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Abstract 

Purpose:  The type 2 cannabinoid receptor (CB2R) is part of the human endocannabinoid 

system and is involved in central and peripheral inflammatory processes. In vivo imaging of 

the CB2R would allow study of several (neuro)inflammatory disorders. In this study we have 

investigated the safety and tolerability of [11C]-NE40, a CB2R PET ligand, in healthy human 

male subjects, and determined its biodistribution and radiation dosimetry.  

Procedure: Six healthy male subjects (age 20-65 years) underwent a dynamic series of 9 

whole-body PET/CT scans for up to 140 minutes, after injection of an average bolus 286 

MBq of [11C]-NE40. Organ absorbed and total effective doses were calculated through 

OLINDA. 

Results: [11C]-NE40 showed high initial uptake in the spleen and a predominant hepatobiliary 

excretion. In the brain, rapid uptake and swift washout was seen. Organ absorbed doses were 

largest for small intestine and liver, with 15.6 and 11.5 µGy/MBq, respectively. The mean 

effective dose was 3.64 ± 0.81 µSv/MBq. There were no changes with ageing observed. No 

adverse events were encountered. 

Conclusions:  This first-in-man study of [11C]-NE40 showed an expected biodistribution 

compatible with lymphoid tissue uptake and appropriate fast brain kinetics in the healthy 

human brain, underscoring the potential of this tracer for further application in central and 

peripheral inflammation imaging. The ED is within the typical expected range for 11C ligands. 

Key words: biodistribution, dosimetry, positron emission tomography, [11C]-NE40, CB2R 
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Introduction 

The type 2 cannabinoid receptor (CB2R), isolated and structurally characterized in the early 

nineties of the past century [1], is part of the endocannabinoid system (ECS), together with 

the type 1 (CB1R) receptor. Both the cannabinoid type 1 (CB1R) and CB2R are G-protein 

coupled receptors (GPCR’s), that are quite divergent in structure with only 44% overall 

homology [2]. In contrast to the CB1R, which is the most abundant GPCR in the central 

nervous system (CNS), the CB2R is widely expressed in immune-related tissues and organs, 

with high expression levels in spleen, tonsils and leucocytes [3].  Outside the immune system, 

CB2R is expressed to a lesser extent in salivary gland, skeletal muscle, pancreas, ovary and 

testis [4-8]. In non-pathological conditions, cerebral CB2R expression is very low and only 

present in the cerebellum and pons [9-10]. CB2Rs are upregulated in inflammatory conditions 

by activated microglia, are involved in the production of nitric oxide (NO) and cytokines [11]. 

Furthermore, the CB2R is involved in pain processing [12]. 

There is accumulating evidence that the ECS is involved in the pathogenesis and clinical 

expression of neurodegenerative disorders, in part through the process of neuroinflammation 

[13-14]. Upregulation of CB2R has been described postmortem in patients with Alzheimer’s 

disease (AD) [15] , Huntington’s disease (HD) [16] and Parkinson’s disease (PD) [17]. 

Therefore, positron emission tomography (PET) imaging of CB2R in the CNS can provide a 

tool to investigate the in vivo importance of CB2R in central inflammatory disorders.  

Whereas several PET radioligands have been validated for the CB1R [18-20], only more 

recently attempts to radiolabel probes for CB2R have been undertaken [21].  A carbon-11-

labeled CB2-selective PET tracer was described but without penetration of the blood-brain-

barrier (BBB) [22-23], limiting its applicability to peripheral visualization of the CB2R.  

Recently, we have developed and validated novel specific radioligand for CB2R PET, 2-oxo-
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7-[11C]-methoxy-8butyloxy-1,2-dihydroquinoline-3-carboxylic acid cyclohexylamide ([11C]-

NE40).  This PET ligand is fairly lipophilic (distribution coefficient (logD) of 3.9 and total 

polar surface area (tPSA) of 80.42 Å²) [24].  In vitro ligand binding studies using Chinese 

hamster ovary (CHO)  cells expressing the human CB2R have shown that NE40 has a 

relatively high binding affinity (Ki = 9.6 nM), which was confirmed by in vivo CB2R binding 

in mouse spleen [22, 24], and high specificity (100-fold over the CB1R). Radioligand safety 

was investigated by toxicity studies including genotoxicity (Ames test) and histopathologic 

evaluation in rats [25] under the microdosing concept [26]. In vivo binding in a rat model with 

adeno-associated viral human CB2R overexpression was confirmed [27].  Here we describe 

the first-in-man imaging studies, with safety and dosimetry assessment in both young and 

elderly male volunteers.  

 

Materials and methods 

Subjects 

Healthy subjects were recruited in response to an advertisement in a local community 

newspaper. Six healthy Caucasian male subjects were included in the study. Table 1 shows 

the demographic data. The subjects did not have any clinical significant medical or 

neurological history, and they did not have any clinically significant abnormality on physical, 

neurological, or laboratory examinations. In addition, they were not taking any anti-

inflammatory medication at the moment of the scan or during at least four weeks before the 

scan.  The study was approved by the local Ethics Committee and conducted according to the 

latest guidelines of the Declaration of Helsinki. Written informed consent was obtained from 

all volunteers before the start of their study.  

Radiotracer characteristics and preparation [11C]-NE40 
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Radiotracer preparation was performed as described previously [24]. In short, a stream of 

helium containing [11C]-CH3I was bubbled through a solution of 200 µg 2-oxo-7-hydroxy-8-

butyloxy-1,2-dihydroquinoline-3-carboxylic acid cyclohexylamide and 2–4 miligram Cs2CO3 

in 200 µl dimethylformamide. The reaction mixture was heated and diluted.  The radiolabeled 

compound [11C]-NE40 was collected using reversed-phase high performance liquid 

chromatography (HPLC).  After formulation, the identity, chemical and radiochemical purity 

of the tracer agent [11C]-NE40 were checked using HPLC. Specific activity was 363 (range 

200-632) GBq/µmol; the maximum amount of cold NE40 injected was < 1.0 (range 0.4-0.9) 

µg.  

 

PET/CT procedure 

All subjects fasted for at least 6 hours before PET. Subjects underwent a dynamic series of 9 

whole-body PET-CT scans on a Hirez Biograph 16 PET/CT (Siemens, Erlangen, Germany) 

after bolus I.V. injection of 286 MBq (range 201-325 MBq) of [11C]-NE40. Data were 

acquired with a single energy window set at 425 to 650 keV. The first PET segment 

(sequential acquisition of WB scan 1 to 8) started simultaneously with the bolus injection and 

lasted for 60 minutes (time per bed position 30 s (for WB1-3), 60 s (for WB4-6) and 120 s 

(for WB7-8)). The second segment (WB9) started at 120 minutes post-injection at 4 minutes 

per bed position. A low-dose CT (tube potential 80 kV; 11 mAs) was performed before each 

scan segment (The additional effective dose from this CT is 0.5 mSv (CT-Expo version 1.7, 

male phantom), so the subject underwent an estimated additional radiation burden of 1.0 mSv 

on top of the PET study). At our center, daily quality control (QC) of the PET system is 

performed using a uniform 68Ge cylinder to check the uniformity and the stability of the 

system.  Cross calibration with the dose calibrator is performed at least every 3 months using 

a uniform 18F cylinder [28].  Moreover, we work according to the EARL FDG PET/CT 
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accreditation program (ResEARch for Life). 

(http://earl.eanm.org/cms/website.php?id=/en/projects/fdg_pet_ct_accreditation.htm).  

Whole-body images were reconstructed using a three-dimensional (3D) ordered-subset 

expectation maximization (OSEM) iterative reconstruction, with 5 iterations and 8 subsets, 

with CT-based attenuation and scatter correction by standard vendor-based reconstruction. No 

partial volume effect correction was performed. 

Urine was collected after each scan segment for total urinary bladder activity determination 

and up to 3 hours post injection. Volume was determined by weighing the amount of urine 

and activity concentration was determined by measuring the activity of a defined volumetric 

sample of 1 ml with a well counter Wallac 1480 wizard 14 inch (Perkin Elmer, Turku, 

Finland). 

Safety was assessed through physical and neurological examination, vital parameter 

assessment, electrocardiogram (ECG), laboratory testing, and monitoring of subjective 

adverse experiences with telephone follow-up 24 hours and 14 days post-injection. 

Data Analysis 

Data were analyzed and reported accoring to the EANM guidelines for clinical dosimetry 

reporting [29].  Reconstructed data were analyzed using PMOD software (version 3.0; PMOD 

Inc., Zurich). Three dimensional VOIs were constructed on the PET emission images to 

include all organ activity, and their position was verified on corresponding CT images, as 

described previously [30]. The following organs with significant visualized activity were 

included as source organs: brain, gallbladder, intestines, heart, kidneys, liver, lungs, red 

marrow, spleen, thyroid and urinary bladder. Total tracer retention as a function of time or 

time-activity curves (TACs) was determined. To account for the differences in timing of each 

bed position, the corresponding acquisition times were calculated for each source organ, 

taking the bed position of the axial midposition of the organ under consideration on the 
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corresponding CT scout image on which bed positions with spatial overlap are indicated. 

Specifically, for the axial red marrow, the midlumbar vertebral position was taken as the 

average time value. In this way, time-activity curves were calculated for each of the source 

organs indicated earlier. 

To determine preliminary kinetics of brain and spleen uptake, mean standard uptake value 

(SUV) TACs for brain and spleen were generated.  

Organ time-integrated activity coefficients (previously named ‘residence times’ [31]) were 

computed by calculating the area under the time-activity curve (TAC) of each source organ 

through curve fitting.  Different models for different organs were used, depending on their 

kinetics (standardly, a bi-exponential curve was taken when the first data point was already 

the maximum activity point; in other cases an extra factor or term (1-exp(-ln(2)xT/Ti) was 

included to produce a better fit with a specific maximum). For heart wall, kidneys, spleen and 

thyroid a bi-exponential was fitted, while a mono-exponential could be used for the lungs. To 

account for the tracer uptake phase in brain and liver, the function A1 x (1-exp(-ln(2)xT/T1)) x 

exp(-ln(2)xT/T2) was fitted to the TAC while the function A1 x (1-exp(-ln(2)xT/T1)) x exp(-

ln(2)xT/T2)+A2 x exp(-ln(2)xT/Te3) was used to model the TAC of gallbladder, red marrow 

and remainder. 

The ICRP 30 gastrointestinal (GI) model  [32] was used to determine the time-integrated 

activity coefficients for the organs involved in the gastrointestinal tract while the voiding 

bladder model with a voiding interval of 2 hours was used to estimate the time-integrated 

activity coefficient for the urinary bladder (UB) [33]. The fraction of injected activity entering 

the small intestines was estimated by fitting the exponential AGI1+AGI2×(1-exp(-ln(2)×T/TGI)) 

to the decay corrected TAC of the intestinal VOI. Total fraction for the gastrointestinal tract 

was determined as (AGI1+AGI2) normalized to injected activity Ainj. The remaining fraction of 
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the injected activity was considered as excreted through the urinary bladder. Biological half-

life for the fraction entering the urinary bladder was estimated by fitting (Ainj-AGI1-AGI2)×(1-

exp(-ln(2)×T/TUB)) to the TAC of the urinary bladder corrected for decay and between scan 

voiding. Radiation exposure of the body and critical organs were calculated from the tracer 

time-integrated activity coefficients using the OLINDA (Organ Level Internal Dose 

Assessment, Vanderbilt University, USA) software package. The effective dose (ED) was 

calculated from the individual organ doses with a predefined weighting factor for each of the 

source organs [34]. 

Results 

As for safety, all monitored clinical parameters (heart rate, blood pressure, 12-lead 

electrocardiogram, blood analysis) remained normal and no clinically significant adverse 

experiences were reported by the subjects at the time of scanning, nor were any reported 

during the follow-up phone interviews.  

Figure 1 shows a series of coronal and sagittal whole-body slices of [11C]-NE40 over time for 

a representative subject. The tracer was readily taken up in the liver and partially excreted 

through the gastrointestinal system. Some urinary tract activity was noted after a few minutes.  

Based on the statistics of the abdominal VOI, 10.5±7.5% of the injected activity was entering 

the intestines and therefore considered as cleared hepatobiliary. The remaining fraction was 

considered excreted through the urinary tract, with a biological urinary clearance half-life 

estimated at 183±96 hours. Due to the slow urinary excretion rate, collected urinal activity 

from the first two patients during 3 hours post injection was very limited and therefore was 

not further taken into account for the calculations. Rapid uptake (to a maximum of 1.5- 3% of 

the injected activity) and fast washout in the brain was seen, in accordance with the low 

CB2R expression levels in normal brain.  
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Figure 2 shows relative time-activity curves for the liver, brain, gallbladder and spleen after 

injection of [11C]-NE40.  The highest variability in activity was observed in the gallbladder.  

In one of the subjects we observed a second peak of activity after 40 minutes post-injection 

(p.i.).    

Time-integrated activity coefficients for all individual patients and source organs are given in 

Supplementary Table 1. Table 2 summarizes organ mean radiation absorbed doses and the 

effective doses. Individual organ absorbed dosesdoses; average organ doses derived from 

individual doses as well as based on mean kinetic parameters (time-integrated activity 

coefficient TIAC) and their relative difference (%) are given in Supplemental Table 2. As can 

be seen from this table, there is only a very small difference between both approaches. The 

small intestine and the liver showed the highest organ dose of 15.6 and 11.5 µGy/MBq, 

respectively, followed by the heart wall (7.02 µGy/MBq). Table 1 includes the individual ED 

estimates for all subjects.  The average ED was 3.64 ± 0.81 µSv/MBq (range 2.79 to 5.09 

µSv/MBq).  No significant correlation between age and ED was found.  

Figure 3 shows the time activity curves (standard uptake values, SUV) with activity values 

corrected for decay caused by the time interval between tracer injection and start time of the 

different whole body PET scans of the six healthy volunteers for the brain and the spleen. In 

the brain, a maximum between 10-20 min can be seen in some subjects, with thereafter a 

continuous decline of the SUV value. In the spleen, after 20 minutes a stable SUV is seen, 

plateauing  around 1.   

Discussion  

Biomarkers of (neuro)inflammation can be useful as a tool in drug development and in 

clinical conditions for severity assessement and therapy follow-up. The CB2R is 

predominantly expressed in peripheral tissues and shows the highest expression levels in 
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organs of the immune system [35].  In the central nervous system, CB2R is upregulated in 

inflammatory conditions of activated microglia. Most of the CB2R radioligands described so 

far are derivatives of 2-oxoquinoline class that have shown a high selectivity for CB2Rs as 

inverse agonists [22-24, 36-37]. Although some were promising in in vitro studies, their in 

vivo stability was poor with fast metabolisation. Proof-of-principle of the feasibility of CB2R 

imaging in pathological conditions with a neuroinflammatory component in vivo was 

described by Horti et al. [21].  Since [11C]-NE40 showed favourable characteristics for 

neuroimaging, we performed this first-in-man study to assess the biodistribution and evaluate 

the safety of [11C]-NE40.  

The gallbladder showed the highest variability in activity.  In one of the subjects we observed 

a second peak of activity after 40 minutes p.i., possibly due to an early contraction of the 

gallbladder, after which there is an accumulation of the activity with a second contraction.  

Overall the gallbladder activity can differ between subjects due to large differences in the 

individual kinetics of gallbladder emptying, a process influenced by multiple hormonal 

factors and gastrointestinal interactions.  

The average injected tracer mass dose in this study was less than 1.0 µgram. There were no 

subjective effects or adverse events including changes in laboratory blood tests, blood 

pressure, pulse and ECG. The subjects in this study received a total ED of 2.1 mSv including 

the PET and attenuation correction CT studies.  In a recent literature overview of 32 human 

PET radiation dosimetry studies with 11C radioligands, van der Aart et al. showed that the vast 

majority have an effective dose of below 9 µSv/MBq, with a mean of 5.9 µSv/MBq [38].  The 

effective radiation dose in our study is thus less than this average, moreover indicating that 

multiple PET scans can be performed in  the same subject within conventionally accepted 

dose limits (class IIA WHO of 10 mSv), allowing its use in drug development and follow-up 

studies.  

Page 10 of 26Molecular Imaging & Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Under Review

 

11 
 

Conclusion 

 [11C]-NE40 results in an effective human radiation dose of 3.64 µSv/MBq, which is in the 

lower end of the range of 11C- tracers. The biodistribution with spleen uptake and absence of 

fixed brain uptake in healthy conditions makes the tracer promising for further studies in 

pathological conditions. 
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Figure Legends 

Figure 1: Whole-body coronal and mid-sagittal PET-CT sections of [
11

C]-NE40 in subject 2 

(uncorrected for decay, in kBq/cc). Data are normalized in the same scale on a maximum 

activity given in the bottom row, in order to better visualize the relative distribution. Upper 

row indicates start time (min) of whole-body scan. 

 

 

Figure 2: Mean activity over time in brain, spleen, liver and gallbladder as fraction of total-

body activity for all subjects.  

 

Figure 3: Decay-corrected tTime activity curves (expressed in standard uptake value (SUV); 

activity values decay corrected relative to the time of tracer injection) of the spleen and the 

brain for the 6 volunteers. 
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Figure 2: Mean activity over time in brain, spleen, liver and gallbladder as fraction of total-body activity for 
all subjects.  
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Figure 3: Time activity curves (expressed in standard uptake value (SUV); activity values decay corrected 
relative to the time of tracer injection) of the spleen and the brain for the 6 volunteers.  
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Table 1. Subject Data, net injected activity of [11C]-NE40, and individual effective dose  

Subject Sex Age (y) Height 
(cm) 

Mass 
(kg) 

Body mass 
index 

(kg/m²) 

Injected 
activity 
(MBq) 

Individual 
ED 

(µSv/MBq) 
HV_1 M 20.8 178 61 19.3 302.3 3.93 

HV_2 M 44.9 187 90 25.7 201.2 2.79 

HV_3 M 24.2 186 86 24.8 254.8 3.05 

HV_4 M 65.3 166 61 22.1 310.1 5.09  

HV_5 M 61.0 187 90 25.7 324.1 3.46  

HV_6 M 22.6 192 82 22.2 325.8 3.54  

Mean ± SD  39.8±20.1 182.7±9.3 78.3±13.8 23.3±2.6 286±49 3.64±0.81 

HV: healthy volunteer, M: male, y: year, SD: standard deviation, ED: effective dose 

 

Page 20 of 26Molecular Imaging & Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Under Review

Table 2: Radiation absorbed dose estimate (OLINDA) Based on ICRP 30 
gastrointestinal tract model 

 
 

Target Organ Mean Absorded Dose 
(µGy/MBq) 

Coefficient of 
variation 

(%) 
 

Adrenals 2.71 ± 0.394 14.1 
Brain 2.73 ±0.84 30.7 

Breasts 1.547 ± 0.293 20.1 
Gallbladder Wall 5.82 ± 0.13 21.8 

Lower Large Intestine Wall 2.62 ± 0.10 38.8 
Small Intestine 15.6 ± 1.03 65.7 
Stomach Wall 2.263 ± 0.514 22.8 

Upper large intestine Wall 6.657 ± 3.83 57.6 
Heart Wall 7.02 ± 2.273 32.4 

Kidneys 6.657 ± 1.53 23.0 
Liver 11.5 ± 1.152 10.0 
Lungs 4.01 ± 0.697 17.2 
Muscle 1.758 ± 0.41 23.4 

Pancreas 2.72 ± 0.43 15.8 
Red Marrow 5.071 ± 0.93 18.4 

Osteogenic Cells 4.283 ± 1.00 23.4 
Skin 1.31 ± 0.31 23.5 

Spleen 6.01 ± 1.31 21.8 
Testes 1.42 ± 0.364 25.2 

Thymus 1.768 ± 0.34 19.3 
Thyroid 4.283 ± 1.32 30.9 

Urinary Bladder Wall 2.44 ± 0.768 31.2 
Uterus 2.768 ± 1.10 39.7 

Total Body 2.40 ± 0.51 21.3 
Effective dose (µSv/MBq) 3.64E ± 0.81 22.3 

 
 

Data are mean ± SD 
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Supplemental Table 1: Time-integrated activity coefficients ( ‘residence times’ – in hours) 

for the individual subjects,  as obtained by multiexponential curve fitting 

Subject Nr. 1 2 3 4 5 6 mean SD 
Brain 0.0145 0.0095 0.0136 0.0077 0.0098 0.0098 0.0108 0.002638 
Gallbladder 0.0002 0.0011 0.0015 0.0006 0.0006 0.0019 0.0010 0.000647 
Lower Large 
Intestine 0.0001 0.0001 0.0001 0.0005 0.0002 0.0002 0.0002 0.000155 
Small Intestines 0.0320 0.0217 0.0301 0.1116 0.0413 0.0385 0.0459 0.032927 
Upper Large 
Intestine 0.0038 0.0026 0.0036 0.0132 0.0049 0.0045 0.0054 0.003887 
Heart Wall 0.0042 0.0139 0.0074 0.0077 0.0060 0.0052 0.0074 0.003422 
Kidneys 0.0046 0.0046 0.0065 0.0048 0.0057 0.0096 0.0060 0.001956 
Liver 0.0613 0.0660 0.0819 0.0499 0.0729 0.0699 0.0670 0.010863 
Lungs 0.0099 0.0099 0.0113 0.0128 0.0140 0.0136 0.0119 0.001817 
Red Marrow 0.0275 0.0373 0.0310 0.0335 0.0380 0.0361 0.0339 0.004057 
Spleen 0.0026 0.0051 0.0032 0.0014 0.0048 0.0046 0.0036 0.001467 
Thyroid 0.0002 0.0002 0.0003 0.0003 0.0006 0.0003 0.0003 0.000151 
Urinary Bladder 0.0011 0.0006 0.0013 0.0015 0.0004 0.0007 0.0009 0.000432 
Remainder 0.2569 0.2217 0.2014 0.2304 0.2033 0.2146 0.2214 0.020578 
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Supplemental table 2: Individual organ doses (OLINDA) (mGy/MBq) for the 6 

subjects (as defined in Table 1) of the study, and average organ doses derived from 

individual doses as well as based on mean kinetic parameters (time-integrated activity 

coefficients (TIAC)) and their relative difference (%).  

 

Subject 
Nr.  1 2 3 4 5 6 

   

          

Adrenals 
3.21E-

03 
2.38E-

03 
2.47E-

03 
3.18E-

03 
2.38E-

03 
2.64E-

03 
   

Brain 
4.31E-

03 
2.11E-

03 
2.97E-

03 
2.47E-

03 
2.15E-

03 
2.34E-

03 
   

Breasts 
1.89E-

03 
1.31E-

03 
1.25E-

03 
1.80E-

03 
1.22E-

03 
1.35E-

03 
   

Gallbladd
er Wall 

4.50E-
03 

5.36E-
03 

6.66E-
03 

6.21E-
03 

4.49E-
03 

7.68E-
03 

   

LLI Wall 
2.91E-

03 
1.88E-

03 
1.93E-

03 
4.55E-

03 
2.14E-

03 
2.31E-

03 
   

Small 
Intestine 

1.22E-
02 

8.05E-
03 

1.05E-
02 

3.62E-
02 

1.37E-
02 

1.32E-
02 

   

Stomach 
Wall 

2.71E-
03 

1.89E-
03 

1.88E-
03 

3.08E-
03 

1.89E-
03 

2.09E-
03 

   

ULI Wall 
5.92E-

03 
3.80E-

03 
4.65E-

03 
1.43E-

02 
5.61E-

03 
5.61E-

03 
   

Heart 
Wall 

5.65E-
03 

1.06E-
02 

6.45E-
03 

9.05E-
03 

5.25E-
03 

5.13E-
03 

   

Kidneys 
6.62E-

03 
4.73E-

03 
6.42E-

03 
7.25E-

03 
5.64E-

03 
9.22E-

03 
   

Liver 
1.31E-

02 
9.95E-

03 
1.26E-

02 
1.12E-

02 
1.09E-

02 
1.14E-

02 
   

Lungs 
4.26E-

03 
3.12E-

03 
3.49E-

03 
5.11E-

03 
3.90E-

03 
4.15E-

03 
   

Muscle 
2.21E-

03 
1.47E-

03 
1.45E-

03 
2.33E-

03 
1.44E-

03 
1.60E-

03 
   

Ovaries 
3.28E-

03 
2.07E-

03 
2.20E-

03 
5.39E-

03 
2.40E-

03 
2.58E-

03 
   

Pancreas 
3.21E-

03 
2.39E-

03 
2.42E-

03 
3.31E-

03 
2.37E-

03 
2.62E-

03 
   

Red 
Marrow 

5.63E-
03 

4.50E-
03 

4.13E-
03 

6.67E-
03 

4.59E-
03 

4.89E-
03 

   

Osteogeni
c Cells 

5.40E-
03 

3.64E-
03 

3.40E-
03 

5.70E-
03 

3.60E-
03 

3.96E-
03 

   

Skin 
1.73E-

03 
1.11E-

03 
1.09E-

03 
1.67E-

03 
1.06E-

03 
1.19E-

03 
   

Spleen 5.85E- 7.16E- 5.05E- 3.97E- 6.82E- 7.23E-    
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03 03 03 03 03 03 

Testes 
1.92E-

03 
1.21E-

03 
1.15E-

03 
1.83E-

03 
1.13E-

03 
1.28E-

03 
   

Thymus 
2.22E-

03 
1.63E-

03 
1.49E-

03 
2.15E-

03 
1.45E-

03 
1.60E-

03 
   

Thyroid 
3.83E-

03 
2.65E-

03 
3.70E-

03 
5.14E-

03 
6.43E-

03 
3.90E-

03 
   

Urinary 
Bladder 
Wall 

3.05E-
03 

1.85E-
03 

2.29E-
03 

3.67E-
03 

1.72E-
03 

2.08E-
03 

   

Uterus 
3.12E-

03 
1.95E-

03 
2.07E-

03 
4.84E-

03 
2.21E-

03 
2.39E-

03 
   

Total 
Body 

2.87E-
03 

1.99E-
03 

2.06E-
03 

3.20E-
03 

2.04E-
03 

2.23E-
03 

   

          

ED 
0.0039

3 
0.0027

9 
0.0030

5 
0.0050

9 
0.0034

6 
0.0035

4 
   

Subject 
Nr.  1 2 3 4 5 6 

mean 
absorbe

d dose  

organ 
doses 
from 

mean 
TIAC 

relative 
differenc

e  

          

Adrenals 
3.21E-

03 
2.38E-

03 
2.47E-

03 
3.18E-

03 
2.38E-

03 
2.64E-

03 
2.71E-

03 
2.78E-

03 
2.52% 

Brain 
4.31E-

03 
2.11E-

03 
2.97E-

03 
2.47E-

03 
2.15E-

03 
2.34E-

03 
2.73E-

03 
2.79E-

03 
2.33% 

Breasts 
1.89E-

03 
1.31E-

03 
1.25E-

03 
1.80E-

03 
1.22E-

03 
1.35E-

03 
1.47E-

03 
1.51E-

03 
2.65% 

Gallbladd
er Wall 

4.50E-
03 

5.36E-
03 

6.66E-
03 

6.21E-
03 

4.49E-
03 

7.68E-
03 

5.82E-
03 

5.95E-
03 

2.24% 

LLI Wall 
2.91E-

03 
1.88E-

03 
1.93E-

03 
4.55E-

03 
2.14E-

03 
2.31E-

03 
2.62E-

03 
2.64E-

03 
0.76% 

Small 
Intestine 

1.22E-
02 

8.05E-
03 

1.05E-
02 

3.62E-
02 

1.37E-
02 

1.32E-
02 

1.56E-
02 

1.57E-
02 

0.37% 

Stomach 
Wall 

2.71E-
03 

1.89E-
03 

1.88E-
03 

3.08E-
03 

1.89E-
03 

2.09E-
03 

2.26E-
03 

2.30E-
03 

1.88% 

ULI Wall 
5.92E-

03 
3.80E-

03 
4.65E-

03 
1.43E-

02 
5.61E-

03 
5.61E-

03 
6.65E-

03 
6.64E-

03 
-0.13% 

Heart 
Wall 

5.65E-
03 

1.06E-
02 

6.45E-
03 

9.05E-
03 

5.25E-
03 

5.13E-
03 

7.02E-
03 

7.40E-
03 

5.11% 

Kidneys 
6.62E-

03 
4.73E-

03 
6.42E-

03 
7.25E-

03 
5.64E-

03 
9.22E-

03 
6.65E-

03 
6.96E-

03 
4.50% 

Liver 
1.31E-

02 
9.95E-

03 
1.26E-

02 
1.12E-

02 
1.09E-

02 
1.14E-

02 
1.15E-

02 
1.21E-

02 
4.75% 

Lungs 
4.26E-

03 
3.12E-

03 
3.49E-

03 
5.11E-

03 
3.90E-

03 
4.15E-

03 
4.01E-

03 
4.14E-

03 
3.26% 

Muscle 
2.21E-

03 
1.47E-

03 
1.45E-

03 
2.33E-

03 
1.44E-

03 
1.60E-

03 
1.75E-

03 
1.78E-

03 
1.69% 

Ovaries 
3.28E-

03 
2.07E-

03 
2.20E-

03 
5.39E-

03 
2.40E-

03 
2.58E-

03 
2.99E-

03 
3.00E-

03 
0.44% 
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Under Review

 

5 
 

Pancreas 
3.21E-

03 
2.39E-

03 
2.42E-

03 
3.31E-

03 
2.37E-

03 
2.62E-

03 
2.72E-

03 
2.78E-

03 
2.16% 

Red 
Marrow 

5.63E-
03 

4.50E-
03 

4.13E-
03 

6.67E-
03 

4.59E-
03 

4.89E-
03 

5.07E-
03 

5.24E-
03 

3.28% 

Osteogeni
c Cells 

5.40E-
03 

3.64E-
03 

3.40E-
03 

5.70E-
03 

3.60E-
03 

3.96E-
03 

4.28E-
03 

4.40E-
03 

2.65% 

Skin 
1.73E-

03 
1.11E-

03 
1.09E-

03 
1.67E-

03 
1.06E-

03 
1.19E-

03 
1.31E-

03 
1.33E-

03 
1.63% 

Spleen 
5.85E-

03 
7.16E-

03 
5.05E-

03 
3.97E-

03 
6.82E-

03 
7.23E-

03 
6.01E-

03 
6.45E-

03 
6.77% 

Testes 
1.92E-

03 
1.21E-

03 
1.15E-

03 
1.83E-

03 
1.13E-

03 
1.28E-

03 
1.42E-

03 
1.45E-

03 
2.07% 

Thymus 
2.22E-

03 
1.63E-

03 
1.49E-

03 
2.15E-

03 
1.45E-

03 
1.60E-

03 
1.76E-

03 
1.80E-

03 
2.41% 

Thyroid 
3.83E-

03 
2.65E-

03 
3.70E-

03 
5.14E-

03 
6.43E-

03 
3.90E-

03 
4.28E-

03 
4.31E-

03 
0.81% 

Urinary 
Bladder 
Wall 

3.05E-
03 

1.85E-
03 

2.29E-
03 

3.67E-
03 

1.72E-
03 

2.08E-
03 

2.44E-
03 

2.44E-
03 

-0.14% 

Uterus 
3.12E-

03 
1.95E-

03 
2.07E-

03 
4.84E-

03 
2.21E-

03 
2.39E-

03 
2.76E-

03 
2.78E-

03 
0.60% 

Total 
Body 

2.87E-
03 

1.99E-
03 

2.06E-
03 

3.20E-
03 

2.04E-
03 

2.23E-
03 

2.40E-
03 

2.46E-
03 

2.51% 

          

ED 
0.0039

3 
0.0027

9 
0.0030

5 
0.0050

9 
0.0034

6 
0.0035

4 
0.00364

3 
0.0038

7 
5.86% 
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