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ABSTRACT: Polymers exhibiting both antimicrobial and
biodegradable properties are of great interest for next
generation materials in healthcare. Among those, cationic
polycarbonates are one of the most promising classes of
materials because of their biodegradability, low toxicity, and
biocompatibility. They are typically prepared by a chemical
postmodification after the polymer has been synthesized. The
main problem with the latter is the challenges of ensuring and
verifying complete quaternization within the polymer structure.
Herein, we report the first example of synthesizing and
polymerizing charged aliphatic cyclic carbonates with three
different alkane pendant groups (N-methyl, N-butyl, and N-
hexyl) by ring-opening polymerization (ROP). These charged
eight-membered cyclic carbonates displayed extraordinary reactivity and were even polymerizable in polar solvents (e.g., DMSO)
and in catalyst free conditions that are generally unobtainable for other ring opening polymerization processes. A computational
study was carried out and the findings were in agreement with the experimental data in regards to the dramatic increase in
reactivity of the charged monomer over their neutral analogs. Furthermore, a series of hydrogels were prepared using the
different charged eight-membered cyclic carbonates, and we found it to have a significant impact on the hydrogels’ ability to swell
and degrade in water. Finally, the hydrogels demonstrated antibacterial activity against Escherichia coli (Gram-negative) and
Staphylococcus aureus (Gram-positive). These materials could be ideal candidates for biologically relevant applications where
cationic structure is required.
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1. INTRODUCTION

Polycations or cationic polymers are commonly employed
nowadays in many different applications such as household
products (e.g., soaps and shampoos)1 or flocculants for water
purification.2 Furthermore, they are being tested in biomedical
applications such as drug delivery,3,4 gene transfer,5−9 and
antimicrobial coatings.10−19 Over the past decade, a consid-
erable amount of attention in the scientific community has been
given to the synthesis of cationic polymers with hydrolyzable
polymer backbones. The main reason is to develop cationic

polymers which are biodegradable and do degrade after doing
its job depending on the application in the environment or in
the body. This is usually made possible by including urethane,
ester, or carbonate functional groups in the polymers’
backbone, which can then readily hydrolyze under physiological
conditions.8,20−30 Among those, cationic polycarbonates are
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one of the most promising class of materials because of their
fast biodegradability, low toxicity, and biocompatibility.31

The current method of preparing biodegradable cationic
polycarbonates is via postchemical modifications made after the
formation of the polymer. For example, Pascual et al., prepared
cationic polymers via ring opening polymerization (ROP) of N-
substituted eight-membered cyclic carbonates, which were then
quaternized with methyl iodide.32 After this postquaternization
step, the polymers exhibited broad-spectrum antimicrobial
properties against Gram-positive and Gram-negative bacteria.
Similarly, Hedrick et al. prepared polycarbonate based cationic
polymers by first polymerizing cyclic carbonates containing
alkyl chloride side chains, which were then postfunctionalized
with nitrogen containing reagents; the resulting cationic
polymers were studied for antimicrobial applications.33 The
main drawback to such a process lies in the difficulty in
obtaining and ensuring complete quaternization.12,34,35 A more
elegant method should rely on the “direct-polymerization” of
monomers already bearing quaternary ammonium functional
groups. This approach ensures a better control of the degree of
quaternization in the polymer.7,36

Upon evaluating the literature about the preparation of
polycarbonates, they seem to be exclusively prepared via
postpolymerization methods. We suspect this trend is due to
the solubility of charged monomers in nonpolar solvents.
Generally, polar solvents are usually overlooked for use in ring
opening polymerizations (ROP) because they tend to
coordinate with active species and inhibit the ROP process.
Therefore, only a few examples have been presented in the
literature performing the ROP in highly polar solvents such as
DMSO or DMF.37 In this work, we investigate the ring-opening
polymerization of cationic N-substituted eight-membered cyclic
carbonates. The final goal is to develop a process to produce
cationic polycarbonate hydrogels with antimicrobial properties
by a direct-polymerization approach.

2. RESULTS AND DISCUSSION

We have recently demonstrated that N-substituted eight-
membered cyclic carbonates possess superior reactivity in
comparison to 5 and 6-membered cyclic carbonates. Con-
sequently, we envision that these monomer families could be
better suited to be polymerized in polar solvents rather than
five and six-membered cyclic carbonates. In this work, a series
of cationic monomers were prepared with different alkyl
pendant chains (methyl, butyl, and hexyl) starting from N-
substituted eight-membered cyclic carbonates. Afterward, these
monomers were homopolymerized and their reactivities were
further studied with computational modeling. Hydrogels were
prepared using the aforementioned monomers, and charac-
terized with FTIR, water swelling, and rheology. Finally, the
hydrogels were screened against both Gram-positive and Gram-
negative bacteria to evaluate their use as antimicrobial agents.
2.1. Monomer Synthesis and Polymerization. Non-

charged eight-membered cyclic carbonates were synthesized
using a ring closure process of diethanolamines with
triphosgene, in the presence of triethylamine.32,38,39 Three
cyclic monomers with different alkyl chains were prepared.
Subsequently, these monomers were quaternized with iodo-
methane to afford the quaternized version of the eight-
membered cyclic carbonates with three different alkyl chains
(i.e., 8-Met, 8-But, and 8-Hex) with excellent isolated yields of
∼93% (Scheme 1). The monomer structure was confirmed by

1H and 13C NMR spectroscopy (see the Supporting

Information)

The ability to promote the polymerization of the function-
alized monomer via ROP in the presence of DBU was evaluated
(Scheme 2). The organocatalyst DBU was used here based on

past successful polymerizations of eight-membered cyclic
carbonates.38 The monomer 8-Met was insoluble in many
organic solvents available except for DMSO. Although DMSO
is not considered the most suitable solvent to perform ROP, a
series of homopolymerizations with 8-Met at three different
degrees of polymerization (DPs) (i.e., 50, 100, and 200) were
carried out (Table 1, Entries 3, 4, and 5).

After screening reaction conditions with different catalyst
loadings, we found that 0.33 mol % of DBU was optimum for
the 8-Met monomer. It appeared that higher amounts of DBU
allowed for different side reactions to take place (see the
Supporting Information). Using 1H NMR, the polymerizations
were monitored by the disappearance of 8-Met’s methylene
protons adjacent to the carbonate (4.62 ppm) and their
subsequent reappearance at 4.59 ppm (Figure 1). Monomer
conversion was determined using relative peak integrations

Scheme 1. Charged Aliphatic N-Substituted Eight-
Membered Cyclic Carbonates Used in the Direct
Preparation of Cationic Polycarbonates

Scheme 2. Representative Scheme to Obtain Linear
Homopolymers via ROP of Monomer 8-Met, 8-But, and 8-
Hex

Table 1. Exploration of Homopolymerization of Charged
Eight-Membered Cyclic Monomers via ROP

entry monomer
target
DP

DBU
amt time

%
conv.

Mn by
1H

NMR

1 Noncharged 8-
Met

50 5.00
mol %

1 week 34

2 8-Met 50 (none) 1 day >97 14 200
3 0.33

mol %
1 min >97 14 900

4 100 0.33
mol %

1 min >97 20 600

5 200 0.33
mol %

1 min >97 39 300

6 8-But 200 1.00
mol %

1 min >97 64 000

7 8-Hex 200 1.00
mol %

1 min >97 71 200
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values. Polymerization was also evidenced following the shift of
the carbonyl by 13C NMR from 153.26 to 152.92 ppm (see the
Supporting Information). Further characterization by FTIR-
ATR provided additional evidence of the formation of
polycarbonate by the disappearance of the monomer’s CO
stretching band at 1758 cm−1 and the appearance of a
polycarbonate CO band at 1751 cm−1. A large new peak at
1247 cm−1 was also observed and identified as the C−O from
the polycarbonate (see the Supporting Information).
All polymerizations listed in Table 1 for the charged

monomers at different DPs reached full conversion incredibly
fast, especially in comparison to the noncharged monomer. For
the analogous noncharged 8-Met monomer, we were only able
to observe 34% monomer conversion, despite using much more
DBU (5.00 mol %) and longer reaction time of 1 week in
DMSO (Table 1, Entry 1). Moreover, we observed that 8-Met
was reactive enough to polymerize by itself within 24 h without
the presence of a catalyst, obtaining high molar masses
calculated by 1H NMR (Table 1, Entry 2). We attempted to
characterize the polymers by SEC in various solvents (DMF,
THF, and H2O) but we were unable to obtain any data. We
suspect that the polymers had either (1) degraded into smaller
chains or (2) got stuck in the column. We also attempted a
postpolymerization anion exchange with LiTFSI in H2O.
However, we were also unable to detect any presence of a
polymer with our GPC-SEC setup.
Polymerizations of 8-But and 8-Hex were carried out in a

similar fashion as in the previous section, see Table 1. At first,
0.33 mol % DBU was applied in each polymerization and we
observed a decrease in monomer conversion with increasing
length of the alkane pendant group. As a solution, DBU content
was increased to 1 mol % and we were again able to realize full
monomer conversions of 8-But and 8-But in 1 min reaction
time. Polymerization were confirmed by 1H and 13C NMR (see
the Supporting Information). We also attempted to characterize
the by SEC but we were unable to obtain any data even using
THF and DMF with salts (ie: LiBr and LiTFSI) at different
concentrations (5 and 10 mM).
The solubility of all the cationic polycarbonates was surveyed

in a range of organic solvents (Table S1). The polymers were

consistently insoluble in solvents such as DCM, ACN, THF,
and acetone. All synthesized polycarbonates were soluble in
polar aprotic solvents such as DMF and DMSO. The solubility
in water was mainly governed by the alkyl chain length. All
polymers derived from 8-Met were soluble in H2O, however
the polymers loses its solubility in water as the pendant group is
extended to 8-But and 8-Hex.
From our homopolymerizations, we observed quite an

extraordinary reactivity of the 8-Met and the other charged
monomers. We observed that 8-Met was reactive enough to
polymerize by itself within 24 h without the presence of a
catalyst, obtaining high molar masses calculated by 1H NMR
(Supporting Information). Under the conditions used,
complete monomer conversion of the noncharged 8-Met
analog could not be obtained even when significantly more
DBU was used. We have previously confirmed that the ring size
matters in terms of reactivity,40 but in this case a tremendous
difference in terms of reactivity was found from charge to
noncharge monomers in spite of the same ring size. Therefore,
we decided to examine this system with a thorough
computational study.

2.2. Computational Modeling. To gain a deeper insight
into the reactivity of 8-Met, DFT studies were carried out (the
reported energy values correspond to free energies (G) and are
given in kcal/mol; for further computational details, see the
Supporting Information) with a special focus on the reasoning
behind the high reactivity of the quaternary ammonium salts
and the reactivity difference with their noncharged counterpart
8-Met. Also, the role of DBU in enhancing the reaction rate
was studied. The calculations were performed at the M062X/6-
311+G(d,p) level with DMSO as the solvent (IEFPCM).
Ammonium species A-1 served as models for the experimental
substrate 8-Met. The neutral amine monomer A-2 was also
computed, and the two substrates (A-1 and A-2) were taken as
ground states (G = 0) of their respective energy profiles.
To understand the high reactivity of the ammonium salt 8-

Met, we compared its energy profile with that of the neutral
species A-2. Similar to our previous mechanistic study on a
related system,2 the carbonate ring opening reaction was found
to be a stepwise process (Figure 2). Thus, the initial

Figure 1. Homopolymerizations of 8-Met (DP: 50) were carried out and characterized with 1H NMR in d6-DMSO. Depicted above is of the
homopolymer, and below is the monomer 8-Met.
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nucleophilic addition of methanol to A-1 through TS1 leads to
the formation of the quaternized intermediate (INT1),
followed by a ring opening (TS2) process to the open-chain
monomeric product (Figure 2). If the calculations are
performed in the presence of a single explicit molecule of
methanol,40 the activation energies are exceedingly high and
unaffordable (ΔG‡ = 41.7 kcal/mol), whereas the introduction
of a second explicit molecule of methanol, like in Figure 2,
seems critical for the correct solvation of the transition states,
and thus, for the activation of the substrates, showing a large
reduction of the activation barriers (TS1, ΔG‡ = 21.0 kcal/
mol). In fact, TS1 and TS2 are highly polar structures, with
significant negative charge development around the oxygen
atoms of the carbonate, especially the carbonyl group, whose
double bond breaks during the initial attack. Therefore, the use
of both explicit and implicit solvent systems seems to be
determinant for the correct computational description of the
systems, as well as for the experimental activation of the
reaction. For A-1, the Gibbs Free energies of both steps are low
and similar (TS1, ΔG‡ = 21.0, TS2, ΔG‡ = 20.7) (see Figure
3), contributing almost equally to the reaction rate.
On the other hand, the comparison of the cationic species

N+-Me2 species (A-1) vs the neutral N-Me one (A-2) is also

illustrative, because the former presents energy values in
general 5−6 kcal/mol lower than the latter. This energy
difference theoretically corresponds to a 1 × 104 times faster
reaction rate, which is in fair agreement with the observed
experimental rate increase for the ammonium salt. These
findings confirm that the positive charge on nitrogen exerts a
strong inductive effect through the carbon chain, making the
remote carbonyl group highly electrophilic. Indeed, −+NR3 is
known to present one of the strongest + I inductive effects.
Finally, the role of DBU was also checked, finding that in its

presence the activation energy of the process is reduced in ca.
10 kcal/mol, becoming a really fast process at ambient
conditions, as found experimentally. DBU binds and activates
the incoming molecule of methanol, increasing its nucleophil-
icity, during the initial attack TS1.

2.3. Charged Polycarbonate Hydrogels. Because of the
3D structure of hydrogels, it is difficult to ensure total
quaternization of the entirety of the hydrogel using the
postquaternization method. Furthermore, it can be just as
challenging to remove any unreacted quaternizing agent from
the hydrogel.
In order to prepare polycarbonate hydrogels, charged

monofunctional eight-membered cyclic carbonates bearing
were directly copolymerized in DMSO with eight-membered
dicyclic carbonate and PEG-diol, which served as a cross-linker
and initiator, respectively. Again, DBU was employed to
catalyze the ROP reactions (Figure 4A). The resulting
hydrogels were named based on the charged eight-membered
cyclic carbonate used in the synthesis (i.e., Gel-8-Met, Gel-8-
But, and Gel-8-Hex).
The reaction was confirmed by FTIR-ATR after the removal

of DMSO from the gels. Evidence of the formation of
polycarbonate structure was noted by the disappearance of the
monomers’ CO stretching band at 1758 cm−1 and the
appearance of a CO band at 1745 cm−1, considered to be the
polymer. Furthermore, a large new peak at 1244 cm−1 was
identified as the C−O from the polymer (Figure 4). To further
confirm the formation of 3D structures, the rheological
behaviors of the gels at room temperature were also
characterized using oscillatory tests (see the Supporting
Information). We were able to realize the elastic modulus
(G′) to be greater than the viscous (G″) modulus for all the
hydrogels. This G′ > G″ behavior suggests that the gels that we
obtained were covalently cross-linked. Furthermore, we
continued to observe this behavior when we removed DMSO
from one of the gels and reswelling it in water (100 wt %).
One particular characteristic of cationic hydrogels is their

ability to swell in water without losing their three-dimensional
structure due to their hydrophilicity. The level of swelling,
responsiveness, and degradability are important features taken

Figure 2. Reaction energy profile for substrate A-1 and its Gibbs Free
energies computed at M062X/6-311+G(d,p) (iefpcm, solvent =
DMSO) level.

Figure 3. Comparison of the Gibbs Free energy values for the three different substrates, computed at M062X/6-311+G(d,p) (iefpcm, solvent =
DMSO) level.
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into account when designing these hydrogels. Thus, the
swelling behaviors of the gels were studied by submerging

dried pieces of gels in water. The “swelling behavior” was
influenced by the ‘R’ pendant group of the functional

Figure 4. (A) Representative scheme used to create the polycarbonate ion gels using the 8-Met monomer (black), bis(eight-membered dicyclic
carbonate) (blue), and PEG (red). (B) We used FTIR-ATR to characterize the Gel-8-Met in its initial state (black) and after leaving the gel in water
after 8 h at room temperature (red); an additional intermediary scan was also performed (blue). Polycarbonate signals at 1744 and 1244 cm−1

decreased with time in water, and carboxylic acid signal at 1702 cm−1 was observed upon the degradation of the polycarbonate.

Figure 5. Antibacterial efficacy of the hydrogels measured at different times (15 and 30 min and 1, 2, and 8 h) against E. coli (left) and S. aureus
(right). The CFU/mL values were calculated from counting the number of colonies on agar plates when different dilutions were plated.
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monocyclic carbonate used to create the hydrogels. As
expected, lengthening the alkyl chain from methyl to hexyl
increases the hydrophobicity, and consequently its ability to
swell water was reduced from 600 wt % to 55 wt % (Table S2).
Aliphatic polycarbonates are known to rapidly hydrolyze in the
presence of water.32 Thus, the degradation in water at 25 °C of
the gels with different alkyl chains was evaluated. The gels’
“time to degradation” was significantly prolonged from 8 h to 5
days by using monomers with longer alkane chains, (methyl <
butyl ≪ hexyl) (Table S2). In our opinion, this is because the
swelling decreased with longer alkane pendant groups, and
water would have more difficulty degrading the carbonate
linkage. The degraded gels were characterized by FTIR-ATR
and were compared to its pristine initial state, shown in Figure
4. Upon degradation, the signals pertaining to the carbonate
linkages decreased in intensity, whereas the carboxylic acid
signal (CO stretch, 1702 cm−1) grew.32 With these results,
we can expect to engineer gels with a blend of the available
monomers to achieve specific swelling and longevity in water
properties.
2.4. Antibacterial and Hemolysis Study. The antimicro-

bial properties of the hydrogels were assessed against two
frequent pathogens: Escherichia coli (Gram-negative) and
Staphylococcus aureus (Gram-positive). These microbes are
common pathogens that often manifest on dermal wounds and
are typically treated by topical application of antibiotics.
Hydrogels composed of the Gel-8-Met, Gel-8-But, and Gel-
8-Hex monomers were used in this screening.
All hydrogels in the study significantly reduced the bacteria

population after 1 h (Figure 5). Gel-8-But, the sample showing
the least antibacterial activity against E. coli, was still able to
reduce the number of viable bacteria by 2 orders of magnitude
(from 1 × 108 to 1 × 106 CFU/mL) within 1 h. Gel-8-Hex
showed stronger bactericidal activity against E. coli, with a
reduction of approximately 5 orders of magnitude (from 1 ×
109 to 1 × 104 CFU/ml). Gel-8-Met displayed the strongest
antibacterial activity against E. coli of the three hydrogels, and
was able to kill all the bacteria in the solution within 15 min.
After 8 h of incubation, no bacterial growth of E. coli was
detected for any of the hydrogels. The hydrogels also displayed
bactericidal activity against S. aureus, although to a lesser degree
compared to the E. coli trials. Similarly, the Gel-8-Met
displayed the strongest antibacterial, followed by Gel-8-Hex
and then Gel-8-But. The Gel-8-Met reduced the bacteria count
from 104 to ∼7 CFU/ml in 30 min of incubation. The least
active antibacterial gel, Gel-8-But, was able to reduce the S.
aureus amount by about 1 order of magnitude within 1 h. This
gel was able to further reduce by another 2 orders of magnitude
after 8 h. Some studies have shown the killing efficiency is
usually increases with increasing the alkyl chain length. In this
particular case, the shorter the alkyl-chain displayed higher
antibacterial activity.19 In addition, considering that the activity
was monitored relative to the weight of the material, the Gel-8-
Met sample has the highest amount of cationic groups. In our
opinion, the Gel-8-Met antibacterial efficiency can be explained
because it has much higher solubility in aqueous media, which
facilitates a faster contact with bacteria and thus enhancing its
killing efficiency. In addition the Gel-8-Met possess higher
cationic groups per weight enhancing the antimicrobial
behavior. In comparison with works of Pascual et al.,32 the
gels in the presented work appear to exhibit faster and higher
bactericidal. The gels in the aforementioned work were unable
to completely eliminate both S. aureus and E. coli after an

incubation period of 18 h, where as our Gel-8-Met successfully
suppressed both bacteria within 30 min.
To get a better understanding of the antimicrobial

mechanism scanning electron microscopy (SEM) images
were taken before and after treating the microbes with the
hydrogels. As shown in Figure 6, the surfaces of E. coli cells after
hydrogel treatment for 8 h are highly distorted suggesting that
bacteria were killed via membrane disruption.

Hemolysis studies were carried for the hydrogels, after 1 h
approximately 80% of the red blood cells underwent lysis. The
hydrogels that we prepared exhibited higher hemolysis than
those prepared by Pascual et al.32 probably because of the
higher amounts of quaternized ammonium functional groups
present within the gels. We believe that in the future, new
hydrogels could be prepared by using a mixture of both charged
and noncharged monomers to get a proper compromise
between antimicrobial activity and hemolysis.

3. CONCLUSION
In this paper, we report the first example of synthesizing and
the ROP of cationic aliphatic cyclic carbonates with three
different alkane pendant groups (N-methyl, N-butyl, and N-
hexyl). The charged monomers showed very high reactivity,
and were even polymerizable in polar solvents (e.g., DMSO)
and in catalyst-free conditions that are generally unfavorable for
ROP processes. Complete monomer conversion in our
polymerizations could be realized within a minute. A thorough
computational study showed that the cationic cyclic monomers
were indeed orders of magnitude more reactive than their
noncharged analogs. This was in agreement to the experimental
studies performed within this article. Polycarbonate gels were
also prepared from the aforementioned monomers. The
swelling and the biodegradability of the gels appeared to be
highly dependent on the nature of the monomerś pendant
group. These hydrogels also demonstrated bactericidal activity
against E. coli and S. aureus by disrupting the membrane of the
bacteria. With further tailoring of the gel’s composition, new
hydrogels based on this system could be prepared for future
works in biodegradable broad-spectrum antimicrobial research
activities and applications.

4. EXPERIMENTAL SECTION
4.1. Materials and Equipment. 1H and 13C NMR spectra were

recorded with Bruker Avance DPX 300, Bruker Avance 400, or Bruker
Avance 500 spectrometers. The NMR chemical shifts were reported as

Figure 6. Scanning electron microscopy (SEM) images of E. coli were
taken before (left) and after (right) 8 h of treatment with Gel-8-Met;
scale bars corresponds to 1 μm. The micrograph after the hydrogel
treatment suggests that the bacteria underwent membrane disruption.
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δ in parts per million (ppm) relative to the traces of nondeuterated
solvent (e.g., δ = 2.50 ppm for d6-DMSO or δ = 7.26 for CDCl3). Data
were reported as chemical shift, multiplicity (s = singlet, d = doublet, t
= triplet, m = multiplet, br = broad), coupling constants (J) given in
Hertz (Hz), and integration. Fourier transform infrared−attenuated
total reflection (FTIR-ATR) spectroscopy was performed with a
ThermoFisher Nicolet 6700. Gel permeation chromatography (GPC-
SEC) was performed using an Agilent Technologies PL-GPC 50
Integrated GPC system, with a Shodex KD-806 M column. For the
GPC, N,N-dimethylformamide with a 10 mM concentration of LiBr at
50 °C was used as the solvent and toluene as a marker. Polystyrene of
different molecular weights, ranging from 2100 to 1 920 000 g mol−1,
were used for the calibration of the GPC.
Triethylamine (≥99%), benzyl alcohol (99.8%), N-methyldiethanol-

amine (≥99%), N-butyldiethanolamine (≥99%), diethanolamine
(≥98.5%), N,N,N′,N′-tetrakis(2-hydroxylethyl)ethylenediamine (tech-
nical grade), lithium bromide (≥99%), methyl triflate (≥97%), and
1,8-diazabicyclo[5.4.0]undec-7-ene (≥99%) were purchased from
Sigma-Aldrich and used as-is. 1,8-Bis(dimethylamino)naphthalene
(99%), 1-bromohexane (≥99%), potassium carbonate (ACS grade,
anhydrous), sodium iodide (≥99%), magnesium sulfate (97%),
iodomethane (99%), acetonitrile (extra dry), DCM (≥99.9%), diethyl
ether (≥99.8%), acetone (≥99.5%) THF (≥99%), DMSO, and DMF
(GPC grade) were purchased and used as-is from Fisher Scientific.
Triphosgene was purchased from TCI and used as is. Bis-
(pentafluorophenyl) carbonate (97%) was purchased from Manchester
Organics and was used as-is. Deuterated solvents including CDCl3 and
d6-DMSO were purchased from Deutero and were used as is.
4.2. Typical Eight-Membered Cyclic Carbonate Synthesis. 6-

Methyl-1,3,6-dioxazocan-2-one (Noncharged 8-Met). A 1L single
neck round-bottom flask was charged with N-methyldiethanolamine
(10.0 g, 83.9 mmol), triethylamine (17.4 g, 167.8 mmol), THF (600
mL), and a large oval stir bar. The mixture was then allowed to stir and
cooled to −78 °C using a liquid nitrogen/acetone bath. This was then
followed by a dripwise addition of triphosgene (8.3 g, 28.8 mmol) in
THF (100 mL). Once all of the triphosgene has been added, the
reaction was taken out of the liquid nitrogen/acetone bath and allowed
to stir for an additional 2 h at room temperature. The reaction mixture
was then filtered to remove the triethylammonium chloride salt and
concentrated under vacuum. Cold diethyl ether (500 mL) was then
added to help precipitate the remaining salts, which were then filtered
again. The remaining filtrate was concentrated under vacuum to give
the final product as a yellow oil (9.24g, 76% yield). 1H NMR (500
MHz, DMSO): δ = 4.13 (t, CH2, J = 5.3 Hz, 4H), 2.73 (t, CH2, J = 5.3
Hz, 4H), 2.41 (s, CH3, 3H).

13C NMR (101 MHz, DMSO): δ =
155.36 (CO), 68.71 (CH2), 55.64 (CH2), 44.39 (CH3).
6-Butyl-1,3,6-dioxazocan-2-one (Noncharged 8-But). Reddish

yellow oil (13.8 g, 88% yield). 1H NMR (300 MHz, DMSO) δ 4.09 (t,
J = 5.2 Hz, 4H), 2.73 (t, J = 5.3 Hz, 4H), 2.54 (t, J = 7.1 Hz, 4H),
1.43−1.30 (m, 2H), 1.30−1.15 (m, 2H), 0.86 (t, J = 7.2 Hz, 3H). 13C
NMR (101 MHz, DMSO) δ 155.32, 69.02, 56.15, 53.55, 29.19, 19.64,
13.84.
6-Hexyl-1,3,6-dioxazocan-2-one (Noncharged 8-Hex). Brownish

oil (15.5 g, 86% yield). 1H NMR (300 MHz, DMSO) δ 4.08 (t, J = 5.3
Hz, 4H), 2.72 (t, J = 5.3 Hz, 4H), 2.58−2.44 (m, 2H), 1.36 (s, 2H),
1.23 (s, 6H), 0.86 (t, J = 6.9 Hz, 3H). 13C NMR (101 MHz, DMSO) δ
155.29, 69.00, 56.45, 53.55, 31.21, 26.94, 26.11, 22.08, 13.84.
4.3. Quaternization of Cyclic Carbonates with Iodomethane.

6,6-Dimethyl-2-oxo-1,3,6-dioxazocan-6-ium iodide (8-Met). A 16
mL vial was charged with 6-Methyl-1,3,6-dioxazocan-2-one (0.5 g, 3.44
mmol), ACN (2 mL), and a stir bar. Iodomethane (0.585g, 4.134
mmol) was then added dripwise and the reaction continued to stir for
2 h at room temperature. The products were precipitated with ether
and dried under vacuum. A fine white powdered product was collected
(0.92g, 93% yield). 1H NMR (300 MHz, DMSO) δ 4.62 (t, J = 4.5 Hz,
2H), 3.90−3.81 (m, 4H), 3.25 (s, 6H). 13C NMR (75 MHz, DMSO) δ
153.26, 65.47, 64.72, 51.75.
6-Butyl-6-methyl-2-oxo-1,3,6-dioxazocan-6-ium iodide (8-But).

Yellow solid (0.81g, 93% yield). 1H NMR (400 MHz, DMSO) δ 4.62
(s, 4H), 3.91−3.77 (m, 4H), 3.54−3.47 (m, 2H), 3.19 (s, 3H), 1.76−

1.65 (m, 2H), 1.33 (h, J = 7.3 Hz, 2H), 0.93 (t, J = 7.3 Hz, 3H). 13C
NMR (101 MHz, DMSO) δ 153.18, 64.62, 63.73, 63.53, 48.11, 23.50,
19.17, 13.44.

6-Hexyl-6-methyl-2-oxo-1,3,6-dioxazocan-6-ium iodide (8-Hex).
Dark yellow solid (0.78g, 94% yield). 1H NMR (400 MHz, DMSO) δ
4.73−4.54 (m, 4H), 3.93−3.77 (m, 4H), 3.56−3.46 (m, 2H), 3.19 (s,
3H), 1.79−1.62 (m, 2H), 1.35−1.21 (m, 6H), 0.86 (t, J = 6.4 Hz, 3H).
13C NMR (101 MHz, DMSO) δ 153.17, 64.61, 63.89, 63.68, 30.52,
25.35, 21.76, 21.46, 13.76.

4.4. General Procedure for Homopolymerization. Monomer
8-Met (574 mg, 2 mmol, 50 equiv) and benzyl alcohol (4.33 mg, 0.04
mmol, 1 equiv) were first dissolved in dried DMSO (1.5 mL). Later,
DBU (3.04 mg, 0.02 mmol) was added to the reaction. A 1H NMR
sample was made after 1 min to confirm the complete conversion of
the monomer to product. The crude polymer solution was precipitated
in excess DCM and dried under vacuum to give a white powder
(Yield: 0.41g, 71%).

4.5. General Procedure for Gel Preparation. A 12 mL vial was
charged with a stirbar, and 8-Met (0.632g, 2.2 mmol), eight-membered
dicyclic carbonate2 (0.120g, 0.42 mmol), and PEG1500 end-capped diol
(0.030g) were dissolved in 1 mL of DMSO. Next, DBU (0.018g, 0.11
mmol) was added into the reaction which was then heated to 50 °C
for 10 min. The contents of the vial were then poured out into silicone
molds and allowed to cool to room temperature in N2 atmosphere
overnight. To remove the DMSO and catalysts, the gel was immersed
in excess DCM for 1 day at room temperature. Lastly, the gels were
dried under vacuum to give a white opaque gel.

4.6. Rheology. Rheology measurements on the gels were
conducted on Anton Paar Physica MCR 101 rheometer using
oscillatory tests with parallel plate geometry. Angular frequency
sweeps from 0.0628 s−1 to 314 s−1 at constant strain amplitude (γ =
1%) were applied at 25 °C. Later, G′ and G″ values were plotted
versus frequency.

4.7. Swelling Test. Dried pieces of gels (∼100 mg) were
immersed in deionized H2O at room temperature. After a certain time,
the gels were removed from the water and the excess water was gently
removed from surface of the gel with a paper towel. The increase in
mass was followed gravimetrically. The swelling degree (St) was
calculated using the following formula

=
−

S
m m

m
(%) 100t

t 0

0

Where mt is the mass of the gel after time t and m0 is the initial mass of
the dried gel.

4.8. Antibacterial Assays. Escherichia coli cells from C41 strain
were grown overnight in Luria−Bertani (LB) media at 37 °C and
constant shaking of 200 rpm. Dry hydrogels were cut into 5 mm2

squares, weighted to ensure the same amount of material for all the
samples, and placed in 1.5 mL centrifuge tubes. The concentration of
bacteria solution was adjusted with LB media to an O.D. = 1 at 600
nm (Corresponding to approximately 2.4 × 109 CFU/mL) in a
Nanodrop One (ThermoScientific). Then 1 mL of bacteria solution
was added to the tubes containing hydrogels and to a negative control
tube without hydrogel. All tubes were incubated at room temperature
with slow shaking (20 rpm), under those conditions no significant
bacterial growth will occur during the experiment. At each time
measured, 100 μL samples were collected and serial dilutions were
prepared with LB media before being plated on LB agar plates. After
overnight incubation at 37 °C, the colony-forming units (CFU) on the
plates of different dilutions were counted. The CFU/mL of the
samples in the presence of the hydrogels were calculated from the
CFU at different dilutions. Each test was carried out in three replicates.

In order to observe bacteria damage by SEM, E. coli bacterial cells
control or treated with Gel-8-Met as described above were washed
with PBS twice, and fixed with glutaraldehyde (GA) 2.5% (v/v in PBS)
for 2 h. After the samples were washed twice with PBS and
resuspended in water. The samples were diluted 10 times and a final
volume of 2 μL of each sample was deposited over a metallic cylinder
for the metallization process with an Au−Pd alloy (60% Au, 40% Pd).

ACS Biomaterials Science & Engineering Article

DOI: 10.1021/acsbiomaterials.7b00335
ACS Biomater. Sci. Eng. 2017, 3, 1567−1575

1573

http://dx.doi.org/10.1021/acsbiomaterials.7b00335


Images were acquired using a JSM-6490LV SEM (JEOL, Japan) at 5
kV.
4.9. Hemolysis Assay. The hemolytic activity of the hydrogels

over red blood cells was tested using rat red blood cells (rRBC)
collected from the Animal Facility Unit of CIC BiomaGUNE (Spain).
Red cells were washed four times in PBS by centrifugation at 2000 g
for 10 min. The RBC solution was diluted in PBS to give a
standardized absorbance value of 0.6 at 412 nm when diluted 1:100.
Dry hydrogels were cut into 5 mm2 squares, weighted to ensure the
same amount of material for all the samples, and placed in 1.5 mL
centrifuge tubes. 1.5 mL of rRBC solution was added to each tube, and
at each incubation time 200 μL of sample was collected. All samples
were centrifuged 10 min at 2000 g and the supernatants were diluted
1:10 in PBS to measure the absorbance at 412 nm. As a positive
control, using the same standard concentration, a 100% hemolysis
rRBC solution was lysed in water. As a negative control, a rRBC
solution was treated without the hydrogels. The data were normalized
using the positive control as 100% hemolysis.
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