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In his delightful little book[l] Kenichiro Kashara introduced the Pseudo-Smarandache 
function. 

Delmition: For any n ~ 1, the value of the Pseudo-Smarandache function Zen) is the 
smallest integer m such that n evenly divides 

m 

L- k. 
k=l 

And it is well-known that the sum is equivalent to m(~+l) . 

Having been defmed only recently, many of the properties of this function remain to be 
discovered. In this short paper, we will tentatively explore the connections between Zen) 
and a subset of the integers known as the palindromic numbers. 

Definition: A number is said to be a palindrome if it reads the same forwards and 
backwards. Examples of palindromes are 

121,34566543, 1111111111 

There are some palindromic numbers n such that Zen) is also palindromic. For example, 

Z(909) =404 Z(2222) = 1111 

In this paper, we will not consider the trivial cases of the single digit numbers. 

A simple computer program was used to search for values of n satisfying the above 
criteria The range of the search was, 10 ~ n ~ 10000. Of the 189 palindromic values 
of n within that range, 37, or slightly over 19%, satisfied the criteria. 

Furthennore it is sometimes possible to repeat the function again and get another 
palindrome. 

Z(909) = 404, Z(404) = 303 

and once again, a computer program was run looking for values of n within the range 



1 :s; n :s; 10,000. Of the 37 values found in the previous test, 9 or slightly over 24%, 
exhibited the above properties. 

Repeating the program again, looking for values of n such that n, Zen), Z(Z(n)) and 
Z(Z(Z(n))) are all palindromic, we find that of the 9 found in the previous test, 2 or 
roughly 22%, satisfy the new criteria. 

Definition: Let Zk(n) = Z(Z(Z( ... (n)))) where the Z function is executed k times. For 
notational purposes, let ZO(n) = n. 

Modifying the computer program to search for solutions for a value of n so that n and all 
iterations Zi(n) are palindromic for i = 1,2,3 and 4, we find that there are no solutions in 
the range 1 :s; n :s; 10,000. Given the percentages already encountered, this should not 
be a surprise. In fact, by expanding the search up through 100,000 one solution was 
found. 

Z(86868) = 17271, Z(17271) = 2222, Z(2222) = 1111, Z(1111) = 505 

Since Z(505) = 100, this is the largest such sequence in this region. 

Computer searches for larger such sequences can be more efficiently carried out by using 
only palindromic numbers for n. 

Unsolved Question: What is the largest value ofm so that for some n, Zk(n) is a 
palindrome for all k = 0, 1,2, ... ,m? 

Unsolved Question: Do the percentages discussed previously accurately represent the 
general case? 

Of course, an affirmative answer to the second question would mean that there is no 
largest value of m in the first. 

Conjecture: There is no largest value of m such that for some n, Zk(n) is a palindrome 
for all k = 0, 1,2,3, ... ,m. 

There are solid arguments in support of the truth of this conjecture. Palindromes tend to 
be divisible by palindromic numbers, so if we take n palindromic, many of the numbers 
that it divides would also be palindromic. And that palindrome is often the product of two 
numbers, one of which is a different palindrome. Numbers like the repunits, 11 ... 111 
and those with only a small number of different digits, like 1001 and 505 appeared quite 
regularly in the computer search. 
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