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ABSTRACT
Motivated by real-life emerging needs in critical domains, this paper
proposes a coherent and generic ontology for the representation
of semantic trajectories, in association to related events and con-
textual information, to support analytics. The main contribution of
the proposed ontology is twofold: (a) The representation of semantic
trajectories at varying, interlinked levels of spatio-temporal analysis,
(b) enabling data transformations that can support analytics tasks.
The paper presents the ontology in detail, in connection to other
well-known ontologies, and demonstrates how data is represented
at varying levels of analysis, enabling the required data transforma-
tions. The benefits of the representation are shown in the context
of supporting visual analytics tasks in the air-traffic management
domain.
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1 INTRODUCTION
Many critical domains w.r.t. economy and safety, such as the Mar-
itime and the Aviation domains, where Maritime Situation Aware-
ness (MSA) and Air Traffic Management (ATM), respectively, im-
pose emergent and challenging problems, require analysis of mov-
ing objects’ behaviour over time: Challenges concern effective de-
tection and forecasting of moving entities’ trajectories, as well as
recognition and prediction of important events by exploiting infor-
mation about objects’ behaviour and contextual data. Due to these
needs, semantic trajectories are turned into “first-class citizens”,
forming a paradigm shift towards operations that are built and
revolve around the notion of trajectory.

Motivated by these needs, our work focuses on trajectories and
solutions towards managing data that are connected via, and con-
tribute to enriched views of trajectories. We revisit the notion of
semantic trajectory and extend it towards representing, storing and
transforming the wealth of information available in disparate and
heterogeneous data sources. Information integrated in a representation
where trajectories are the main entities, allows the computation of
meaningful moving patterns, the recognition and prediction of the
behaviour and states of moving objects. Data transformations cannot
be precomputed at production level, since it would be necessary
that all the possible transformations are stored. The proposed ap-
proach stores only the fundamentals needed, and provably enables
the transformation of data at consumption level. Therefore, moti-
vated by real-life emerging needs in MSA and ATM domains, this
paper proposes a coherent and generic ontology for the representa-
tion of semantic trajectories, in association with related events and
contextual information, and demonstrates data transformations at
consumption level for visual analytics tasks.

This work makes the following contributions:
(a) proposes an ontology for the representation of semantic trajecto-

ries at varying levels of spatio-temporal analysis. Trajectories can be
seen as (i) sequences of positions of moving objects, derived from raw
data, (ii) as aggregations of raw data, signifying meaningful events
(generalizing on the stops-moves model [12]), providing a synoptic
view of raw trajectories [9], (iii) as temporal sequences of meaningful
trajectories segments (each revealing specific behaviour, event, goal,
activity etc), (iv) as mere geometries. Representations at any such
level of analysis are linked to each other, as well as to contextual
information and co-occurring events.

(b) demonstrates the data transformations support, via enhanced
SPARQL queries. Such transformations can adapt available data to

https://doi.org/10.1145/3132218.3132225
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the analysis goals or to specific requirements of the methods that the
analyst wants to apply. Without loss of generality, transformations are
exemplified in the ATM domain via concrete examples to effectively
support visual analytics in important real-world cases.

The paper is organised as follows: Section 2 motivates the need
for the representation of semantic trajectories at varying levels
of detail and the data transformations for supporting analytics
tasks. Section 3 presents the datAcron ontology, and section 4
presents the data transformations enabled via the specification of
enhanced SPARQL queries, supporting visual analytics tasks. The
paper briefly presents the related works in section 5 and concludes
with section 6.

2 MOTIVATION, TERMINOLOGY,
OBJECTIVES AND SCOPE

The proposed ontology is a generic conceptual framework for the
representation of semantic information relevant to the movement
of objects, revolving around the notion of trajectory. To make the
objectives of this ontology clear and provide concrete examples for
its use, we elaborate in a scenario from the air traffic management
(ATM) domain, concerning flow management (FM). Before that,
we explain the basic notions of trajectory, event and contextual
information.

2.1 Trajectories, events and contextual
information

Starting from the definitions of raw, structured and semantic tra-
jectories provided in [9], a raw trajectory is a temporal sequence of
raw data specifying the moving object’s spatio-temporal positions.
Raw data can be aggregated, analyzed and semantically annotated,
providing multiple abstractions of a trajectory. A maximal sequence
of raw data that comply with a given pattern defines an episode
[9]. In this work we focus on events as a generalisation of episodes,
taking also into consideration –in conjunction to movement data–
contextual information (i.e. any information -mostly about the envi-
ronment of an object- that affects its movement, including other
trajectories).

A structured trajectory (simply, trajectory) consists of a sequence
of trajectory parts that can be either raw positions reported from
sensing devises, aggregations of raw positions referred as semantic
nodes or simply nodes, or trajectory segments.

A semantic node provides a meaningful abstraction or aggre-
gation of raw positions, e.g. a set of raw positions may signify a
“turn” event, represented as a single semantic node associated to
the resource representing the “turn” event. A trajectory segment
is a trajectory itself, part of a whole trajectory. Segmentation of
trajectories can be done with different objectives depending on the
application and target analysis. Any trajectory part may be associ-
ated with a co-occurring event. For example, a bad weather region
may co-occur with a trajectory crossing-it (thus, related spatially)
during a time period (related temporally).

A semantic trajectory is a meaningful sequence of trajectory
parts, signifying events, activities, goals, etc. of moving entities.

2.2 The flow management domain
Mobility analysis tasks require a wealth of information from dis-
parate and heterogeneous sources. As a running example for the
representation of entities and data transformations to spatial and
time series of events, we elaborate in scenarios from the air traffic
management (ATM) domain, concerning flow management (FM).
FM is an extremely important service for airlines to operate in a
safe and efficient way, complementary to Air Traffic Control (ATC).
The objective of FM is to ensure an optimum flow of air traffic
to or through areas within which traffic demand at times exceeds
the available capacity of the ATC system. The scenarios have been
specified by domain experts in the datAcron research project1.

The entities of particular interest for the FM domain are:
• Air blocks, specified by geometries, which are static spatial

2D projections of airspace volumes.
• Sectors, which are static spatial 3D objects comprising airspace

volumes that are defined by air blocks, with lower and upper
flight levels.

• Flight information regions (FIR) that are static spatial 3D
objects. Each of them is the responsibility of a certain control
unit. For Europe, there are usually 2 divisions for the lower
and upper air spaces. FIRs are quite large: some FIRs cover
entire counties (Belgium and Luxembourg are joined in one
FIR), and some countries are divided into two or more FIRs.
Spain, for instance, has the same 3 FIRs regardless upper or
lower air space.

• Sector configurations are alternative divisions of airspace
into sectors. These constitute the minimum unit that an Air
Traffic Controller operates. The number of sectors dividing
the FIR space may vary, hence allowing to operate the FIR
with the appropriate number of controllers according to
demand conditions, ensuring safety of operations.

• Opening schemes or active configurations are the sector con-
figurations actually deployed in a given airspace with time
intervals of their validity.

• Capacities refer to sectors (a.k.a. traffic volumes): for each
sector and time unit, the capacity value of that sector may
be either undefined (if the sector is not active at that time)
or specify the upper limit of the number of flights in any
time period with pre-specified duration (typically one hour).
The capacities consider controllers workload, and are fixed
values for the same sectors every time they are active.

• Flight plans are specifications of trajectories consisting of spa-
tial events of flights crossing air blocks and sectors, and fly-
ing over specific waypoints (fixed coordinates among which
airways are set). Each event specifies the entry (resp. exit)
coordinates, flight level and time to (resp. from) a sector, or
the time that the flight will fly over a waypoint. Flight plans
specify other information such as estimated take-off time,
and, in case of delay caused by a regulation, the calculated
take-off time of the flight.

• Predicted weather is a spatial time series of multiple weather
attributes referring to 3D locations (longitude, latitude, alti-
tude).

1Detailed description of the scenarios is available online: http://ai-group.ds.unipi.gr/
datacron/system/files/datACRON_D6.1.pdf

http://ai-group.ds.unipi.gr/datacron/system/files/datACRON_D6.1.pdf
http://ai-group.ds.unipi.gr/datacron/system/files/datACRON_D6.1.pdf
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On each operation day, the flow management monitoring pro-
cess analyses periodically (typically every 20 minutes) the demand
for each sector, by counting the expected number of flights in the
sector during the next period (typically one hour, to match the defi-
nition of capacity). If a potential demand versus capacity imbalance
is detected (a hotspot ) a regulation may be applied to adjust the
demand values to the available capacity.

Although the reason to apply a regulation may vary to bad
weather conditions, strikes, etc., for the purposes of this article we
focus on regulations applied due to hotspots. Therefore, a reдulation
is a special type of event that occurs as a measure that a flow man-
ager takes to solve an excess of demand. The attributes of any
regulation include the location (sector), start and end times, and
reason codes (e.g. ”C” for delays).

Regulations usually result in delays in the departure time of
flights crossing that area, which introduces yet another factor of
unpredictability to airlines’ operations. Therefore, airlines need
to predict the occurrence of regulations well in advance, so as
to reduce unpredictability. Identifying patterns of regulations is
important towards this goal.

To make the objectives of the proposed ontology clear we show
how data for the above entities in the FM domain can be provided
to support identifying regulations’ patterns, interdependencies be-
tween affected flights and areas, and supporting the choice of sec-
tor configurations based on expected demands. These cases are
explained in detail in section 4.

2.3 Objectives
We aim to provide a coherent and generic ontology for integrating
all data from disparate sources, representing fully-fledged semantic
trajectories at varying levels of spatio-temporal analysis.

By means of this ontology we aim at supporting (a) services for
answering spatio-temporal queries concerning vessels’ trajectories
along with aspects that affect and are affected by the mobility
of moving objects, thus providing all the necessary information
that analytics tasks require, (b) transformations between different
representations of data required for analytics tasks.

As already mentioned, transformations can adapt available data
to the analysis goals or to specific requirements of the methods that
the analyst wants to apply. Transformations aim to extract relevant
parts of the data or reduce irrelevant details, converting movement
data from one form to another, to support different task foci: movers,
spatial, events, space, and time. The role of data transformation
is to prepare data for analysis, that is, to convert data to a form
fitting a task or required by an analytical tool, maybe changing the
structure of the data [2].

Following the approach of [10], the queries that this ontology
must satisfy in the first place can be seen as combinations of three
basic components: (a) space (where), (b) time (when), (c) object
(what ). These components can be used in three basic types of
queries:

• Retrieve the objects (e.g. flights) in a region (e.g. a sector) for
a time period (when&where → what ).

• Retrieve the location (or geometry) occupied (resp. covered)
by an object (e.g. a flight plan) or set of objects (e.g. flights),
at a given time instant or period (when&what → where).

Figure 1: Conversions between different representations

• Retrieve the time periods that a non-empty set of objects
(e.g a set of flights) appears in a specific location or area (e.g.
cross a specific sector or FIR) (i.e. where&what → when).

Exploiting these fundamental types of queries, and to a greater
extent than other representations of trajectories, we aim to show
how the proposed ontology supports transformations between dif-
ferent representations of data, for the benefit of analysis tasks’
effectiveness. Such generic transformations are depicted in Figure 1
[3] and will be demonstrated using data from the above-mentioned
FM entities. Briefly, as Figure 1 shows, trajectories integrate spatial
events (e.g. entering or exiting a sector) (transformation I), while
these events, similarly to trajectories, may be aggregated to spa-
tial time series: Place-based, such as hotspots detected in sectors
(transformation III), or link-based, such as flows of flights between
pairs of sectors (transformation II). Projections of these time series
may result to spatially-referenced time series or to spatial situa-
tions (transformations VI). These transformations impose specific
requirements to answering queries, regarding aggregations, extrac-
tion of events and projections of data, demonstrated in subsequent
sections of this article.

3 THE DATACRON ONTOLOGY
The datAcron ontology2 was developed by group consensus of ATM
and MSA domain experts, data and visual analysts and knowledge
engineers, over a period of 12 months following a data-driven
approach according to the HCOME methodology [7]. It has been
designed to be used as a core ontology for the MSA and ATM
domains, towards supporting analysis tasks. Its development has
been driven by ontologies related to our objectives (e.g. DUL3,
SimpleFeature4, NASA Sweet5 and SSN6), as well as schemas and
specifications regarding data sources from the different domains.

3.1 Core vocabulary and overall structure
According to the above specifications, and illustrated in Figure
2, a trajectory (Trajectory) can be segmented to trajectory parts
(TrajectoryParts), each including other segments and/or more se-
mantic nodes. Each semantic node may be associated with a specific
raw position or a temporally ordered sequence of raw positions of
a moving object.

2Documentation is available online at http://ai-group.ds.unipi.gr/datacron_ontology
3http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
4http://www.opengis.net/ont/sf
5https://sweet.jpl.nasa.gov/
6https://www.w3.org/2005/Incubator/ssn/ssnx/ssn

http://ai-group.ds.unipi.gr/datacron_ontology
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://www.opengis.net/ont/sf
https://sweet.jpl.nasa.gov/
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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Figure 2: The main concepts and relations of the proposed
ontology.

The generic pattern of specifying structured trajectories is pre-
sented in section 3.2.

Trajectories and trajectory parts can be associated with con-
textual information, as well as with events (dul:Event). Although
events may happen independently from the trajectory but co-occur
with the trajectory, we focus on happenings on the trajectory itself
(e.g. a “turn” or a “gap of communication”) and to moving object’s
information (e.g. vessel in a protected or in a bad-weather area).
Patterns for the specification of events and their associations to
trajectory parts are presented in section 3.2, together with types of
contextual information represented and respective associations to
trajectories.

3.2 Patterns of semantic trajectories
As already said, the proposed ontology enables the specification of
trajectories at various level of abstraction. Figure 3 illustrates the
generic pattern of raw and structured trajectories.

The main concept in this pattern is the Trajectory, which is a sub-
class of Spatio-Temporal Structured Entity (ST_Struc- turedEntity).
This, being a subclass of dul:Region represents a region in a dimen-
sional space and time, used as a value for a quality of an Entity,
while it also represents (structured) trajectories and their parts. A
structured trajectory, as well as any of its parts, can be a temporal
sequence of TrajectoryPart entities.

Direct subclasses of Trajectory are the
• IntendedTrajectory: planned trajectories build by an

dul:InformationEntity such as a FlightPlan,
• ActualTrajectory: trajectories constructed from actual po-

sitioning data, after some processing of the raw positional
data, RegulatedTrajectory: intended trajectories that have
been modified by an operational event such as a regulation,

• SyntheticTrajectory: trajectories constructed by a simula-
tion process, and

• RawTrajectory: trajectories constructed by the raw (unpro-
cessed) sequence of positions of the moving object.

An ActualTrajectory can be further distinguished to a Closed-

Trajectory (i.e. a trajectory that has reached its destination) and to
an OpenTrajectory (i.e. a trajectory in progress).

The TrajectoryPart can be further distinguished to one of the
following subclasses:

• Segment: associated to a spatial region and a time proper
interval.

• Node: associated to a point in space and a time instant or time
period. The latter holds in case the node aggregates several
raw positions. A Node can be the result of a data processing
component computing compressions or aggregations of the
raw positioning data.

• RawPosition: represents the raw (unprocessed) positioning
data. Each raw position instance is associated to a point in
space and a time instant.

A specific trajectory, as well as any of its trajectory parts, being
instances of dul:Region can be associated to their parts via the
dul:hasPart property or via the subproperties hasInitial, hasLast
which indicate the first and last part of the ST_Structured- Entity,
respectively. For instance, a trajectory may comprise a sequence
of trajectory segments, who on their own turn comprise other
segments, nodes, or raw positions, and so on. The temporal se-
quence of structured entities is specified by means of the property
dul:precedes. Trajectories related via the property dul:precedes

represent subsequent trajectories of a specific object, and thus keep
a long history of its movement. It must be noticed that this com-
bination of properties allow to sharing trajectory parts between
trajectories with no ambiguity: For instance, a trajectory node can
be shared between the actual and the intended trajectory of an
aircraft.

Each structured entity (i.e. trajectory or trajectory part) can be
associated to a specific geometry (sf:Geometry), representing a point
or region of occurrence, and a temporal entity (dul:TimeInterval)
specifying a time interval of occurrence. The Geometries of struc-
tured entities can be serialized into Well-Known-Text (WKT) and
asserted as values to the property hasWKT, which is sub-property of
geosparql:hasSerialization.

Finally, trajectories can be members of TrajectoryCluster enti-
ties, via the dul:hasMember property.

Towards the specification of semantic trajectories, trajectories
are associated with events and contextual information. Specifically,
each trajectory and trajectory part, being instances of ST_Structured-
Entity, can be associated via the property occurs with events, as
illustrated in Figure 4. An event can be associated with other events
via the properties dul:hasConstituent or dul:hasPart: This is the
case for high-level events associated with other high-level or low-
level events. An event involves at least one participant (associated
via the property dul:hasParticipant) and it holds for a specific
TimeInterval specified by the property dul:hasTimeInterval. An
event can be:

• LowLevel, in case its detection requires data from a single
trajectory,

• HighLevel, in case its detection requires contextual data and
maybe, data from multiple trajectories. For example, events
of type EnterSector involve information about active sectors
along with trajectories. As another example, hotspots require
data about active sectors and multiple trajectories.

• Operational, if they are issued by domain specific operators,
affecting regions or groups of entities for a specific time
interval. For example, a regulation (Regulation) is applied on
a sector and remains active for a time interval, and indirectly
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Figure 3: The pattern of structured trajectories. Domain specific concepts in gray

Figure 4: The pattern of trajectories linked with events. Do-
main specific concepts in gray

affects all the intended trajectories crossing the sector. A
trajectory is linked through the property affectedBy, with
corresponding regulation.

• Environmental, if they are due to the environment of moving
objects. Extreme weather condition are such events.

It must be noticed that associating events to trajectory parts
satisfies the requirement to associate multiple events to varying
levels of trajectory analysis, according to the information used for
the detection of each event: For instance, a low-level “turn” event
may co-occur with a low-level “descend” event and thus, both events
may be associated to the same semantic node. In addition to that,
this semantic node may be associated to a trajectory segment which
in its own turn is associated with events of type “DescendingPhase”
and “CrossingSector”.

In addition to events, trajectory parts of semantic trajectories can
be linked to contextual information, i.e. information about entities
in the environment that affect the moving object, including other
trajectories. Such information may be archival information concern-
ing static aspects of the environment (e.g. airports, airspaces, etc),
dynamic (e.g. changing sector configurations), or streaming (e.g.
weather forecasts). The pattern for linking trajectory parts with
contextual information is illustrated in Figure 5. Without loss of
generality, subsequent paragraphs and Figure 5 show associations
to contextual entities related to FM scenarios, although other cases
may be also specified.

Weather conditions are very important to trajectories in the MSA
and ATM domains: Each TrajectoryPart can be associated with
entities of type WeatherCondition, which is defined as a subclass of
ssn:FeatureOfInterest, (i.e. the entity whose properties are being
estimated or calculated in the course of an observation).

Of particular interest to the FM and MSA domains are airspace
regions. Structured entities can be linked to spatial regions (in-
stances of dul:Region) of particular interest through the properties
within and dul:nearTo.

Also, the departure and destination of a trajectory can be consid-
ered as contextual information, linked via the properties hasDepar-

ture and hasDestination, respectively. The properties range to the
class dul:PhysicalPlace, which can be further refined to domain
specific classes such as Airport, Heliport, or Port.

A FlightPlan is also a domain specific entity dul:InformationEntity

which is associated to an IntendedTrajectory or a RegulatedTrajectory,
via the property reportsTrajectory. A simplified example of the
triples describing a flight plan for a flight from Capadichino airport
(Napoli) to Gatwick airport (London) is as follows:
: f l i g h t _ p l a n _ A A 5 1 1 4 7 9 5 5 a : FM_FTFM ;

: h a s I d e n t i f i c a t i o n " AA51147955 " ;
: d e p a r t u r e A i r p o r t : P l a c e _ N a p o l i _ C a p o d i c h i n o _ A i r p o r t ;
: d e s t i n a t i o n A i r p o r t : P l a ce_Lo ndo n_Ga t wick_ Ai rpo r t ;
: r e p o r t s T r a j e c t o r y : t r_20160401_703202_m1 .

: t r_20160401_703202_m1 a : I n t e n d e d T r a j e c t o r y ;
: o fMovingObjec t : A i r c r a f t _ 4 0 0 7 E 4 .

: t r_20160401_703202_m1 : h a s S t a r t : n_m1_20160401_703202_1 .
: n_m1_20160401_703202_1 : h a s A l t i t u d e " 9 1 . 4 4 " ^^ u n i t : mete r s ;

: h a s L o n g i t u d e 1 4 . 2 9 0 8 3 3 ; : h a s L a t i t u d e 4 0 . 8 8 4 4 4 4 .
. . .

: t r_20160401_703202_m3_geom : hasWKT
" LINESTRING ( 1 4 . 2 9 0 8 3 3 ␣ 4 0 . 8 8 4 4 4 4 , ␣ . . . ␣ −0 .190278 ␣ 5 1 . 1 4 8 0 5 6 ) " .

4 DATA TRANSFORMATIONS FOR
ANALYTICS

In this section, we show how data transformations are supported
that are necessary for more advanced analysis tasks, such as dis-
covery of patterns of regulations (denoted FM01), and prediction of
sector configurations (denoted FM02).

4.1 Flow management use-cases
Following the analytics requirements in FM, we describe two use-
cases that require advanced data transformations.
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Figure 5: The pattern of trajectories linked with contextual information. Domain specific concepts in gray

FM01. Towards discovering patterns of regulations, we need
to (a) discover regular temporal patterns of regulations applied to
sectors, and (b) discover interdependencies between sectors based
on regulations.

For FM01(a) we generate time series of counts of regulations
per area of interest (e.g. sectors or FIR) by time periods of a cho-
sen length (e.g., 1 hour). Among these time series, we aim to find
time series with high periodicity (daily and weekly time cycles).
For FM01(b), we need to find “patterns between sectors”, where
regulations in some sectors or groups of sectors often lead to regu-
lations in other sectors. These regulations can be found as follows:
Regulations in sectors S1 and S2 may be related if the regulation
applied in S1 affects the times where flights enter S2 resulting to
a new hotspot. This task can be further supported by discovering
re-occurring links between sectors. Two sectors are linked via a
“link event” if regulated flights cross both sectors during a particu-
lar time interval. This can be achieved by computing time series
of link existence: for each pair of sectors (S1, S2) for which link
events exist, we need to compute time series with values 1 for the
time intervals when links between S1 and S2 existed and 0 for the
remaining time intervals. Time series with multiple peaks would
signify interrelationships between sectors, possibly caused by the
airspace design (density of airways connecting waypoints in certain
sectors) or by the density of traffic flows between certain points in
space in specific periods (e.g. holidays).

FM02. In this case the aim is to predict the choice of sector con-
figurations based on expected demands. To this end, we compute the
expected demands by aggregating the flight plans into spatial time
series by suitable sectors and time intervals. Two time-dependent
attributes may be computed for any sector S : entry hourly count
(how many flights enter S during each time interval) or occupancy
count (how many flights are present in S during each occupancy
period). Occupancy count, used in this paper, concerns overlapping
occupancy periods of predefined duration. We may view the oc-
cupancy period as a sliding time window, shifted by a number of
time units specified by the “time step”. That is, two parameters of
temporal aggregation are used: occupancy period duration (e.g., 1
hour) and time step, which is smaller than the occupancy period
duration (e.g., 15 minutes).

Overview. FM01(a) requires a spatial events to spatial time
series (place-based) transformation (Figure 1), FM01(b) requires a

transformation from trajectories to spatial time series (link-based),
and FM02 a transformation from trajectories to spatial time series
(place-based).

4.2 Evaluation of data transformations
The datasets involved in these scenarios (regulations, flight plans,
etc.) are real data from April 2016, summing up to approximately
1.08 billion triples. For demonstrating purposes we have setup a
Jena triple store with 5% of the total number of triples, on a i7-
6700HQ CPU at 2.60GHz, with 16GB RAM and Linux OS. The
spatio-temporal functions we have implemented (based on the Re-
gion Connection Calculus and on Allen’s interval algebra) for the en-
hanced SPARQL queries, extend classes of Jena ARQ engine. These
functions are registered to the SPARQL engine by the namespace
<java:datAcron.unipi.gr.sparql_functions.>, which is accessible
to the data transformation queries.

All data transformations presented in this section have been
implemented on top of SPARQL queries to the endpoint, which
produce data for visual analysis tasks, in particular for pattern
detection and analysis. All illustrations have been produced by the
V-Analytics tool [2].

Although some of the aggregate computations can be enabled
by the COUNT function of SPARQL, the time series computation
requires iterative SPARQL queries. For this reason, we use an it-
erative procedure that poses an enhanced, parametrized SPARQL
query, whose parameters are updated in each iteration. The it-
erative process results to a sequence of queries for subsequent
time periods. Specifically, given a duration ∆t , 0 and a period
[TimeStart ,TimeEnd], the i-th query of n iterations, concerns the
time period [TimeStart + i ∗ ∆t ,TimeStart + (i + 1) ∗ ∆t].

Figure 6: Regulations by FIR
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FM01(a). The case of FM01(a) requires data transformation of
spatial events to spatial time series aggregate (Figure 1, (III)). In
particular, it requires the computation of time series of counts of
regulations with a particular reason code, in time intervals of a
chosen length. The parametrised query for a given airspace, (e.g.
$airspace$=:Airspace_LBTA_411), is as follows:

PREFIX : < h t t p : / /www. da tac ron −p r o j e c t . eu / datAcron # >
PREFIX d u l : < h t t p : / /www. o n t o l o g y d e s i g n p a t t e r n s . . . / DUL . owl # >
PREFIX xsd : < h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# >
PREFIX myfn : < j a v a : datAcron . u n i p i . gr . s p a r q l _ f u n c t i o n s . >
SELECT (COUNT(DISTINCT ? r e g u l a t i o n ) AS ? count ) WHERE {

? r e g u l a t i o n a $ r e g u l a t i o n $ ; du l : hasReg ion $ a i r s p a c e $ ;
du l : h a s T i m e I n t e r v a l ? t . ? t : T i m e S t a r t ? s ; : TimeEnd ? e .
FILTER ( myfn : o v e r l a p s ( ? s , ? e ,

$ t 0 $ ^^ xsd : DateTime , $ t 1 $ ^^ xsd : DateTime ) ) }

Figure 7: Trajectories associated to regulations

A procedure iterates and poses a query for each regulation type and
each subsequent occupancy period in the overall period (e.g. [2016−
04− 01, 2016−04−30]). The variables assigned at each iteration are
as follows: $regulation$ (regulation type), $t0$ (time window start),
$t1$ (time window end). The function myfn:overlaps/4 realises the
temporal overlap relation in Allen’s interval algebra.

Results from these queries can be aggregated at varying levels of
airspace partitioning granularity. While aggregations at the level of
FIRs provide some useful patterns, as depicted in Figure 6, patterns
at lower levels of spatial granularity (e.g. at the level of airlocks -
not depicted here) are difficult to be detected. In particular, at FIR
level, we clearly observe large numbers of regulations in 209LE
(central part of Spain) on Fridays daytime (6:00 - 18:00), Saturdays
(6:00-24:00) and, in some weeks, on Sundays. In 079LE (East) we see
frequent regulations on Fridays and, in some weeks, on Saturdays.
There are only a few regulations in 208LE (West).

(a) Aggregated flights (b) Daily time series

Figure 8: Regulated flights

FM01(b). The data transformation required by the case FM01(b)
is finding “patterns between sectors”, when regulations in some
sectors or groups of sectors often lead to regulations in other sectors.
Specifically, for each pair of regulations R1 and R2 that overlap in

time and refer to distinct sectors S1 and S2, it is required to retrieve
the regulated flights (according to intended trajectories specified
by flight plans) that were going (before the regulation) to visit both
S1 and S2 during the time period that spans the duration of both
regulations R1 and R2. The returned trajectories are aggregated into
flows between sectors. Each such aggregate is considered as a “link
event”. Thus, we first need to detect the pairs of sectors affected by
temporally overlapping regulations and construct the links between
them. The SPARQL query that will assert a link (using the property
:associatedByOverlappingRegulationWith) between pairs of sectors
is as follows:
PREFIX : < h t t p : / /www. da tac ron −p r o j e c t . eu / datAcron # >
PREFIX r d f s : < h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / rd f −schema # >
PREFIX du l : < h t t p : / /www. o n t o l o g y d e s i g n p a t t e r n s . . . / DUL . owl # >
PREFIX myfn : < j a v a : datAcron . u n i p i . gr . s p a r q l _ f u n c t i o n s . >
CONSTRUCT { ? s0 : a s s o c i a t e d B y O v e r l a p p i n g R e g u l a t i o n W i t h ? s1 }
WHERE { ? r0 a ? c . ? c r d f s : s u b C l a s s O f : FM_Regula t ion .

? r0 d u l : hasReg ion ? s0 ; du l : h a s T i m e I n t e r v a l ? t 0 .
? t 0 : T i m e S t a r t ? t 0 0 ; : TimeEnd ? t 0 1 . ? r1 a ? c .
? c r d f s : s u b C l a s s O f : FM_Regula t ion . ? r1 du l : hasReg ion ? s1 ;
du l : h a s T i m e I n t e r v a l ? t 1 . ? t 1 : T i m e S t a r t ? t 1 0 ; : TimeEnd ? t 1 1 .
FILTER ( myfn : o v e r l a p s ( ? t00 , ? t01 , ? t10 , ? t 1 1 ) ) }

The query will assert triples relating sectors affected from tempo-
rally overlapping regulations. Therefore, the time series of trajecto-
ries crossing sectors affected by temporally overlapping regulations
can be retrieved by the query:
PREFIX : < h t t p : / /www. da tac ron −p r o j e c t . eu / datAcron # >
PREFIX r d f s : < h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / rd f −schema # >
PREFIX myfn : < j a v a : datAcron . u n i p i . gr . s p a r q l _ f u n c t i o n s . >
SELECT (COUNT(DISTINCT ? t ) AS ? count ) WHERE {

{ ? s : a s s o c i a t e d B y O v e r l a p p i n g R e g u l a t i o n W i t h [ ] .
? t : i n t e n d e d T o C r o s s ? s . ? r0 du l : hasReg ion ? s ;
du l : h a s T i m e I n t e r v a l / : T i m e S t a r t ? t 0 ;
du l : h a s T i m e I n t e r v a l / : TimeEnd ? t 1 .
FILTER ( myfn : o v e r l a p s ( ? t0 , ? t1 , $ t _ s t a r t $ , $ t_end$ ) )

} UNION { [ ] : a s s o c i a t e d B y O v e r l a p p i n g R e g u l a t i o n W i t h ? s .
? t : i n t e n d e d T o C r o s s ? s . ? r0 du l : hasReg ion ? s ;
du l : h a s T i m e I n t e r v a l / : T i m e S t a r t ? t 0 ;
du l : h a s T i m e I n t e r v a l / : TimeEnd ? t 1 .
FILTER ( myfn : o v e r l a p s ( ? t0 , ? t1 , $ t _ s t a r t $ , $ t_end$ ) ) } }

where $t_start$, $t_end$ are the time start and time end of the
occupancy time period window that slides across the time line.
Two of the trajectories crossing sectors affected by regulations are
depicted in Figure 7, where the location of regulations is depicted
by the (red) dots.

Finally, exploiting the generated links for sectors ⟨Sx , Sy ⟩ af-
fected by temporally overlapping regulations R1,R2, we can count
the links for a given time interval and a given period. Thus, the time
series can be constructed by a sequence of parametrized queries of
the form:
PREFIX : < h t t p : / /www. da tac ron −p r o j e c t . eu / datAcron # >
PREFIX r d f s : < h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / rd f −schema # >
PREFIX du l : < h t t p : / /www. o n t o l o g y d e s i g n p a t t e r n s . . . / DUL . owl # >
PREFIX xsd : < h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# >
PREFIX myfn : < j a v a : datAcron . u n i p i . gr . s p a r q l _ f u n c t i o n s . >
SELECT DISTINCT ? s WHERE {

? s : a s s o c i a t e d B y O v e r l a p p i n g R e g u l a t i o n W i t h [ ] .
? r du l : hasReg ion ? s ; du l : h a s T i m e I n t e r v a l ? t .
? t : T i m e S t a r t ? t s ; : TimeEnd ? t e .
FILTER ( myfn : d u r i n g _ s f ( ? t s , ? te , $ t _ s t a r t $ , $ t_end$ ) ) }

where $t_start$,$t_end$ are the start and end times respectively
of the sliding time window of the parametrized query.
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As depicted in Figure 8, we got (a) total counts of regulated
flights between each pair of locations of regulations and (b) their
daily time series. Line thickness corresponds to the total counts of
regulated flights. Lines have larger curvatures at their ends. Time
graphs show the time series for links between pairs of regulation
locations. We have observed several peak values in the time series.
Six links have peaks on April 28. These links are highlighted on the
map.

FM02. To support the FM02 case we need to compute expected
demands by counting the number of flight plans in each sector for
any occupancy period of a specific duration. Considering that each
flight plan is an intended trajectory, the basic query is to retrieve
the series of sectors (in this case, both active and inactive) crossed
by the intended trajectory, and the entry/exit times for each sector.
For example, the following query returns the sectors crossed by the
trajectory of a given flight plan, e.g. :flight_plan_AA51147955:
PREFIX : < h t t p : / /www. da tac ron −p r o j e c t . eu / datAcron # >
PREFIX r d f s : < h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / rd f −schema # >
PREFIX d u l : < h t t p : / /www. o n t o l o g y d e s i g n p a t t e r n s . . . / DUL . owl # >
SELECT ? segment ? e n t r y ? e x i t ? s e c t o r WHERE {

: f l i g h t _ p l a n _ A A 5 1 1 4 7 9 5 5 a : FM_FTFM ; : r e p o r t s T r a j e c t o r y ? t .
? t du l : h a s P a r t ? segment . ? segment a : Segment ; : w i t h i n ? s e c t o r ;
: h a s T e m p o r a l F e a t u r e ? t ime . ? t ime : T i m e S t a r t ? e n t r y ;
: TimeEnd ? e x i t . } ORDER BY ? s

Then, given the sectors and the flight plans, we count the demand
per sector S for each time period ∆t , by considering the flight plans
that cross S in a time period [Entry,Exit] that overlaps with ∆t .

5 RELATEDWORK
Existing approaches for the representation of semantic trajecto-
ries either (a) use plain textual annotations instead of semantic
links to other entities [1, 4, 5], hindering the provision of semantic
links to other data associated with moving objects’ behaviour; (b)
constrain the types of events that can be used for structuring a
trajectory [1, 4]; or (c) make assumptions on the constituents of
trajectories [5, 6, 8] (e.g. semantic trajectories in [5] are sequences
of sub-trajectories, while in [6] are sequences of episodes). To a
greater extent than previous proposals, the proposed ontology sup-
ports the representation of trajectories at multiple, interlinked levels of
analysis: For instance, although [6] provides a rich set of constructs
for the representation of semantic trajectories, these are sequences
of episodes, each associated with raw trajectory data, and option-
ally, with a spatio-temporal model of movement. However, there is
no fine association between abstract models of movements and raw
data. On the other hand, [5] provides a two-levels analysis where
semantic trajectories are lists of semantic sub-trajectories, and each
sub-trajectory in its own turn is a list of semantic points. Regarding
events and episodes, these are connected to specific resources at
specific levels of analysis: In [5] events -mostly related to the envi-
ronment rather than to the trajectory itself- are connected to points
only (something that may lead to ambiguities in some cases), while
in [6] episodes concern things happening in the trajectory itself,
and may be associated to specific models of movement: It is not
clear how multiple models of a single trajectory -each at a different
level of analysis- connected to a single episode, are associated. Fi-
nally, contextual information in [6] is related to movement models,
episodes or semantic trajectories, which is quite generic, while in

[5] environment attributes are associated to points only, and are as-
signed specific values. The datAcron ontology has been succinctly
presented in [11]. Here we delve into the details of the specifica-
tions, while, also to a great extent than all previous proposals, we
have shown the datAcron ontology supports data transformations
that are required by analytics tasks, providing information of the
appropriate form at various levels of analysis.

6 CONCLUDING REMARKS
This work presents the core specifications and usage in data trans-
formation of the datAcron ontology. This ontology describes trajec-
tories of moving objects at various levels of analysis, towards deci-
sion support making and event recognition. We have demonstrated
data transformation and visual analytics in Flow Management sce-
narios of ATM using the proposed ontology. We overcame the
limitations of SPARQL 1.1 w.r.t. data transformation requirements,
by implementing a suite of functions for verifying spatio-temporal
relations and parametrized SPARQL queries that can be iteratively
processed on our customized SPARQL endpoint.

As a future work, we plan to also demonstrate data transforma-
tions for maritime scenarios and extend the implemented suite of
functions for our customized SPARQL endpoint.
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