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Abstract—Mobile communication is one of the most ubiqui-
tously used technologies in today’s world, evolving towards its
fifth generation (5G). Amidst increasing number of devices and
traffic volume, one of the key focuses of 5G is to provide uniform
service quality despite high mobility. In real world scenarios,
user mobility is not random but rather direction oriented, based
on its origin and destination. Further, several users exhibit
repeated mobility patterns on daily basis (e.g., office goers,
commuters in public transport etc.). Such mobility is termed as
Diurnal mobility. Information of such diurnal mobility can assist
in improving prediction accuracy of future user location (e.g.,
cells, routes). Knowledge of future user location will enable the
designing of efficient resource management algorithms, aiming
to make great service quality follow the user. In the presented
work, information of diurnal mobility is used to enhance the
accuracy of mobility prediction (next cell prediction as well
as route prediction) in a realistic urban scenario. Further,
using this context information about future routes and possible
coverage holes in them, efficient resource allocation is done to
sustain streaming/full buffer services, even in coverage holes.
The simulation results show substantial improvements in user
throughput as a result of context aware resource allocation,
enabled by diurnal user mobility prediction.

Index Terms- Mobility prediction, Diurnal mobility, Next cell
prediction, Route prediction, Context aware resource allocation

I. INTRODUCTION

In the contemporary world, mobile communication has be-
come a widely used technology with its applications expanding
to new horizons. Over the years, mobile communication has
evolved through several generations of technology and is
currently foreseeing inception of its fifth generation (5G). The
ubiquitous usage of mobile communication is reflected by
the increasing number of new mobile subscriptions each year
[1]. By the year 2020, the number of connected devices are
anticipated to be more than 50 billion [1]. Further, the mobile
multimedia services are gaining wide popularity, leading to
an increased data traffic demand by mobile users [2]. Taking
these facts into account, it is forecast that by 2020, mobile
traffic volume will be at least a 1000 times larger than the
present [1] and the number of connected devices will be 10
to 100 times more[2]. Thus, the key challenges in 5G mobile
communication are to support high traffic volume and large
number of connected devices. Another key focus of 5G is to
make sure that best service experience follows the user[2],
irrespective of high mobility.

Mobility prediction plays an important role in designing

of context aware radio resource management (RRM), which
aims at providing uniform service quality. Knowledge of future
user location (position, route or next cell) can be used to
anticipate future data traffic conditions, future events (crowd
formation, traffic jams etc.) [3] and appropriately reserve
or manage resources to provide optimum service. There are
several works in literature focusing on mobility prediction
such as, prediction based on distributed markov chains, hidden
markov model based prediction [4][5], making use of neural
networks and machine learning [6] etc. Majority of these work,
consider regular hexagonal cells and intend to predict the next
cell for user transition based on different strategies. Further,
they consider either straight line mobility of users or random
way point mobility, to evaluate the performance of prediction
schemes.

In real world scenarios, user mobility is not random but is
rather direction oriented. The user direction relies on its origin
and destination. Further, there are several users who exhibit
similar mobility patterns on daily basis (e.g., office goers, pub-
lic transport). They tend to regularly traverse a limited set of
trajectories, comprising of specific landmarks. Such mobility
can be referred to as Diurnal mobility, which constitutes a
major portion of mobile users. In this work, users following
diurnal mobility are considered and information arising from
such mobility (E.g., origin, landmarks, destination) are used
to enhance the accuracy of mobility prediction. Further, a
realistic urban scenario with irregular base station placements
(non hexagonal layout), several roads, crossroads, parks and
buildings is considered. The considered layout is also referred
to as Madrid grid [7].

In day to day life, there are several instances when a
user will run into a coverage hole (e.g., tunnel), where his
throughput will be nil. By anticipating the encounter of such
a coverage hole in near future, it is possible to allocate more
resources suitably and buffer the data before running into
coverage hole. In coverage hole, buffered data can be used
to sustain streaming/full buffer service. This will enable an
uniform service experience for the user, even in deep shadow
regions or coverage holes. This work exploits the context
information gained from route prediction to anticipate running
into a coverage hole and initiates context aware resource
allocation. Thus, substantial improvements are observed in
throughput of the user, sustaining streaming/full buffer service



even in case of coverage holes. The remainder of this paper
is organized as follows: Section II deals with system model.
Section III discusses next cell prediction and route prediction,
Section IV deals with context exploitation, Section V discusses
simulation results and Section VI provides a conclusion and
indicates future work.

II. SYSTEM MODEL

The mobility of users in day to day scenarios is not
random. Majority of the user movements are rather direction
oriented, depending on origin and destination of user. As an
example, consider figure 1, a user traverses through following
5 landmarks on daily basis. The user starts from his home in
morning, travels to his office, then to restaurant at afternoon,
then to library and gym in evening, before returning home.
There might be more than one path that exist between two
landmarks and sequence of landmarks traversed by user might
be different as well. But his trajectories are confined to specific
set of landmarks. Such mobility can be termed as diurnal
mobility. This type of mobility can be observed by monitoring
the users for a specific period of time (e.g., several business
days), before classifying them as diurnal mobile users. The
information about the origin and destination of such users will
assist in improving the accuracy of mobility prediction.
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Fig. 1. Diurnal mobility

The system model used here is referred to as Madrid grid
[7] and is depicted in figure 2. The system model captures the
realistic urban scenario comprising of several buildings, roads,
cross roads, parks and traffic lights. This 3D system model is
created using game engine called UNITY 3D. There are 12
micro base stations positioned at various sites in the considered
model as opposed to simple conventional hexagonal cell lay-
out. There are 25 crossroads present in the considered layout.
There are 7 landmarks at different crossroads namely: home,
university, gym, office, and corner points (North East, South
East and South West) as shown in figure 2. The mobile user is
assumed to follow diurnal mobility and can take 10 different
paths with different probabilities as given in table I. Each path
is defined by sequence of crossroads, including the landmarks.

III. DIURNAL MOBILITY PREDICTION

A. Next Cell Prediction
The mobile user connects to different base stations as it

traverses a path. With each path, a unique sequence of base
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Fig. 2. System model

TABLE I
PATHS TAKEN BY THE MOBILE USER

Nr. Sequence of crossroads %age
1 1 → 2 → 3 → 4 → 5 → 10 → 15 → 20 → 25 → 24

10%→ 19 → 18 → 23 → 22 → 21 → 16 → 17 → 12 → 11 → 6 → 1
2 1→ 6 → 11 → 12 → 7 → 8 → 9 → 4 → 5 → 10 → 15

8%→ 14 → 19 → 20 → 25 → 24 → 23 → 22 → 21 → 16 → 11 → 6 → 1
3 1→ 2 → 7 → 12 → 11 → 16 → 21 → 22 → 23 → 18

7%→ 19 → 24 → 25 → 20 → 15 → 10 → 5 → 4 → 3 → 2 → 1
4 1→ 6 → 7 → 12 → 13 → 14 → 19 → 18 → 17 → 16

5%→ 21 → 22 → 23 → 18 → 19 → 24 → 25 → 20 → 15 → 10 → 5 → 4 → 3 → 2 → 1
5 1→ 6 → 11 → 16 → 21 → 22 → 23 → 18 → 19 → 24

5%→ 25 → 20 → 15 → 10 → 5 → 4 → 3 → 8 → 13 → 12 → 11 → 6 → 1
6 1→ 2 → 3 → 4 → 5 → 10 → 15 → 20 → 25 → 24

30%→ 19 → 18 → 17 → 16 → 21 → 22 → 17 → 12 → 7 → 2 → 1
7 1→ 6 → 7 → 12 → 17 → 16 → 21 → 22 → 17 → 18

15%→ 19 → 24 → 25 → 20 → 15 → 10 → 5 → 4 → 3 → 2 → 1
8 1→ 2 → 3 → 8 → 7 → 12 → 17 → 18 → 19 → 24 → 23 → 22 → 21

10%→ 16 → 17 → 23 → 24 → 25 → 20 → 15 → 10 → 5 → 4 → 3 → 2 → 1
9 1→ 6 → 11 → 16 → 21 → 22 → 17 → 18 → 19 → 24

5%→ 25 → 20 → 15 → 10 → 9 → 14 → 13 → 12 → 7 → 6 → 1
10 1→ 6 → 11 → 16 → 17 → 12 → 7 → 8 → 9 → 10 → 5 → 4 → 9 → 14

5%→ 19 → 24 → 25 → 20 → 24 → 23 → 18 → 17 → 22 → 21 → 16 → 11 → 6 → 1

stations to which the user was connected exists. Table II gives
the sequence of connected base stations analogous to path
number 1 in table I. Similarly, for each path, sequence of
connected base stations can be derived.

TABLE II
SEQUENCE OF BASE STATIONS ANALOGOUS TO PATH

Path Nr. Sequence of base stations %age
1 BS1 → BS2 → BS9 → BS10 → BS11 → BS12 → BS8 10%→ BS11 → BS8 → BS7 → BS3 → BS4 → BS6 → BS1

By monitoring a user for a specific duration, statistics on
connected base stations and their sequence can be obtained. By
utilizing such statistics, it is possible to derive the probability
of transition into a next cell, based on simple Markov model
[5] given by,

P (Cn → Cn+1) =
N (Cn → Cn+1)

N (Cn)
(1)

Where, Cn→Cn+1 indicates transition from celln to



celln+1, N (.) indicates the number of times. Thus, by using
mobility statistics, probability of transition into a next cell can
be obtained as the ratio between; number of times user in celln
transited to celln+1 and number of times user was found in
celln.

Now, considering diurnal mobility of user, he traverses
through specific landmarks on daily basis. These landmarks
are associated with specific cells as shown in table III.

TABLE III
MAPPING LANDMARKS TO BASE STATIONS

Landmark HomeOfficeUniversityGym NE SW SE
Crossroad Nr. 1 10 12 19 5 21 25

Base station Nr. BS1 BS10 BS4 BS8 BS9BS3BS12

By using the information about origin of a user (user origi-
nating from a specific landmark) the Markov based prediction
can be extended as,

P (Cn → Cn+1/O) =
N (Cn → Cn+1/O)

N (Cn/O)
(2)

Where O indicates origin. Here, in celln (Cn), only statistics
of the user when originated from a specific landmark is consid-
ered instead of considering all transition history. For instance,
consider figure 3 a), where user has arrived at cell 2 from office
(cell 3). While predicting cell transition probabilities at cell 2,
in simple markov case, all the user statistics are considered.
Where as, in this case, only the statistical history of user in
cell 2 when he had arrived from cell 3 are considered.

Similarly, by using information about both origin and desti-
nation of a user (user originating from a certain landmark and
traveling to a specific landmark), the Markov based prediction
can be further extended as,

P (Cn → Cn+1/O&D) =
N (Cn → Cn+1/O&D)

N (Cn/O&D)
(3)

Where O indicates origin, D indicates destination. Here,
in celln (Cn), only statistics of the user when originated
from a specific landmark and going to a certain landmark is
considered instead of considering all transition history. For
instance, consider figure 3 b), where user has arrived at cell
2 from office (cell 3) and will be further traveling to gym
(cell 6). While predicting cell transition probabilities at cell 2,
in simple Markov case, all the user statistics are considered.
Where as, in this case, only the statistical history of user in
cell 2 when he had arrived from cell 3 and traveled further to
cell 6 are considered.

Obtaining information about destination becomes more
feasible with advent of autonomous cars and technological
advancements in vehicular positioning. With appropriate inter-
face, such information can be imported by cellular networks
and can be utilized to improve mobility prediction.
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Fig. 3. Markov chain with additional information
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B. Route Prediction

In this section, mobility prediction is more localized and
instead of predicting the larger area (next cell), immediate
future route is predicted. Figure 4 depicts the considerations
of routes and crossroads in this work. Consider a user traveling
in route Rn. At crossroad Cn the user can take future routes
Rn+1 or Rn+2 or Rn+3. Thus, route prediction in this work
is to predict the next road user in Rn would traverse, after
forthcoming crossroad Cn.

A user could be monitored for several business days and
statistics of different routes (sequence of crossroads) a user
takes could be maintained. Such statistics enables deriving the
probability of next road, based on simple Markov model [5]
given by,

P (Rn → Rn+1) =
N (Rn → Rn+1)

N (Rn)
(4)

Where, Rn→Rn+1 indicates transition from roadn to
roadn+1, N (.) indicates the number of times. Thus, by using
mobility statistics, probability of transition into a next road
can be obtained as the ratio between; number of times user
in roadn transited to roadn+1 and number of times user was
found in roadn.

Now, assuming diurnal mobility of the user, specific land-
marks are traversed by the user on daily basis. These land-
marks are associated with specific crossroads as shown in
table III. With the information about origin of a user (user
originating from a specific landmark) the Markov based route
prediction can be extended as,

P (Rn → Rn+1/O) =
N (Rn → Rn+1/O)

N (Rn/O)
(5)



Where O denotes a specific origin. In this case, while predict-
ing next route before each crossroad Cn, only the statistics of
user when originated from a specific landmark are considered.
Contrastingly, in general Markov based prediction all of the
user mobility statistics are considered, irrespective of where
user originated.

Further, by knowing origin as well as the destination of a
user, Markov based route prediction can be further extended
as,

P (Rn → Rn+1/O&D) =
N (Rn → Rn+1/O&D)

N (Rn/O&D)
(6)

Where O denotes a specific origin and D denotes a specific
destination.

Here, while predicting next route before each crossroad Cn,
only the statistics of user when originated from a specific
landmark and further traveled to a specific destination are
considered. Contrastingly, in general Markov based prediction
all of the user mobility statistics are considered, irrespective
of which landmark user originated from and which landmark
it further traveled to. In this case, it is assumed that user
already knows origin and destination (one specific landmark
out of all considered landmarks). Thus, user statistics which
are recorded only when he originated from this origin and
traveled to the specific destination are considered for deriving
probabilities of next route.

C. Context Exploitation

In this section, route prediction is used in tandem with
resource allocation to enable context awareness. In real world
scenarios, there are several cases where the signal reception is
very poor due to coverage holes (e.g., tunnels). The SINR
of the user is very low in such coverage holes that the
throughput of user drops to zero. Such cases are problematic
for certain services such as streaming, full buffer services etc.,
in downlink. Consider figure 5, where a coverage hole (tunnel)
is located in the road. The graphs (a) and (b) demonstrate
dropping of SINR and throughput of user when traveling
through the tunnel. Route prediction gives the probabilities
(PA,PB and PC) with which user might take next route. If
route prediction indicates that road with the tunnel is the most
probable next route, then context aware resource allocation is
triggered. This procedure allocates more resources (physical
resource blocks-PRBs) to the user and allows buffering of the
data. This step is depicted in graph (c) of figure 5. Once the
user is in tunnel, buffered data is used as depicted in graph
(d) maintaining uniform service quality for streaming services.
Figure 6 illustrates flowchart of the context aware resource
allocation scheme. The actual user traversal in road with tunnel
is confirmed to reduce unnecessary buffering of data due to
false prediction (false alarm).

IV. SIMULATION RESULTS

The simulation set up follows system model described in
section II. A 3D model following Madrid Grid layout is imple-
mented in UNITY 3D as shown in figure 2. The base stations
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Fig. 5. Context aware resource allocation
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Fig. 6. Context aware resource allocation algorithm

are enabled with LTE technology and simulation parameters
(E.g.,antenna parameters, pathloss models etc.) follow ITU-R,
METIS guidelines [7]. The bandwidth is 10 MHz (50 PRBs)
and carrier frequency is 2 GHz. A car with average velocity
of 30 km/h is present and it can take trajectories as described
in table II.

The statistics of user mobility and his connections to differ-
ent base stations are obtained by running the simulations for
100 times. The user can traverse 10 set of trajectories with dif-
ferent probabilities as depicted in table I. Once the statistics are
recorded, the above mentioned prediction schemes are carried
out for 100 simulation runs and average accuracy of prediction
is calculated. In learning phase (obtaining statistics) and in
prediction phase, user traverses the same 10 paths with similar
probabilities. Figure 7 a) compares accuracies of implemented
next cell prediction schemes. The figure also includes two sim-
ple non-statistical methods (distance and geometry based) [8]
of next cell prediction for comparison. The accuracy of next
cell prediction was enhanced by using additional information
of origin and destination, and was around 85% surpassing
rest of the schemes. Figure 7 b) shows accuracies of route
prediction methods. With additional information (origin, origin



& destination), accuracy of prediction increases. The accuracy
of prediction with information about origin & destination is
around 90%.
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Fig. 7. Results of mobility prediction

Further, there are 6 coverage holes placed at different sites
in simulation set up as depicted in figure 2. Context aware re-
source allocation is triggered by route prediction as discussed
in sectionIII-C, by allocating more resource blocks (PRB = 2
or PRB = 3) and buffering data. The SINR to bit resource per
element (BRE) mapping and throughput derivations follow [9].
The simulations are carried out for 100 runs and the average
user throughput is obtained.
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Figure 8 a) shows the average user throughput in overall
system. Figure 8 b) shows average user throughput in roads
with coverage hole. In both these cases PRB = 2, due to
triggering of context aware resource allocation. Figure 9 a)
compares percentages of user throughput improvement in
roads with tunnel (PRB = 2) and figure 9 b) analyzes the
same with PRB = 3. Average user throughput in roads with
tunnel is improved when route prediction is deployed. The
results get better with usage of additional information (origin,
destination) for route prediction. In case of PRB = 2, around
35% improvement is seen and with PRB = 3, improvement of
65% is witnessed. The maximum possible improvements with
perfect route knowledge is also depicted in these figures.

V. CONCLUSION AND FUTURE WORK

One of the key challenges for 5G mobile communications is
to support high traffic volume while providing uniform service
quality irrespective of high mobility. Thus, mobility prediction
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Fig. 9. Throughput improvement in paths with coverage hole (in percentage)

plays an important role in designing context aware procedures
aiming to provide uniform service quality to users. Mobility
of users is not random but direction oriented. Several users
traverse similar trajectories on daily basis. This paper used
information about such diurnal mobility of a user, his origin
and destination, to enhance accuracy of mobility prediction
in an urban scenario. Further, mobility prediction was used
to proactively trigger context aware resource allocation. Thus,
enabling uniform service quality for certain service classes in
practical situations like coverage holes. Substantial improve-
ments in average user throughput were observed in routes
with coverage holes. Potential future work includes refining
resource allocation scheme to target wide range of services,
study of interfaces required to acquire information about user
destination from vehicles, study of autonomous driving to
obtain perfect route knowledge.
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