
Towards an IoT Framework for Semantic and
Organizational Interoperability

Ivana Podnar Zarko∗, Sergios Soursos†, Ivan Gojmerac ∗∗, Elena Garrido Ostermann‡, Gianluca Insolvibile§,
Marcin Plociennik ¶, Peter Reichl ‖, and Giuseppe Bianchi ††

∗University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia, ivana.podnar@fer.hr
†Intracom SA Telecom Solutions, Greece, souse@intracom-telecom.com

‡ATOS Spain SA, Spain, elena.garrido@atos.net
§Nextworks Srl, Italy, g.insolvibile@nextworks.it

¶Poznan Supercomputing and Networking Center, IBCh PAS, Poland, marcinp@man.poznan.pl
‖University of Vienna, Faculty of Computer Science, Austria, peter.reichl@univie.ac.at

∗∗AIT Austrian Institute of Technology GmbH, Center for Digital Safety & Security, Austria, ivan.gojmerac@ait.ac.at
††CNIT / University of Roma Tor Vergata, Rome, Italy, giuseppe.bianchi@uniroma2.it

Abstract—While the current highly fragmented IoT ecosystem
is characterized by an increasing number of platforms, their
interoperability and collaboration is quite challenging to achieve,
even more so due to numerous standardization initiatives. How-
ever, interoperability remains essential for IoT deployments to
facilitate the emergence of novel cross-domain applications and
business opportunities. In this paper we present the interoperabil-
ity approach pursued by the H2020 project symbIoTe which aims
at creating a flexible interoperability framework supporting both
semantic and organizational interoperability. While semantic
interoperability, as a prerequisite for platform cooperation, has
been widely addressed in literature, symbIoTe goes a step further
to propose novel aspects of organizational interoperability by
introducing a concept of IoT platform federations and roaming
IoT devices. We present the symbIoTe architecture, highlight
its major technical contributions, and provide an overview
of current system implementation with focus on cloud-based
platform services representing a new page for IoT interoperability
and platform federations.

I. INTRODUCTION

With over 300 IoT platforms on the market1, the current
IoT ecosystem is highly fragmented and divergent: a series
of vertical domain-specific solutions coexist and occupy the
same homes, factories or municipalities, but cannot interop-
erate since they are built using proprietary software without
open and standardized interfaces. It is expected that platform
interaction and collaboration will exhibit the full potential
of IoT services only by enabling cross-domain applications
and dynamic smart environments where moving devices blend
with the surroundings in accordance with Weiser’s vision of
ubiquitous computing. However, achieving true IoT platform
interoperability is rather challenging, not only because of the
need to discover devices supporting different protocols across
heterogeneous platforms, but because sharing of resources
across stakeholders requires semantic alignment, secure and
trusted interactions, as well as well-defined bartering and
trading schemes.

1Source: Beecham Research

symbIoTe steps into this landscape to devise a flexible and
secure interoperability framework across IoT platforms with
the following contributions: 1) it builds an abstraction layer
for transparent usage of IoT devices across platforms for
rapid cross-platform application development, 2) it supports
IoT platform federations, i.e., associations between two plat-
forms facilitating their secure interaction, collaboration and
bartering/trading of devices for the benefit of all interested
stakeholders, and 3) it facilitates blending of next generation
smart (moving) devices with surrounding environments and
host platforms.

Syntactic and semantic interoperability have already been
widely addressed in literature [1], [2] and as essential in-
teroperability mechanisms are also addressed by symbIoTe.
However, symbIoTe goes a step further to introduce novel
flavors of organizational interoperability (platform federations
with bartering/trading concepts and roaming IoT devices),
while the architecture based on microservices facilitates a
flexible and incremental deployment of symbIoTe functionality
across a platforms space. This enables platform providers to
choose an adequate interoperability model for their business
needs and desired level of collaboration with other platforms
within a symbIoTe-enabled IoT ecosystem.

In this paper we present the technical details relating to
novel aspects of interoperability introduced by symbIoTe, and
put them in relation to the symbIoTe architecture which is
built around a hierarchical IoT stack, following the principles
of the oneM2M Functional Architecture [3]. oneM2M and
state-of-the-art solutions currently focus on semantic inter-
operability, while a limited set of operations is foreseen for
platform interoperability, e.g., subscriptions to information
about resources offered by different platforms. symbIoTe is
devising interoperability solutions in parallel with six other
H2020 projects under the trademark of the IoT Platforms
Initiative (http://iot-epi.eu/). Its unique features compared to
other projects are interoperability solutions which go across
the stack (a similar approach is adopted by the Inter-IoT
project, however it is still too early to identify technical



similarities and differences), while other projects mainly focus
on either device & gateway or Cloud domain.

The paper is structured as follows: Section II presents
the symbIoTe architecture and introduces the interoperability
aspects. Section III defines the key technical decisions and
features guiding the system design, while we outline the
implementation status in Section IV. Section V concludes the
paper.

II. THE SYMBIOTE ARCHITECTURE

The symbIoTe approach is built around a layered IoT
stack connecting various devices (sensors, actuators and IoT
gateways) within Smart Spaces with the Cloud. Smart Spaces
share the available local resources (connectivity, computing
and storage), while platform services running in the Cloud
support IoT Platform Federations and open up the Inter-
working Interface shown in Figure 1 to third parties. The
architecture comprises four layered domains, 1) Application
Domain, 2) Cloud Domain, 3) Smart Space Domain and 4)
Device Domain, as depicted in Figure 1. Hereafter we list the
main functional objectives for each of these domains:

• Application Domain (APP): enables platforms to register
IoT devices which they want to advertise and make
accessible via symbIoTe to third parties, while symbIoTe
Core Services search for adequate IoT devices across
platforms. It also hosts domain-specific back-end services
(Domain Enablers) which are designed to ease the process
of cross-platform and domain-specific application devel-
opment (specifically for mobile and web applications).

• Cloud Domain (CLD): provides a uniform and authorize
access to virtualized IoT devices exposed by platforms
to third parties through an open API (Interworking in-
terface). In addition, it offers services for IoT Platform
Federations enabling close platform collaboration, in ac-
cordance with platform-specific business rules.

• Smart Space Domain (SSP): provides services for discov-
ery and registration of new IoT devices in dynamic local
smart spaces, dynamic configuration of devices in accor-
dance with predefined policies in those environments, and
well- documented interfaces for devices available in smart
spaces.

• Smart Device Domain (SDEV): relates to smart devices
and their roaming capabilities. We assume that devices
have the capabilities to blend with a surrounding smart
space while they are on the move. In other words,
smart devices can interact with devices in a visited smart
space managed by a visited platform, in accordance with
predefined access policies.

A. Interoperability Aspects

symbIoTe allows for flexible interoperability mechanisms
which can be achieved by introducing an incremental deploy-
ment of symbIoTe functionality across the listed architectural
domains (APP, CLD, SSP and SDEV). This approach will
enable platform providers to choose an appropriate level of

Fig. 1. The symbIoTe high-level architecture

integration of symbIoTe-specific services within their plat-
forms, which will in effect influence the level of platform
collaboration and cooperation with other platforms within a
symbIoTe-enabled ecosystem. For example, a platform may
only choose to expose its Interworking Interface and selected
IoT services to third parties in order to advertise them by
using the symbIoTe Core Services, or it may opt for a closer
collaboration with another platform by forming a platform
federation. Platform federations require additional symbIoTe
components to be included and integrated within a platform
space in CLD.

Fig. 2. symbIoTe Compliance Levels

We define four different Compliance Levels (CLs) for IoT
platforms, as depicted in Figure 2. They reflect different
interoperability modes, which an IoT platform can support.
Different interoperability modes affect the functionality which
needs to be supported by platforms, and require specific sym-
bIoTe components to be integrated within different domains.

• Level 1 (L1) Compliant Platform: This is a ”lightweight”
symbIoTe CL since a platform opens up only its In-
terworking Interface to third parties to advertise and
offer its virtualized resources through the symbIoTe Core
Services. L1 compliance supports the syntactic and se-
mantic interoperability of IoT platforms in a symbIoTe
ecosystem, and affects only APP and CLD.

• Level 2 (L2) Compliant Platform: This level assumes that



platforms federate, which requires additional functional-
ity needed for close organizational interoperability, for
example for device bartering/trading.

• Level 3 (L3) Compliant Platform: This CL assumes that
platforms integrate symbIoTe components within their
smart spaces to simplify the integration and dynamic
reconfiguration of IoT devices within local spaces.

• Level 4 (L4) Compliant Platform: This level offers sup-
port for device roaming and can enable the interaction
of smart objects with visited smart spaces. A prerequisite
is that a platform is already marked as L1, L2 & L3,
so that smart spaces can discover new visiting devices
and integrate them dynamically (e.g., grant access to
certain local resources) in accordance with Service Level
Agreements (SLAs) between platforms (i.e. platforms are
in federation).

L1 compliance can be directly mapped to semantic and
syntactic interoperability, as identified in the ETSI Whitepa-
per [4], and subsequently adopted by IERC [5]. L2, L3 and
L4 platforms can clearly be categorized as systems support-
ing organizational interoperability. symbIoTe proposes here
an original approach with finer granularity of organizational
interoperability by placing specific interoperability concepts
in the CLD for L2, in the SSP for L3 as well as in both
SSP and SDEV for L4 compliance. In particular, L2 platforms
form platform federations, L3 platforms support dynamic
and reconfigurable smart spaces, while L4 platforms support
roaming of smart devices which can use services in visited
smart spaces. To achieve L2 compliance, a platform should
first adhere to L1 compliance, while an L4 platform requires
a full symbIoTe framework.

L1 compliance relates to services placed in two domains,
APP and CLD. An IoT platform which wants to become part
of the symbIoTe ecosystem needs to integrate the symbIoTe
Interworking Interface with its existing components, e.g., with
services exposing sensor-generated data or actuation primi-
tives. This facilitates open yet uniform access to IoT services
across platform. Note that a platform chooses which devices
it wants to register and make discoverable via the symbIoTe
Core Services. In addition, the platform issues access tokens to
its devices to third parties and keeps the control of both device
services and access. symbIoTe plays here a mediation role and
uses distributed and decoupled mechanisms for authentication
and authorization, namely the Attribute Based Access Control
(ABAC) with token-based authorization [6].

Figure 3 shows the benefits of L1 compliance by an example
depicting two platforms A and B using the symbIoTe Core Ser-
vices. When an application searches for devices and identifies
adequate ones, the application accesses the devices offered
by the two platforms through the Interworking Interface. In
other words, cross-platform applications i) use the symbIoTe
Core Services to find adequate devices across platforms and
ii) access, integrate and use those devices through a uniform
and open interface. Note that symbIoTe stores only resource
metadata within the Core Services to provide adequate search
mechanisms, while cross-platform applications access and use

Fig. 3. Illustrating symbIoTe CLs

resources directly at the platform side.
L2 compliance involves components placed both in APP and

CLD, but requires a significant extension of an existing plat-
form deployment to enable a closer collaboration between two
platforms, i.e., platform federation. This collaboration should
adhere to a specified SLA and support symbIoTe-specific
bartering and trading mechanisms. Figure 3 also illustrates
an example federation where it is possible to expose certain
IoT services from platform A within the space of platform
B. This creates an opportunity that an existing application
(native application) expands the set of available services within
platform B, since they appear as native services to an existing
application built exclusively for platform B.

L3 and L4 compliance mainly affect platform software
which is deployed within a SSP, and may require specific
software also at the level of IoT devices. Features similar
to the ones appearing in APP and CLD are needed within
SSP, but with quite a different and reduced scope relating to
local resources. Since number of platforms can occupy the
same SSP, L3 compliance refers to dynamic reconfiguration
of devices within a SSP, so that a device is reconfigured on
the fly to become part another platform preventing thus vendor
lock-in. L4 compliance relates to interoperability at the SDEV
level. An example is when a device registered in platform A
visits an environment operated by platform B. The device can
use the surrounding infrastructure operated by platform B in
accordance with an SLA between the two platforms.

III. TECHNICAL DETAILS

A. Cross-Platform Application Development (L1)

Cross-platform application development is enabled by the
symbIoTe Core Services and L1 platforms. In this setup
symbIoTe acts as an intermediary between IoT applications
and platforms where platforms can register their resources2,
while applications can search for adequate resources. The
access to resources remains on the platform side; however,

2Resource: is a uniquely addressable entity and may refer to IoT devices,
virtual entities, network equipment, computational resources and associated
server-side functions (e.g., data stream processing). This definition is on
purpose highly generic and in line with oneM2M specifications.



it is provided through a uniform open interface extended by
the symbIoTe solution for authentication and authorization.

Let us explain this scenario by an example where two
platforms are used for environmental monitoring: openUwe-
dat [7] gathers and processes data from in-situ environmental
stations, while the OpenIoT platform can be used for collecting
environmental parameters by means of wearable sensors and
smartphones [8]. If both platforms register, e.g., CO sensors
with Core Services and implement the Interworking Interface,
an application looking for CO sensors located in a certain area
will receive a list URIs pointing to platform services exposing
the measurements through the open interface. The application
can thus fetch the readings directly from platform’s REST
interfaces, but only if it can present an adequate token to the
platform which certifies the authenticity of both the issuer (i.e.,
the symbIoTe Core Services in this case) and the owner (the
application).

The example showcases the need for semantic interoperabil-
ity since symbIoTe needs to understand that both platforms are
offering gas sensors measuring CO concentrations, although
they are using different platform-specific information models.
symbIoTe chooses to follow an approach which requires
that all registered resources are defined using a minimalistic
Core Information Model (CIM) which all platforms need to
adhere to. The CIM is specified as an ontology providing
the basic information about sensors, actuators and services,
while further resource details can only be described using
platform-specific information models. This provides a lot of
flexibility for platform owners, but may represent a weakness
for the symbIoTe ranking function if it does not understand
many details about the resources. We envision that a mapping
solution will be available to map an information model which
symbIoTe does not understand to the one which symbIoTe
understands. Further details are provided in [9].

Provision of data and system security in distributed, hier-
archical systems like symbIoTe requires sophisticated mecha-
nisms of user authentication and authorization. Attribute based
access control (ABAC) fulfills these requirements since it
is based on the assignment of attributes to various applica-
tions,components and entities in the system. An attribute is
defined as a particular property, role or permission associated
to an entity in the system, assigned after an authentication
procedure by the system administrator. ABAC controls the
access to resources by Access Control Policies. An access
policy defining a specific combination of attributes needed
to grant access to resources is assigned to each resource by
the producer of that resource, i.e., a platform. Therefore, a
client application may be granted access to a resource only
if it possesses a set of attributes that match the predefined
access policy. In symbIoTe this policy can contain at the same
time attributes assigned to users and objects and also particular
environment conditions connected to a request. Further details
are provided in [6].

Borrowing their name from the FIWARE components, the
symbIoTe Enablers also reside at the APP, but their purpose
is to provide domain-specific functionality by aggregating

resources belonging to different IoT platforms. For example,
an enabler for air quality monitoring could collect air quality
readings from appropriate sensors being managed by different
platforms within the same city, perform certain processing
techniques so as to analyze the collected data and provide the
output in an as-a-Service manner to applications. This way, the
application does not need to interact with multiple platforms
and does not need to have domain-specific knowledge to
process air quality data. In addition, cross-domain applications
using multiple enablers can leverage and combine services
offered by different domain enablers. Thus, application de-
velopers can easily create innovative applications by focusing
only on the cross-domain logic, without having to care for the
domain-specific details or direct interactions with multiple IoT
platforms.

B. Platform Federations (L2)

Platform federations are enabled by symbIoTe components
which extend platform features to enable direct platform
interactions. Interworking Interface is also used here to access
and use resources offered by federated platforms, however
additional functionality is needed for managing SLAs and
resource Bartering & Trading between the platforms. To enable
trade between two platforms, a trust relationship must exist.
Different parameters can be used to evaluate this trust, by,
e.g., comparing the actual Quality of Experience (QoE) with
established SLAs.

Coming back to the example with two platforms for en-
vironmental monitoring, their federation makes sense in case
of a partnering relationship where openUwedat is willing to
barter its precise and reliable measurements with OpenIoT
measurements to increase its spatial coverage, while OpenIoT
needs openUwedat measurements e.g. to identify uncalibrated
wearable sensors.

The question of how to perform bartering and trading of
resources between IoT platforms is considered essential for
establishing platform federations. Here, bartering refers to
any scenario where a market participant exchanges her goods
or services directly for goods or services originating from
another market participant, without monetary implications.
Note that, in the context of a platform federation, most of
the typical problems concerning efficiency of such a mecha-
nism disappear by definition: for instance, matching suitable
partners is relatively easy, as all platforms participating in
symbIoTe are assumed to be prosumers. Since a huge number
of resources is available, any bartering deal can be based
on small service units and hence circumvent the problem of
indivisibility. Moreover, symbIoTe introduces the concept of
vouchers, typically comprising access tokens and SLAs as well
as details on the requested service (e.g. its value and related
time constraints). Thus, the symbIoTe bartering mechanism
will allow for achieving joint win-win situations within a
platform federation in a very straightforward way.

symbIoTe aims to offer ways to access resources from
other platforms without an immediate material counteroffer,
i.e., by trading. Here, we have to distinguish two basic



scenarios: a) a platform is offering access to own resources and
asks for corresponding requests (bids) from other platforms
(forward trading), or b) a platform is looking for access to
resources offered by foreign platform(s) (backward trading).
Here, an agreement on monetary compensation is fundamental
for closing a deal. In microeconomics, such situations are
usually treated within the framework of auction theory, i.e.
forward auctions (access to resources is offered, and requests
are submitted in the form of bids) and reverse auctions (access
to resources is requested, and access conditions are looked
for by the requesting platform). The symbIoTe approach is
focusing on a suitable adaptation of Progressive Second-Price
(PSP) auctions, or a more general Vickrey-Clarke-Groves
mechanism with reserved prices, which have been proven to
be incentive compatible and thus force auction participants to
be honest concerning their estimations about the value of the
offered/requested resources.

C. APP and CLD Components
Taking into account the features and technical details for

L1 and L2 compliance stated in the previous subsections,
we present the main components which are being designed
and implemented for the APP and CLD. The corresponding
component diagrams are depicted in Figure 4.

Fig. 4. APP and CLD components

The essential Core Service component is the Registry that
maintains a repository of symbIoTe-enabled platforms, regis-
tered resources and associated properties. The Core Services
store and manage only IoT resource descriptions (i.e. resource
metadata), while the access to those resources (e.g., sensor
data and actuation primitives) is provided by the underlying
platforms. Search Engine is needed so that applications can
identify adequate resources recommended by the Core Ser-
vices and access them directly on the platform side. To im-
prove search results we include the following two components:
1) Core Resource Monitor tracks availability of registered
resources to ensure their availability; 2) Core Resource Access
Monitor tracks information about resource popularity as seen
by symbIoTe.

L1 platforms need to implement the symbIoTe Interworking
Interface to be integrated into our ecosystem. To ease the
integration process, we offer components which extend the
platform’s space with additional symbIoTe-specific function-
ality: Resource Handler registers selected resources with the
Core. Resource Access Proxy receives requests for resource
access from applications and translates them to platform-
specific requests. It addition, it supports continuous queries
and delivery of sensor data via WebSockets. Monitoring is
intended to monitor resource health status and report it peri-
odically to its counterpart within the Core Services, namely
the Core Resource Monitor. Authentication and Authorization
Manager enables a common authentication and authorization
mechanism on the platform side, both for L1 and L2 interac-
tions.

The remaining components within APP are the following:
Core Authentication and Authorization Manager ensures that
trusted platforms register resources with symbIoTe, while
mapping resource access rights to proper credentials. Core
Security Handler provides a set of generic security-related
features required for the attribute based access control. Fi-
nally, Core Bartering and Trading Component integrates all
bartering and trading functionalities for L2 Compliance that
need to be centralized.

Platforms wishing to join federations need to be extended
with additional functionality provided by the following compo-
nents: Federation Manager offers SLA management between
IoT Platforms to create a federation and is monitoring whether
SLAs are being respected. Bartering and Trading Manager
manages bartering and trading actions within established fed-
erations.

D. Dynamic Spaces and Roaming Devices (L3/L4)

Smart Spaces in the symbIoTe vision are generic environ-
ments (residence, campus, vessel, stadium, etc.) where one or
more different local IoT platforms coexist. Such environments
are typically associated to physical locations, ranging from
wide spaces to small areas; a SPP defines abstract boundaries
for the IoT services and platforms it embraces, and acts as
a sort of gateway from local resources to the rest of the
symbIoTe environment. Smart Spaces can host a multitude
of devices with a goal to seamlessly connect, dynamically
configure and automatically register devices with the Core
Services; subsequently, the Search Engine and applications can
transparently search for and use exposed resources. A SDEV
relies on the functions provided by an SSP, in order to roam,
associate, and be accessible from the symbIoTe Core or by
any symbIoTe app. Any device capable of complying with the
symbIoTe SSP interface for registration and resource access
can be considered an SDEV.

To provide a truly interoperable approach at the SSP and
SDEV level, we design a dynamic association and configura-
tion process to allow any SDEV to become part of symbIoTe,
provided that a minimal, device specific software shim is
installed in the SSP. In this way, the SSP can annex both entire
IoT platforms and individual devices which are not associated



to any particular platform. An SSP can expose to the Core Ser-
vices all the devices it has access to, regardless of which native
IoT platform they belong to; therefore, SDEVs associated to
a SSP can be exposed directly, without being “mediated” by
any of the local platforms. Furthermore, symbIoTe-compliant
platforms and services operating within a SSP are able to
access all the resources associated to the SSP itself, provided
that the necessary federated authentication and authorization
policies between the relevant platforms are in place.

The interoperability function is thus fully deployed at the
SSP level: when more than one IoT platform is active within
a SSP, symbIoTe becomes a local resource interchange hub
where interactions happen locally without a need to contact
platform clouds. Entities visiting a symbIoTe SSP include
both incoming apps (e.g. a user with a smartphone or tablet
running a specific symbIoTe app) and incoming devices. In
both cases, the incoming entity should be identified, authorized
and given a way to access the rest of the SSPs facilities,
while still keeping a consistent API. One of the challenges in
managing visiting entities is to keep a fairly functional system
even in case of temporary failure or degradation of Internet
connectivity.

An L3 compliant SDEV is able to move from one SSP to
another seamlessly, i.e. it is automatically reconfigured and
re-annexed to a SSP. In particular, when visiting a “foreign”
environment the SDEV will be able to use resources in the
surrounding infrastructure, and offer its own resources to
others, provided that the required SLAs are in place. In L3
mode, the SDEV is reconfigured as a new device each time
it moves from one SSP to another. On the other hand, L4
compliance mandates that a SDEV connecting to a new SSP
maintains the association with its “home” SSP, behaving as
a roaming (as opposed to nomadic) device. This also implies
that the L4 SDEV is always identifiable and traceable as it
moves between SSPs.

IV. IMPLEMENTATION STATUS

The symbIoTe consortium is developing open source soft-
ware implementing the introduced architecture and features
available at https://github.com/symbiote-h2020. Both the Core
Services and platform components are designed and imple-
mented using the microservices architecture, having in mind
the scalability and distributed characteristics of the architec-
ture. A base for current system implementation is provided by
the Spring framework (Spring Boot, Spring Cloud) to support
component configuration, services discovery (Eureka middle
tier load balancer) and tracing (Zipkin distributed tracing
system). We currently focus on Core Service components and
L1 compliance features, while the initial platforms becoming
symbIoTe complaint are openUwedat and OpenIoT. Further
details are available at the symbIoTe web site http://symbiote-
h2020.eu/.

V. CONCLUSION

The paper presents the general concepts of the symbIoTe ar-
chitecture and its interoperability aspects aiming to design and

build a flexible interoperability and mediation framework for
IoT platforms. The framework simplifies the process of cross-
platform application development, introduces novel concepts
related to IoT platform federations, as well as flexible methods
for integration of smart space infrastructure and smart de-
vices within symbIoTe-enabled environments. symbIoTe does
not strive to become another IoT “superplatform”: It does
not store any sensor-generated data outside of IoT platform
boundaries, but rather acts as a mediator between applications
and platforms ensuring secure and uniform access to plat-
form resources through well-defined interfaces. The symbIoTe
architecture is built around a layered stack in accordance
with the oneM2M functional architecture which currently
focuses primarily on semantic interoperability. symbIoTe goes
a step further to propose features relevant to organizational
interoperability which are currently not covered by state-of-
the-art solutions: These are related to platform federations,
resource bartering and trading as well as device roaming.

ACKNOWLEDGMENT

This work is supported by the H2020 symbIoTe project, which has
received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement No 688156. The
authors would like to cordially thank the entire symbIoTe consortium
for their valuable comments and discussions.

REFERENCES

[1] J. Soldatos et al., “OpenIoT: Open source internet-of-things in the
cloud,” in LNCS 9001: Interoperability and Open-Source Solutions for
the Internet of Things - International Workshop, 2014, pp. 13–25.

[2] E. Kovacs, M. Bauer, J. Kim, J. Yun, F. L. Gall, and M. Zhao, “Standards-
based worldwide semantic interoperability for IoT,” IEEE Communica-
tions Magazine, vol. 54, no. 12, pp. 40–46, December 2016.

[3] oneM2M, “M2M Functional Architecture,” Tech-
nical Specification, 2015. [Online]. Available:
http://www.onem2m.org/images/files/deliverables/TS-0001-
Functional Architecture-V1 6 1.pdf

[4] H. van der Veer and A. Wiles, “Achieving Technical Interoperability -
the ETSI Approach,” ETSI Whitepaper No. 3, 2008.

[5] IERC, “IoT Semantic Interoperability: Research Challenges, Best Prac-
tices, Recommendations and Next Steps,” Position Paper, 2015.

[6] S. Sciancalepore, M. Pilc, S. Schrder, G. Bianchi, G. Boggia,
M. Pawlowski, G. Piro, M. Plociennik, and H. Weisgrab, “Attribute-based
access control scheme in federated iot platforms,” in 2nd Workshop on
Interoperability and Open-Source Solutions for the Internet of Things
(InterOSS-IoT 2016), LNCS To appear in 2017.

[7] J. Schabauer, G. Schimak, G. Dünnebeil, and M. Litzenberger, “openUwe-
dat - a toolbox solution for integrated air quality and traffic monitoring,”
in EnviroInfo Dessau 2012, Dessau, Germany, August 29-31, 2012., 2012,
pp. 695–706.

[8] A. Antonic, V. Bilas, M. Marjanovic, M. Matijasevic, D. Oletic,
M. Pavelic, I. Podnar Zarko, K. Pripuzic, and L. Skorin-Kapov, “Urban
crowd sensing demonstrator: Sense the zagreb air,” in Proceedings of
the 22th International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), 2014, 2014.

[9] M. Jacoby, A. Antonic, K. Kreiner, R. LŁapacz, and J. Pielorz, “Semantic
interoperability as key to iot platform federation,” in 2nd Workshop on
Interoperability and Open-Source Solutions for the Internet of Things
(InterOSS-IoT 2016), LNCS To appear in 2017.


