporary world, evolving towards
its fifth generation (5G). In day-to-day scenarios, many vehicular
users avail broadband cellular services while traveling. The
density of such vehicular users change dynamically in a cell
and at certain sites (e.g. signal lights), traffic jams would arise
frequently. Such conditions would pose high load situation to
respective serving base station. As a consequence, the cell site
would experience high dropping and blocking rates and subject
its users to poor Quality of Experience (QoE). In this work,
mobility behavior of vehicular users are analyzed and an algo-
rithm is designed to predict traffic status of a cell. The proposed
traffic prediction algorithm is a coalition strategy consisting of
schemes to predict user cell transition, vehicular cluster/moving
network detection, user velocity monitoring etc. The traffic status
indication provided by the algorithm could be used to design
efficient radio resource management (RRM) techniques. In the
presented paper, this context information about traffic severity
is used to pro-actively initiate load balancing at corresponding
site and release resources. Further, appropriate small cells are
activated/deactivated based on formation/dispersion of traffic
jams respectively. The simulation results exhibit substantial
reductions in dropping and blocking of users, demonstrating
improved QoE of users.

Index Terms- 5G, vehicular user cluster, moving network,
traffic status prediction, context information, RRM

I. INTRODUCTION

Mobile communication is one of the key technologies in
today’s world with ever increasing number of mobile subscrip-
tions [1], and on the verge of its fifth generation (5G). Due to
the popularity of mobile multimedia services, there is a drastic
increase in data traffic demand of mobile users[2]. Further, the
number of connected devices have been growing exponentially
and is anticipated to reach the figure of 50 billion by the year
2020 [1]. At this pace, by year 2020 number of connected
devices is anticipated to be around 10 to 100 times more than
present and traffic volume would be 1000 times larger. Thus,
5G mobile communications face key challenges of satiating
high data traffic volume demand and accommodating higher
number of connected devices in the network[3].

In real world scenarios, mobile users traveling in vehicles
avail cellular broadband services (e.g. infotainment in car,
individual commuter usage in public transport etc.). Density
of such vehicular users in a cell varies dynamically based on
road topology, arrival/departure rate etc. At certain sites (e.g.
signal post), traffic jams are more frequent. In such sites, large
number of vehicular users are at momentary halt, posing high

load situation to serving base station. The resulting congestion
leads to dropping of several already connected users in the cell
and blocking of access attempts made by newly entered users
to the cell. These factors will negatively impact the QoE of
users in the cell. The knowledge of traffic status in a cell will
enable efficient design of radio resource management, with
a motive to improve QoE of users even in highly congested
traffic jams.

Many schemes are present in literature to combat high
load situation arising from congestion, such as coverage
adaption, channel borrowing [4], mobility load balancing [5],
heterogeneous access management [6] etc. But these schemes
are required to be proactively triggered based on knowledge
of traffic severity, in order to achieve efficient performance.
Further, there are certain works in literature to detect hotspot
situation in a cell [7][8]. Majority of these works consider high
user arrival rate, low departure rate, or increased bandwidth
demand of existing users causing hotspot situation in a cell.
Further, blocking/dropping rates and network load figures are
investigated to evaluate congestion status in a cell. However,
these solutions do not rely on the knowledge of realistic traffic
jam formations in a cell, to initiate suitable RRM strategies
well in advance.

In addition to this, there are various methods to predict
urban traffic jams based on feedback from large historic traffic
data and a large number of trajectory tracking devices and
traffic sensors [9], based on 2D cellular automata model
[10], based on fuzzy search theory [11] and few based on
video surveillance systems [12] [13]. The above schemes are
typically used to predict general traffic congestion, associated
delays and convey these information to transport systems.
However, these schemes are costly in terms of computation
and infrastructure and are not necessarily designed from
cellular network perspective. This renders the aforementioned
solutions not suitable for usage in cellular networks.

In this paper, a framework is proposed to predict vehicular
traffic status from cellular network perspective and study
its impact on cellular network. Vehicular user mobility is
monitored and schemes for user-cell transition prediction, ve-
hicular cluster/moving networks detection, vehicular velocity
monitoring are combined to design traffic status prediction
algorithm. This a-priori context information about traffic jam
formation is utilized to proactively initiate load balancing at
serving base station or activate small cell at anticipated site



of frequent traffic jams (e.g., signal posts, cross roads etc.).
Thus, high load situation at traffic jams are relieved and QoE
of users is improved even during traffic jams.

The remainder of this paper is organized as follows: Sec-
tion II deals with prediction of traffic relying on vehicular user
mobility, cell transition prediction and vehicular user cluster
detection. Section III discusses simulation setup, traffic sta-
tus prediction results and improvements in Key Performance
Indicators (KPIs), and Section IV provides a conclusion and
indicates future work.

II. TRAFFIC STATUS PREDICTION

Due to the popularity of cellular broadband services, vehic-
ular users have begun demanding substantial data traffic from
network while on the move. Thus, load situation in a cell vary
with respect to mobility of vehicular users in and out of it. In
real world scenarios, several vehicular users travel into a cell
(as per road topology) and at certain sites (e.g., signal posts)
form traffic jams frequently. When high number of such traffic
demanding vehicular users are momentarily stagnant in a cell,
hotspot situation is posed to the serving base station.

Figure. 1 shows an example of such traffic jam forma-
tion from cellular network’s perspective. Cell 0 has signal
posts where vehicular users arrive from neighboring cells and
eventually stop to give rise to traffic jams. After a while,
vehicular users would start their travel again, dispersing the
jam. The traffic status of cell 0 varies accordingly. Thus, by
monitoring the mobility of vehicular users in neighboring cells
of cell 0 (site of frequent traffic jams), substantial information
could be gathered to predict traffic status of the cell in near
future. Knowledge of such information can be used to free
up resources preemptively via load balancing or appropriately
activate small cells near to anticipated traffic jam site and
accommodate newly entering vehicular users.

Fig. 1. Traffic jam formation scenario

A. System model

Figure. 2 depicts the system model considered to monitor
vehicular users traveling towards site of interest and obtain
substantial statistics required to design traffic status prediction
algorithm. Cell 0 is the site of interest where traffic jams
occur frequently (due to presence of signal posts etc.). The

Fig. 2. Traffic jam formation model

vehicular users’ mobility behavior in cells neighboring to this
site are monitored and those that are traveling towards cell
0 are investigated. Such users are identified when Eq. 1 is
satisfied.

√
(xb − xn(i))2 + (yb − yn(i))2√

(xb − xn(i− 1))2 + (yb − yn(i− 1))2
< 1, (1)

where, (xb,yb) denotes position of base station (cell 0),
(xn(i), yn(i)) is the present location of vehicular user n,
and (xn(i − 1), yn(i − 1)) is its past position. Further, in
the considered system model, a transition region is defined at
boundaries of neighboring cells. A user is in transition region
if Eq. 2 is satisfied:

gs < θt, (2)

where gs is the geometry experienced by the user with
respect to serving base station and θt is a threshold value
used to set cell transition region, which is derived from radio
propagation data. Geometry is defined as ratio of power re-
ceived from serving base station (Pk) to received interference
power from other base stations (Pj), given by

gs =
Pk∑
j 6=k Pj

(3)

The group of vehicular users satisfying Eq. 1 are monitored
and below statistics are obtained to design algorithm to predict
traffic severity at the site of interest (cell 0):

1) Nt → number of vehicular users in transition region
of neighboring cells, having cell 0 as next cell for
transition.

2) NCt → number of vehicular user clusters in transition
region of neighboring cells, having cell 0 as predicted
next cell.

3) N0 → number of vehicular users already transited to
cell 0 from neighboring cells.

4) Tt → total data traffic demand of vehicular users in
transition region of neighboring cells.

5) N∆vj → number of vehicular users with negative ve-
locity gradient, nearby frequent jam location.



6) NC∆vj → number of vehicular user clusters with neg-
ative velocity gradient, nearby frequent jam location.

7) T∆vj → cumulative data traffic demand of vehicular
users with negative velocity gradient, nearby frequent
jam location.

B. Cell transition prediction

When a vehicular user is in transition region specified by
Eq. 2, then future cell for its transition has to be predicted.
By this process, statistics about vehicular users or vehicular
user clusters that would travel to cell 0 in near future, can
be obtained. These statistics are substantial for traffic status
prediction of cell 0. In this work, an unsophisticated scheme
based on vehicular user geometry (in dB) is incorporated
to predict future cell association of a vehicular user. The
geometry values of vehicular users are obtained at regular
sampling intervals. The potential cells for user transition can
be shortlisted from neighboring cells based on whether user
geometry values have positive gradient with respect to a
particular cell. Such behavior indicates that a vehicular user
is advancing towards considered cell and would transit into it.
The transition probabilities derived from the scheme are given
by:

p1 =
g1

g1 + g2
, (4)

p2 =
g2

g1 + g2
, (5)

where g1 and g2 are geometries of a vehicular user with
respect to two probable cells for user transition.

There are several other schemes in literature to predict
future cells of a user based on machine learning [14], route
clustering [15], neural networks [16] etc. However, such
schemes have high computational complexity and cost. Hence,
cell transition prediction based on simple geometry measure-
ments [17] is used in this work.

C. Detection of vehicular user clusters

Fig. 3. Vehicular user cluster

During peak time of the day, several vehicular users travel
in a group from various locations and at certain sites such
as signal posts make a brief halt, giving rise to traffic jams.
Thus, detection of such vehicular user clusters in and around

the site of frequent traffic jam is a valuable indicator in
prediction of traffic jams, which would arise in near future.

Figure. 3 shows such a vehicular cluster. It also depicts
another variant called moving network, wherein many users
traveling together (e.g. in bus, tram etc.) avail cellular
services, but their access to the cellular network is managed
by a locally present access point. Presence of vehicular user
clusters is identified by following algorithm:

Data:
1) Positions of vehicular users in each neighboring cell

satisfying Eq. 1
2) Predefined values for cluster radius (R) and minimum

number of vehicular users required to form a cluster
(θNR)

Step 1:

Obtain distances among all vehicular users in each
cell satisfying Eq. 1

for i = 1 to N
for j = 1 to N

if i 6= j then
obtain dij

end if
end for

end for

where, N is the number of vehicular users approaching,
i, j ∈ (1, 2, ..., N), dij is the distance between users i
and j.

Step 2:

Find the maximum number of users NR present in a
radius R around user k, advancing in same direction.

∀ k ∈ (1, 2, ..., N), determine the k which satisfies
Eq. 6 more number of times.

dkj <= R (6)

Step 3:

If Eq. 7 is satisfied, then a vehicular cluster exists.

NR >= θNR, (7)

Algorithm 1: Vehicular cluster detection

D. Traffic status prediction & proactive RRM

Based on the collected statistics of vehicular user activity
in and around site of interest (in this case cell 0), traffic
status prediction algorithm is designed. The vehicular users
are assumed to request full buffer data traffic (the buffers of
the users’ data flows always have unlimited amount of data
to transmit [19] ), hence constituting a worst case scenario.
The traffic status indicator (TSI) would assume one of the
following states:



a) Green: There are not enough vehicular users/clusters/mov-
ing networks in cell 0 or in transition region of cells neighbor-
ing to it, to form a traffic jam or pose a congestion situation in
near future. The cumulative data traffic demand and number of
access attempts made by vehicular users to cell 0 are minimal
and there is no indication of high load situation occurring
soon. The statistics about data traffic demand are considered
because, in certain cases even though there are not enough
users present in traffic jam physically, cumulative data traffic
demanded by them might be high enough to cause congestion.
Equation. 8 defines the condition for TSI to be green:

(Nt < θN ) ∧ (NCt < θCt) ∧ (N0 < θ0)

∧(Tt + T∆vj < θT∆vj),
(8)

where ∧ indicates the logical AND operation.

b) Yellow: This state indicates that high traffic situation
is likely to happen in near future of the cell. Sufficient
number of vehicular users/moving networks will already be
in transition region expected to enter cell 0 or cumulative data
traffic demand of vehicular users in transition zone is large
enough to pose hotspot situation in cell 0 in the time coming.
Eq. 9 denotes the condition for TSI to be yellow. Eq. 9 also
investigates if the sum of vehicular users in transition region
and those already moved to cell 0 are large enough to pose
high load situation:

(Nt > θN ) ∨ (NCt > θCt)

∨(Nt +N0 > θN0) ∨ (Tt > θTt),
(9)

where ∨ indicates the logical OR operation.
As soon as TSI is yellow, load balancing can be triggered

proactively to free up resources. This enables cell 0 to ac-
commodate soon to enter vehicular users, already in transition
region. Figure. 4 depicts the process of load balancing (LB)
used in this work, where static background users present in
boundary of cell 0 are deliberately made to be served by
appropriate neighboring base stations. Care should be taken
that LB is not carried out on vehicular users, since their
movement would lead to higher LB failures and ping-pong
handovers.

Fig. 4. Proactive load balancing

c) Red: If Eq. 10 is satisfied, then it indicates that traffic

jam is imminent at frequent jam site. The vehicles typically
apply brakes and slow down when they are supposed to
halt at signal posts. Eq. 10 makes use of such behavior and
considers statistics of vehicular users/moving networks near
jam site, with negative velocity gradient and their cumulative
data traffic demand. To assist the attainment of these statis-
tics, a predefined radius around anticipated jam site is used
and vehicular users contained in it are investigated. Velocity
estimation by Doppler processing [18] is assumed to be present
in the considered system.

(N∆vj > θ∆vj) ∨ (NC∆vj > θC∆vj)

∨(T∆vj > θT∆vj).
(10)

The threshold values θN , θCt, θ0, θT∆vj , θN0, θTt, θ∆vj

and θC∆vj have to be set by the network operator on the basis
of available resources at site of interest and maximum number
of connections that could be served. The thresholds can be fine
tuned by the operators suitably.

Once the TSI is red with respect to a frequent jam site
(e.g. signal post), nearest small cell to the site is activated.
The vehicular users in traffic jam, which is bound to happen
at the site, will now be served by the small cell (SC). Figure. 5
demonstrates the activation of SC at frequent traffic jam site.

Fig. 5. Small cell activation

Fig. 6. Overall framework

Further, as the vehicular users start their travel again and
traffic jam disperses, TSI changes accordingly to yellow and



then to green. Small cell is deactivated proactively once traffic
jam disperses, to minimize energy consumption of small cells.
The overall framework of traffic status prediction and proactive
RRM is depicted in Fig. 6.

III. EVALUATION RESULTS

Fig. 7. Simulation of traffic jam formation

A LTE system level simulator is used to set up a multi-
cell scenario as shown in Fig. 7. Each cell has base station
in its center and has several static background users in it.
Evaluation methodology follows [19] and assumes 10 MHz
bandwidth for LTE operation at 2 GHz. In the used system
model, cell 0 is the site of interest where there are crossroads
in which traffic jams occur frequently. The vehicular users
originate from neighboring cells and travel into cell 0 as per
road topology, and cause traffic jams. Table I summarizes
simulation parameters. The thresholds are set as θN = 30,
θCt = 3, θ0 = 45, θN0 = 45, θC∆vj = 3, θ∆vj = 30,
θT∆vj = 250 MB, θTt = 250 MB θNR = 5and R = 30m.

TABLE I
SIMULATION PARAMETERS

Parameter Assumption
Carrier frequency 2 GHz
System bandwidth 10 MHz (50 PRBs)

Total transmit power 40 W (s2s=500 m)
10 W (s2s=250 m)(small cell)

Shadowing
log-normal

Standard deviation: 8 dB
Decorrelation distance: 50 m

Fast fading 2-tap Rayleigh fading channel
Noise power −174 dBm/Hz + 10 · log10(B) + 7

Background users per cell 30
Vehicular users 135 at velocity ranging from 30− 80 km/h

Monitoring interval 1 second

As the simulation advances, vehicular users travel from
neighboring cells to cell 0 and based on algorithm presented
in section II-D, TSI is predicted. The TSI evolution with time
is shown in Fig. 8. At the start of simulation, TSI at cell 0
is green since there is neither enough number of vehicular
users in cell 0 nor in transit region of neighboring cells. Once

Fig. 8. Traffic status indicator

there are sufficient vehicular users/clusters ready to transit to
cell0, TSI changes to yellow. Further, when sufficient number
of vehicular users/moving networks enter cell 0 and show
indication of halting near traffic jam site (negative velocity
gradient), TSI becomes red. The TSI remains red for the
entirety of traffic jam and as soon as vehicular users begin to
disperse TSI changes from red to yellow again. Finally, when
majority of vehicular users move out of cell 0, TSI returns to
green.

When TSI is yellow, load balancing is initiated proactively
at the site of cell 0. (Note: LB initiated only once, when TSI
changes from green to yellow) The static background users
near cell boundary in cell 0 are load balanced. This context
aware procedure frees up some resources for incoming
vehicular users to cell 0 in near future. This procedure
reduces dropping of users by ≈ 18%, blocking of new
access attempts by ≈ 10% and blocked handover attempts by
≈ 18% (shown in Fig. 9 a)). Further, when TSI turns red,
relevant small cells are activated to serve the vehicular users
at respective traffic jams. In the presented evaluation, traffic
jams occur almost simultaneously at two sites as depicted in
Fig. 7. By the activation of small cells, dropping of users is
reduced by ≈ 82%, blocked access attempts is reduced by
≈ 42% and blocked handovers are reduced by ≈ 81% (shown
in Fig. 9 b)). The reduction of these KPIs, indicate that users
have improved QoE even during traffic jams.

Fig. 9. Improvements in KPIs



Fig. 10. Comparison of energy consumption

Further, when the traffic jam disperses (TSI change from
red to yellow), activated small cell is switched off. Fig-
ure. 10 compares the energy consumption when small cell
is always ON vs prediction based ON/OFF. With prediction
based scheme, energy consumption is reduced by ≈ 45% for
considered simulation set up. Thus, prediction based small cell
activation/deactivation not only improves user QoE but also is
energy efficient compared to always ON strategy.

IV. CONCLUSION AND FUTURE WORK

In fifth generation (5G) of mobile communications, severe
challenge will be posed by higher data traffic volume (1000
times more) and larger number of connected devices (10−100
times more). Further, popularity of broadband multimedia
services has been resulting in increase of vehicular users
availing such services. In day-to-day scenarios, large number
of such vehicular users travel in and out of a cell, changing its
data traffic load. At certain sites, traffic jams occur frequently
leading to hotspot situation in the serving cell. This leads
to higher dropping/blocking of users thereby hindering their
QoE. In forthcoming 5G systems, better QoE is expected by
users irrespective of high load situations caused by traffic
jams. This paper proposed a framework to indicate traffic
status of a cell and predict occurrence of traffic jams at
specific sites. The mobility behavior of vehicular users in and
around the site of interest were investigated and traffic status
indicator was designed from cellular network perspective. The
supplementary concepts such as cell transition prediction and
vehicular cluster detection were discussed as well. Further,
RRM strategies namely traffic status aware load balancing and
small cell activation/deactivation were presented, which work
in tandem with traffic prediction framework. These proactive
RRM schemes resulted in substantial reductions in block-
ing/dropping of users and blocked handover attempts, demon-
strating better QoE for users even in traffic jam situations.
Future work is to integrate the traffic prediction framework
with other popular concepts of 5G such as beamforming and
mm-wave technologies, to provide services to vehicular users
in traffic jam.
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