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Abstract—Researchers frequently rely on large-scale and
domain-specific workflows to conduct their science. These work-
flows may integrate a variety of independent software functions
and external applications. However, developing and executing
such workflows can be difficult, requiring complex orchestration
and management of applications and data as well as customiza-
tion for specific execution environments. Parsl (Parallel Scripting
Library), a Python library for programming and executing
data-oriented workflows in parallel, addresses these problems.
Developers simply annotate a Python script with Parsl directives;
Parsl manages the execution of the script on clusters, clouds,
grids, and other resources. Parsl orchestrates required data
movement and manages the execution of Python functions and
external applications in parallel. In this abstract we describe
Parsl’s architecture and highlight two domains in which it has
been used.

I. INTRODUCTION

Parsl is a Python-based parallel scripting library that
supports asynchronous and implicitly parallel data-oriented
workflows. Building on the model used by Swift [1], Parsl
brings advanced parallel workflow capabilities to scripts (or
applications) written in Python. Parsl scripts allow selected
Python functions and external applications (called Apps) to
be connected by shared input/output data objects into flexible
parallel workflows. Parsl abstracts the specific execution envi-
ronment, allowing the same script to be executed on multicore
processors, clusters, clouds, and supercomputers.

When a Parsl script is executed, the Parsl library causes
annotated functions (Apps) to be intercepted by the Parsl
execution fabric, which captures and serializes their param-
eters, analyzes their dependencies, and runs them on selected
resources (sites). The execution fabric brings dependency
awareness to Apps by introducing data futures. If one App
is responsible for writing a future, other Apps are blocked
from reading it until it is written. This feature allows Apps to
execute in parallel whenever they do not share dependencies
or their data dependencies have been resolved.

This abstract describes Parsl, highlighting how it allows
standard Python scripts to be augmented to represent complex
workflows and facilitate parallel execution. We use two exam-
ple workflows, from computational chemistry and biology, to
highlight the power of the approach.

II. PARSL MODEL

The Parsl architecture is shown in Fig. 1. Parsl scripts are
decomposed into a simple dependency graph by the DataFlow
Kernel (DFK). The DFK manages execution of individual
Parsl Apps on a variety of sites. Unlike parallel scripting
languages like Swift, in which every variable and piece of code
is asynchronous, Parsl relies on user annotations and futures
to specify and manage concurrency. At present, Parsl provides

a lightweight data management layer in which files are staged
to the execution site via a dedicated communication channel.

Execution: The DFK provides a lightweight abstraction
over different execution resources. This abstraction is at the
heart of Parsl’s ability to transparently support different exe-
cution fabrics.

Parsl launches asynchronous Apps and passes futures to
other Apps in lieu of computing results synchronously. The
DFK is responsible for managing a script’s execution, making
ordinary functions aware of futures and ensuring the execu-
tion of these functions are conditional on the resolution of
all dependent futures. This enables completely asynchronous
management of all launched tasks with the data dependencies
alone determining the order of execution.

When instantiating the DFK, developers specify the spe-
cific execution providers and executors that will be used
for executing the parallel components of the script. Exe-
cution providers are simple abstractions over computational
resources. Executors provide an abstraction layer for executing
tasks. At present, Parsl supports three different executors:
threads, Swift/T [2], and IPythonParallel.

Apps: A Parsl script is comprised of standard Python code
plus a number of Apps—annotated units of Python code
or external applications that specify their input and output
characteristics and that may be run in parallel. An App may
be defined by wrapping an existing function or the execution
of an external command-line application using Bash scripting
with the @App decorator. Listing 2 shows examples of these
two types of Parsl Apps.

Futures: Parsl Apps are completely asynchronous. When
an App is invoked there is no guarantee of when the result
will be returned. Instead of directly returning a result, Parsl
returns an AppFuture: a construct that includes the real result
as well as the status and exceptions for that asynchronous
function invocation. Parsl also supplies methods to examine
the future construct, including a status check, blocking on
completion, and retrieving results. Parsl leverages Python’s
concurrent.futures module for this purpose.

Parsl also introduces a model for managing file-based fu-
tures. Such DataFutures represent the asynchronous output
files generated by an App invocation. DataFutures extend
the AppFuture model by providing support for a range of
operations related to files.

III. CASE STUDIES

We present two workflows written in Parsl to illustrate how
it can satisfy the needs of different application domains.

SwiftSeq [3] is a bioinformatics workflow that supports
aligning and genotyping gene panels, exomes, and whole



Fig. 1: Parsl architecture. The DataFlow Kernel maps scripts to Executors that support diverse computational platforms.

Fig. 2: Two examples of Parsl Apps

genomes. The workflow is comprised of approximately 10
applications that communicate by writing and reading files.
While applications must often execute in sequence, there are
also opportunities for parallelism. First, the workflow is often
executed on many samples, each of which can be analyzed in
parallel; second, the large genetic sequences can be divided up
and analyzed in parallel; and finally, some of the applications
can also be executed in parallel. SwiftSeq benefits not only
from Parsl’s ability to specify such parallelism, but also from
its ability to express a complex workflow, manage the flow
of data between applications, recover from errors, and execute
on a variety of computational resources.

The second example workflow is a molecular dynamics
workflow that uses PACKMOL [4] to assemble initial starting
configurations of ionic liquid molecules with a protein (e.g.,
Trp-cage), and then subsequently energy minimizes, heats,
equilibrates, and runs production molecular dynamics simula-
tions using the GPU-accelerated version of Amber [5]. It can,
in principle, be generalized to an arbitrary solvent and solute.
The workflow relies on three separate applications that are
executed iteratively to perform different functions. PACKMOL
is used to generate the system configuration; AmberTools
are used to create input coordinate and parameter files for
simulations; and Amber is used to run various simulations.
Parsl allows a wide range of different system configurations
to be considered in parallel, and it also allows simple error
handling logic to be expressed.

IV. RELATED WORK

Many workflow systems have been developed to facilitate
the expression and execution of arbitrary, data-oriented work-
flows, for example, the Swift parallel scripting language. A
weakness of these systems, however, is their lack of consis-
tency with typical research development environments.

There is increasing interest in developing Python-based
workflow tools that better match common research environ-
ments, e.g., Dask [6], Apache Airflow [7], and Luigi [8]. These
systems enable Python developers to author and execute work-
flows, using very different models. Dask focuses on parallel
analytics, providing Dask-specific modules to be used in place
of common analytics modules (e.g., Dask Dataframe in place
of Pandas Dataframe) to facilitate parallel execution. Airflow
allows developers to create an explicit graph of independent
tasks, including specifying the relationships between those
tasks. Luigi allows developers to create a pipeline of batch
jobs for submission to a scheduler. Parsl is differentiated by
its focus on enabling annotation of existing Python scripts and
providing implicit parallelization of annotated Apps.

V. SUMMARY

Parsl provides an easy-to-use model for developing Python-
based workflows that include arbitrary Python functions and
external applications. It abstracts the complexity of interact-
ing with different resource fabrics and instead supports the
development of resource-independent Python scripts. While
development of Parsl has been ongoing for less than a year,
we build upon a decade of experience developing the Swift
parallel scripting language and aim to bring these same ca-
pabilities to Python. Already, Parsl has been used to create
successful workflows in biology and chemistry, and it is being
tested in materials science and astronomy.
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