On a matrix decomposition and its applications

Fuzhen Zhang
Farquhar College of Arts and Sciences
Nova Southeastern University
Fort Lauderdale, FL 33314, USA
zhang@nova.edu

Abstract

We show the uniqueness and construction (of the Z matrix in Theorem 1, to be exact) of a matrix decomposition and give an affirmative answer to a question proposed in [J. Math. Anal. Appl. 407 (2013) 436-442].

AMS Classification: 15A45, 15A60, 47A30 Keywords: accretive-dissipative matrix, Cartesian decomposition, majorization, matrix decomposition, numerical range, sectoral decomposition, unitarily invariant norm

1 Introduction

Several recent papers $[2,3,4,5,10]$ are devoted to the study of matrices with numerical range in a sector of the complex plane. In particular, this includes the study of accretive-dissipative matrices and positive definite matrices as special cases. A matrix decomposition plays a fundamental role in these works. The aim of this paper is twofold: show the uniqueness along with other properties of the key matrix in the decomposition and give an affirmative answer to a question raised in [12].

As usual, the set of $n \times n$ complex matrices is denoted by \mathbb{M}_{n}. For $A \in \mathbb{M}_{n}$, the singular values and eigenvalues of A are denoted by $\sigma_{i}(A)$ and $\lambda_{i}(A)$, respectively, $i=1, \ldots, n$. The singular values are always arranged in nonincreasing order: $\sigma_{1}(A) \geq \cdots \geq \sigma_{n}(A)$. If A is Hermitian, then all eigenvalues of A are real and ordered as $\lambda_{1}(A) \geq \cdots \geq \lambda_{n}(A)$. Note that $\sigma_{j}(A)=\lambda_{j}(|A|)$, where $|A|$ is the modulus of A, i.e., $|A|=\left(A^{*} A\right)^{1 / 2}$ with A^{*} for the conjugate transpose of A. We denote $\sigma(A)=\left(\sigma_{1}(A), \ldots, \sigma_{n}(A)\right)$ and $\lambda(A)=\left(\lambda_{1}(A), \ldots, \lambda_{n}(A)\right)$.

For a square complex matrix A, recall the Cartesian (or Toeplitz) decomposition (see, e.g., [1, p. 6] and [7, p. 7]) $A=\Re A+i \Im A$, where

$$
\Re A=\frac{1}{2}\left(A+A^{*}\right), \quad \Im A=\frac{1}{2 i}\left(A-A^{*}\right) .
$$

There are many interesting properties for such a decomposition. For instance, $\Re\left(R^{*} A R\right)=R^{*}(\Re A) R$ for any $A \in \mathbb{M}_{n}$ and any $n \times m$ matrix R. A celebrated result due to Fan and Hoffman (see, e.g., [1, p. 73]) sates that

$$
\begin{equation*}
\lambda_{j}(\Re A) \leq \sigma_{j}(A), \quad j=1, \ldots, n \tag{1}
\end{equation*}
$$

For $A \in \mathbb{M}_{n}$, the numerical range of A is the set in the complex plane

$$
W(A)=\left\{x^{*} A x \mid x \in \mathbb{C}^{n},\|x\|=1\right\}
$$

For $\alpha \in\left[0, \frac{\pi}{2}\right)$, let S_{α} be the sector in the complex plane given by

$$
S_{\alpha}=\left\{z \in \mathbb{C}|\Re z>0,|\Im z| \leq \Re z \tan \alpha\}=\left\{r e^{i \theta}|r>0,|\theta| \leq \alpha\}\right.\right.
$$

Apparently, if the numerical range $W(A)$ is contained in a sector S_{α} for some $\alpha \in\left[0, \frac{\pi}{2}\right)$, then A is nonsingular and $\Re A$ is positive definite. Moreover, $W(A) \subseteq S_{\alpha}$ implies $W\left(R^{*} A R\right) \subseteq S_{\alpha}$ for any nonzero $n \times m$ matrix R.

If $W(A)$ is contained in the first quadrant of the complex plane, then $\Re A$ and $\Im A$ are positive semidefinite. We call such a matrix A accretive-dissipative. Note that if A is accretive-dissipative and nonsingular, then $W(A) \subseteq e^{i \pi / 4} S_{\pi / 4}$, i.e., $W\left(e^{-i \pi / 4} A\right) \subseteq S_{\pi / 4}$. With continuity argument, we assume that the accretive-dissipative matrices to be considered in this paper are nonsingular.

We write $A \geq 0$ if A is positive semidefinite and $A>0$ if A is positive definite. For two Hermitian matrices A and B of the same size, we denote $A \geq B$ if $A-B \geq 0$. Note that $A \geq B$ implies $\lambda_{j}(A) \geq \lambda_{j}(B)$ for all j.

In Section 2, we provide a detailed analysis of the so-called sectoral decomposition and show some important properties. In section 3, we use the decomposition and majorization as a tool to obtain some norm inequalities; a question raised in [12] is answered.

2 A matrix decomposition with a sector

We begin with discussions on a matrix decomposition which we refer to as the sectoral decomposition. The existence of the matrix decomposition with numerical range contained in a sector has appeared in [2, Lemma 2.1]. A similar observation was made by London [13] three decades ago (or even earlier by A. Ostrowski and O. Taussky) to prove a number of existing results by the factorization. This decomposition theorem, though simple as it looks, has been heavily used in recent papers $[2,3,4,5,10]$. In light of its importance and for completeness and convenience, we restate it here; we then show the uniqueness and give a way of constructing the key matrix Z in the decomposition.

Theorem 1 (Sectoral decomposition) Let A be an $n \times n$ complex matrix such that $W(A) \subseteq S_{\alpha}$ for some $\alpha \in\left[0, \frac{\pi}{2}\right)$. Then there exist an invertible matrix X and a unitary diagonal matrix $Z=\operatorname{diag}\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right)$ with all $\left|\theta_{j}\right| \leq \alpha$ such that $A=X Z X^{*}$. Moreover, such a matrix Z is unique up to permutation.

Proof. Existence. Write $A=M+i N$, where $M=\Re A$ and $N=\Im A$ are Hermitian. Since $W(A) \subseteq S_{\alpha}, A$ is invertible and M is positive definite. By [7, Theorem 7.6.4] or [16, Theorem 7.6], M and N are simultaneously *-congruent and diagonalizable, that is, $P^{*} M P$ and $P^{*} N P$ are diagonal for some invertible matrix P. It follows that we can write $A=Q D Q^{*}$ for some diagonal matrix D and invertible matrix Q. Since $W(A) \subseteq S_{\alpha}$, we have $W(D) \subseteq S_{\alpha}$. Thus we can write $D=\operatorname{diag}\left(d_{1} e^{i \theta_{1}}, \ldots, d_{n} e^{i \theta_{n}}\right)$, where $d_{j}>0$ and $\left|\theta_{j}\right| \leq \alpha, j=1, \ldots, n$. Set $X=Q \operatorname{diag}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)$ and $Z=\operatorname{diag}\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right)$. Then $A=X Z X^{*}$, as desired.

Uniqueness. Suppose that $A=X Z_{1} X^{*}=Y Z_{2} Y^{*}$ are two decompositions of A, where X and Y are nonsingular, Z_{1} and Z_{2} are unitary and diagonal. We may assume $Y=I$ (otherwise replace X with $Y^{-1} X$). We show that Z_{1} and Z_{2} have the same main diagonal entries (regardless of order). For this, we show that $\beta \in \mathbb{C}$ is a diagonal entry of Z_{1} with multiplicity k if and only if β is a diagonal entry of Z_{2} with the same multiplicity. Without loss of generality, we may assume $\beta=1$ (or multiply both sides by $\bar{\beta}$ and continue the discussion on $\left.X\left(\bar{\beta} Z_{1}\right) X^{*}=\bar{\beta} Z_{2}\right)$. Let $Z_{1}=C_{1}+i S_{1}$ and $Z_{2}=C_{2}+i S_{2}$ be the Cartisian decompositions of Z_{1} and Z_{2}, respectively. Then C_{1} and C_{2} are positive definite. Since $\beta=1$ is a diagonal entry of Z_{1} with multiplicity $k, 1$ appears on the diagonal of $C_{1} k$ times, so S_{1} has k zeros on its diagonal. Thus $\operatorname{rank}\left(X S_{1} X^{*}\right)=n-k$. As $X S_{1} X^{*}=S_{2}$, we have $\operatorname{rank}\left(S_{2}\right)=n-k$. This implies that C_{2} contains k 1's on its diagonal. We conclude that Z_{2} is permutation similar to Z_{1}.

Note that $\cos \alpha$ is decreasing in α on $\left[0, \frac{\pi}{2}\right)$, the following are immediate.
Corollary 1 Let A be an $n \times n$ complex matrix such that $W(A) \subseteq S_{\alpha}$ for some $\alpha \in\left[0, \frac{\pi}{2}\right)$ and let $A=X Z X^{*}$ be a sectoral decomposition of A, where X is invertible and Z is unitary and diagonal. Then
(i). $I \leq \sec \alpha(\Re Z)$.
(ii). $R R^{*} \leq \sec \alpha\left(R(\Re Z) R^{*}\right)$ for any matrix R.
(iii). $\sigma_{j}^{2}(R) \leq \sec \alpha \lambda_{j}\left(R(\Re Z) R^{*}\right) \leq \sec \alpha \sigma_{j}\left(R Z R^{*}\right)$ for any R and j.
(iv). $\sigma_{j}^{2}(X) \leq \sec \alpha \lambda_{j}(\Re A) \leq \sec \alpha \sigma_{j}(A)$ for all $j=1, \ldots, n$.

The following result gives a way of constructing the unique matrix Z.
Theorem 2 Let A be an $n \times n$ complex matrix with the Cartesian decomposition $A=M+N i$, where M is positive definite and N is Hermitian. Then the matrix Z in Theorem 1 is determined by the eigenvalues of $M^{-1} N$. Let μ_{j} be the eigenvalues of $M^{-1} N$ and let $1+i \mu_{j}=\left|1+i \mu_{j}\right| e^{i \gamma_{j}},\left|\gamma_{j}\right|<\frac{\pi}{2}, j=1, \ldots, n$. Then $Z=\operatorname{diag}\left(e^{i \gamma_{1}}, \ldots, e^{i \gamma_{n}}\right)$. Let $\gamma(A)=\max _{j}\left|\gamma_{j}\right|$. Then $W(A) \subseteq S_{\gamma(A)}$.

Proof. Since $M>0$, there is an invertible matrix P such that $P^{*} M P=I$ and $P^{*} N P=D$ is diagonal (see, e.g., [16, p.213]). Recall that when X and
Y are both $n \times n$ matrices, $X Y$ and $Y X$ have the same eigenvalues. We have $\lambda_{j}\left(P^{*} N P\right)=\lambda_{j}\left(P P^{*} N\right)=\lambda_{j}\left(M^{-1} N\right)$. It follows that $P^{*} A P=I+D i$ and D is the diagonal matrix of the eigenvalues μ_{j} of $M^{-1} N$. Let $1+i \mu_{j}=\left|1+i \mu_{j}\right| e^{i \gamma_{j}}$, $\left|\gamma_{j}\right|<\frac{\pi}{2}, j=1, \ldots, n$. Then $Z=\operatorname{diag}\left(e^{i \gamma_{1}}, \ldots, e^{i \gamma_{n}}\right)$. With $\gamma(A)=\max _{j}\left|\gamma_{j}\right|$, we see that $W(Z), W(I+D i)$, and $W(A)$ are all contained in $S_{\gamma(A)}$.

Corollary 2 Let A be an $n \times n$ complex matrix such that $W(A) \subseteq S_{\alpha}$ for some $\alpha \in\left[0, \frac{\pi}{2}\right)$. Then there exist a normal matrix Λ such that $A=(\Re A)^{1 / 2} \Lambda(\Re A)^{1 / 2}$. Moreover, $\|\Lambda\|_{2} \leq \sec \alpha$ for the spectral norm $\|\cdot\|_{2}$ on \mathbb{M}_{n}.

Proof. Let $A=M+N i$ with $M=\Re A$ and $N=\Im A$. Take $\Lambda=I+$ $M^{-1 / 2} N M^{-1 / 2} i$. Then Λ is normal and $W(\Lambda) \subseteq S_{\alpha}$. For any unit vector z, $z^{*} \Lambda z$ is a point in the $x y$-plane with x-coordinate $x=1$. It follows that the numerical radius of Λ, i.e., $w(\Lambda)=\max \left\{\left|z^{*} \Lambda z\right| \mid z \in \mathbb{C}^{n}, z^{*} z=1\right\}$, is no more than $\sec \alpha$ (as the hypotonus of the right triangle with the adjacent leg of length 1). Since Λ is normal, all the singular values of Λ are no more than $\sec \alpha$. In particular, for the spectral norm $\|\Lambda\|_{2}$, we have $\|\Lambda\|_{2} \leq \sec \alpha$.

Let θ_{a} and θ_{b} be respectively the largest and smallest values of the θ_{j} 's in Theorems 1 and 2. For the Z in the decomposition, $W(Z)$ is the region formed by the portion of the unit circle from $e^{i \theta_{a}}$ to $e^{i \theta_{b}}$ and the line segment from $e^{i \theta_{a}}$ to $e^{i \theta_{b}}$. For the Λ in the corollary, $W(\Lambda)$ is the vertical line segment $x=1$ from the point $\left(1, \tan \theta_{a}\right)$ to the point $\left(1, \tan \theta_{b}\right)$. All these figures are contained in $S_{\theta_{c}}$, where $\theta_{c}=\max \left\{\left|\theta_{a}\right|,\left|\theta_{b}\right|\right\}$, which is nothing but the γ in Theorem 2.

Below is an addition-closure property for the numerical ranges in a sector.
Proposition. Let $A, B \in \mathbb{M}_{n}$. If $W(A), W(B) \subseteq S_{\alpha}$ for some $\alpha \in\left[0, \frac{\pi}{2}\right)$, then

$$
W(A+B) \subseteq S_{\alpha}
$$

Proof. Consider the Cartesian decompositions of A and B,

$$
A=R_{1}+i S_{1}, \quad B=R_{2}+i S_{2}
$$

Since $W(A)$ and $W(B)$ are contained in S_{α}, we have $R_{1}+R_{2}>0$. Note that for $a, b, c, d>0,(a+b) /(c+d) \leq \max \{a / c, b / d\}$. We compute, for any $x \neq 0$,

$$
\begin{aligned}
\frac{\left|x^{*}\left(S_{1}+S_{2}\right) x\right|}{x^{*}\left(R_{1}+R_{2}\right) x} & \leq \frac{\left|x^{*} S_{1} x\right|+\left|x^{*} S_{2} x\right|}{x^{*}\left(R_{1}+R_{2}\right) x} \\
& \leq \frac{x^{*}\left|S_{1}\right| x+x^{*}\left|S_{2}\right| x}{x^{*} R_{1} x+x^{*} R_{2} x} \\
& \leq \max \left\{\frac{x^{*}\left|S_{1}\right| x}{x^{*} R_{1} x}, \frac{x^{*}\left|S_{2}\right| x}{x^{*} R_{2} x}\right\} \\
& \leq \tan \alpha
\end{aligned}
$$

This says $\left|x^{*} \Im(A+B) x\right| \leq x^{*} \Re(A+B) x \tan \alpha$. Thus, $W(A+B) \subseteq S_{\alpha}$.
We note here that fractional roots (powers) of elements in Banach algebras are studied in [9] by means of numerical range sectors.

3 Norm inequalities for partitioned matrices

Recall that a norm $\|\cdot\|$ on \mathbb{M}_{n} is unitarily invariant if $\|U A V\|=\|A\|$ for any $A \in \mathbb{M}_{n}$ and all unitary $U, V \in \mathbb{M}_{n}$. The unitarily invariant norms of matrices are determined by nonzero singular values of the matrices via symmetric gauge functions (see, e.g., [16, Theorems 10.37 and 10.38]). If B is a submatrix of $A \in \mathbb{M}_{n}$, then $\|B\|$ is understood as the norm of the $n \times n$ augmented matrix B with 0 's, and conventionally B has n singular values with the trailing ones 0 ; that is, $\sigma(B)=\left(\sigma_{1}(B), \ldots, \sigma_{r}(B), 0, \ldots, 0\right) \in \mathbb{R}^{n}$, where r is the rank of B. Thus $\sigma(A)$ and $\sigma(B)$ are both in \mathbb{R}^{n}.

Let A be an n-square complex matrix partitioned in the form

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \tag{2}\\
A_{21} & A_{22}
\end{array}\right], \quad \text { where } A_{11} \text { and } A_{22} \text { are square. }
$$

In [12], the following norm inequalities are proved (in Hilbert space).
LZ1 [12, Theorem 3.3]: Let $A \in \mathbb{M}_{n}$ be accretive-dissipative and partitioned as in (2). Then for any unitarily invariant norm $\|\cdot\|$ on \mathbb{M}_{n},

$$
\begin{equation*}
\max \left\{\left\|A_{12}\right\|^{2},\left\|A_{21}\right\|^{2}\right\} \leq 4\left\|A_{11}\right\|\left\|A_{22}\right\| . \tag{3}
\end{equation*}
$$

LZ2 [12, Theorem 3.11]: Let $A \in \mathbb{M}_{n}$ be accretive-dissipative and partitioned as in (2). Then for any unitarily invariant norm $\|\cdot\|$ on \mathbb{M}_{n},

$$
\begin{equation*}
\|A\| \leq \sqrt{2}\left(\left\|A_{11}\right\|+\left\|A_{22}\right\|\right) \tag{4}
\end{equation*}
$$

It is asked in [12] as an open problem whether the factor 4 in (3) and the factor $\sqrt{2}$ in (4) can be improved. Indeed, the factor $\sqrt{2}$ in (4) is optimal. To construct such an accretive-dissipative matrix, we can find a matrix whose numerical range is contained in the sector $S_{\pi / 4}$, then rotate it by $+\pi / 4$. The normal matrix $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] i=\left[\begin{array}{ll}1 & i \\ i & 1\end{array}\right]$ has eigenvalues $1+i$ and $1-i$. So the matrix $A=e^{i \pi / 4} B$ is accretive-dissipative. A and B have the same repeated singular value $\sqrt{2}$. Thus, for the trace norm (sum of all singular values),

$$
2 \sqrt{2}=\|A\|=\sqrt{2}\left(\left\|A_{11}\right\|+\left\|A_{22}\right\|\right)=\sqrt{2}(1+1)
$$

However, the factor 4 in (3) can be improved to 2 (see Corollary 3). In this section, we show some more general results than (3) and (4).

We adopt the following standard notations. Let $x=\left(x_{1}, \ldots, x_{n}\right), y=$ $\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. We denote the componentwise product of x and y by $x \circ y$. i.e., $x \circ y=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)$. We write $x \leq y$ to mean $x_{j} \leq y_{j}$ for $j=1, \ldots, n$. We say that x is weakly majorized by y, written as $x \prec_{w} y$, if the partial sum of the first k largest components of x is less than or equal to the corresponding partial sum of y for $k=1, \ldots, n$. We write $x \prec y$ if $x \prec_{w} y$ and the sum of all components of x is equal to that of y. (See, e.g., [14, p. 12] or [16, p. 326].)

It is well known (see, e.g., [14, p.368] or [16, p.375]) that, for $A, B \in \mathbb{M}_{n}$, $\|A\| \leq\|B\|$ for all unitarily invariant norms $\|\cdot\|$ on \mathbb{M}_{n} if and only if $\sigma(A) \prec_{w}$
$\sigma(B)$. So, to some extend, the norm inequalities are essentially the same as the singular value majorization inequalities. The Fan-Hoffman inequalities (1) yield immediately $\|\Re A\| \leq\|A\|$ for any $A \in \mathbb{M}_{n}$ and any unitarily invariant norm $\|\cdot\|$ on \mathbb{M}_{n}. The following is a reversal. Two useful facts are: the singular value majorization of product $\sigma(A B) \prec_{w} \sigma(A) \circ \sigma(B)$ (see, e.g., [16, p.363]) and its companion norm inequality $\|A B\|^{2} \leq\left\|A A^{*}\right\|\left\|B^{*} B\right\|$ (see, e.g., [6, p. 212]).

Lemma 1 Let $A \in \mathbb{M}_{n}$ have $W(A) \subseteq S_{\alpha}$ for some $\alpha \in\left[0, \frac{\pi}{2}\right)$. Then

$$
\sigma(A) \prec_{w} \sec \alpha \lambda(\Re A) .
$$

Equivalently, for all unitarily invariant norms $\|\cdot\|$ on \mathbb{M}_{n},

$$
\|A\| \leq \sec \alpha\|\Re A\|
$$

Proof. Let $A=X Z X^{*}$ be a sectoral decomposition of A, where X is invertible and Z is unitary and diagonal. Then

$$
\sigma(A)=\sigma\left(X Z X^{*}\right) \prec_{w} \sigma(X) \circ \sigma(Z) \circ \sigma\left(X^{*}\right)=\sigma^{2}(X) \leq \sec \alpha \lambda(\Re A)
$$

The last " \leq " is by Corollary 1 (iv). The norm inequality follows at once.

Theorem 3 Let $A \in \mathbb{M}_{n}$ be partitioned as in (2) and assume $W(A) \subseteq S_{\alpha}$ for some $\alpha \in\left[0, \frac{\pi}{2}\right)$. Then for any unitarily invariant norm $\|\cdot\|$ on \mathbb{M}_{n},

$$
\begin{equation*}
\max \left\{\left\|A_{12}\right\|^{2},\left\|A_{21}\right\|^{2}\right\} \leq \sec ^{2} \alpha\left\|A_{11}\right\|\left\|A_{22}\right\| \tag{5}
\end{equation*}
$$

Proof. Let A_{11} be $p \times p$. By Theorem 1, let $A=X Z X^{*}$ be a sectoral decomposition of A, where X is invertible and Z is unitary and diagonal. We partition X as $X=\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right], X_{1} \in \mathbb{M}_{p \times n}$. Then $\Re A_{11}=X_{1}(\Re Z) X_{1}^{*}, \Re A_{22}=$ $X_{2}(\Re Z) X_{2}^{*}$, and $A_{12}=X_{1} Z X_{2}^{*}$. Using Corollary 1 (ii), we have

$$
\begin{aligned}
\left\|A_{12}\right\|^{2} & =\left\|X_{1} Z X_{2}^{*}\right\|^{2} \leq\left\|X_{1} X_{1}^{*}\right\|\left\|X_{2} Z^{*} Z X_{2}^{*}\right\| \\
& \leq \sec ^{2} \alpha\left\|X_{1}(\Re Z) X_{1}^{*}\right\|\left\|X_{2}(\Re Z) X_{2}^{*}\right\| \\
& =\sec ^{2} \alpha\left\|\Re A_{11}\right\|\left\|\Re A_{22}\right\| \\
& \leq \sec ^{2} \alpha\left\|A_{11}\right\|\left\|A_{22}\right\| .
\end{aligned}
$$

So (5) is true for A_{12}. The inequality for A_{21} is similarly proven.
If A is a positive definite matrix, then $\alpha=0$ and $\sec \alpha=1$ in (5).
Corollary 3 Let $A \in \mathbb{M}_{n}$ be accretive-dissipative and partitioned as in (2). Then for any unitarily invariant norm $\|\cdot\|$ on \mathbb{M}_{n},

$$
\begin{equation*}
\max \left\{\left\|A_{12}\right\|^{2},\left\|A_{21}\right\|^{2}\right\} \leq 2\left\|A_{11}\right\|\left\|A_{22}\right\| \tag{6}
\end{equation*}
$$

Proof. Set $\alpha=\pi / 4$ in the theorem. Then $\sec ^{2} \alpha=2$.
(6) is stronger than (3). Moreover, the constant factor 2 is best possible for all accretive-dissipative matrices and unitarily invariant norms. Let $B=$ $\left[\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right]$. One may check that $\Re B>0$ and $\Re B \geq \pm \Im B$, which yield $x^{*}(\Re B) x \geq$ $\left|x^{*}(\Im B) x\right|$ for all $x \in \mathbb{C}^{2}$. (Note that $\Re B \nsupseteq|\Im B|$.) So $W(B) \subseteq S_{\pi / 4}$ and $A=e^{i \pi / 4} B$ is accretive-dissipative. For the trace norm, apparently, $\left\|A_{12}\right\|^{2}=$ $2=2(1 \cdot 1)=2\left\|A_{11}\right\|\left\|A_{22}\right\|$. This answers a question raised in [12, p. 442].

To present next theorem, we need a lemma which is interesting on its own.
Lemma 2 Let $H=\left[\begin{array}{cc}H_{11} & * \\ * & H_{22}\end{array}\right]$ be an $n \times n$ positive semidefinite matrix, where H_{11} and H_{22} are square submatrices (possibly of different sizes). Then

$$
\begin{equation*}
\lambda(H) \prec \lambda\left(H_{11}\right)+\lambda\left(H_{22}\right) . \tag{7}
\end{equation*}
$$

Consequently, for all unitarily invariant norms $\|\cdot\|$ on \mathbb{M}_{n},

$$
\begin{equation*}
\|H\| \leq\left\|H_{11}\right\|+\left\|H_{22}\right\| \tag{8}
\end{equation*}
$$

Proof. Note that a matrix P is positive semidefinite if and only if $P=Q^{*} Q$ for some matrix Q. Let $H=\left[\begin{array}{c}S^{*} \\ T^{*}\end{array}\right][S, T]=\left[\begin{array}{cc}S^{*} S & * \\ * & T^{*} T\end{array}\right]$ with $H_{11}=S^{*} S$ and $H_{22}=T^{*} T$. Using the fact that matrices $X Y$ and $Y X$ have the same nonzero eigenvalues for any $(p \times q)$ matrix X and any $(q \times p)$ matrix Y, we arrive at

$$
\begin{aligned}
\lambda(H) & =\lambda\left(\left[\begin{array}{c}
S^{*} \\
T^{*}
\end{array}\right][S, T]\right)=\lambda\left([S, T]\left[\begin{array}{c}
S^{*} \\
T^{*}
\end{array}\right]\right) \\
& =\lambda\left(S S^{*}+T T^{*}\right) \prec \lambda\left(S S^{*}\right)+\lambda\left(T T^{*}\right) \\
& =\lambda\left(H_{11}\right)+\lambda\left(H_{22}\right) .
\end{aligned}
$$

Here we regard $\lambda\left(H_{11}\right)$ and $\lambda\left(H_{22}\right)$ as vectors in \mathbb{R}^{n} (by adding 0 's).
Remark: It is known [14, p. 308] that if $H=\left[\begin{array}{cc}H_{11} & * \\ * & H_{22}\end{array}\right]$ is Hermitian, then

$$
\left(\lambda\left(H_{11}\right), \lambda\left(H_{22}\right)\right)=\lambda\left(H_{11} \oplus H_{22}\right) \prec \lambda(H) .
$$

It is also known (see [15] or [11]) that if $H=\left[\begin{array}{cc}H_{11} & K \\ K^{*} & H_{22}\end{array}\right]$ is positive semidefinite, where K is Hermitian or skew-Hermitian, then

$$
\lambda(H) \prec \lambda\left(H_{11}+H_{22}\right) .
$$

We must also point out that (8) has appeared in [6, p.217] and a more general result is available in [8, Theorem 2.1]. We include our proof here as it is short and elementary, and the most elegant one in author's opinion.

Theorem 4 Let $A \in \mathbb{M}_{n}$ be partitioned as in (2) and let $W(A) \subseteq S_{\alpha}$ for some $\alpha \in\left[0, \frac{\pi}{2}\right)$. Then for any unitarily invariant norm $\|\cdot\|$ on \mathbb{M}_{n},

$$
\begin{equation*}
\|A\| \leq \sec \alpha\left(\left\|A_{11}\right\|+\left\|A_{22}\right\|\right) \tag{9}
\end{equation*}
$$

Proof. By Lemma 1 and noticing that $\Re A=\left[\begin{array}{ccc}\Re A_{11} & * \\ * & \Re A_{22}\end{array}\right]>0$, we have

$$
\|A\| \leq \sec \alpha\|\Re A\| \leq \sec \alpha\left(\left\|\Re A_{11}\right\|+\left\|\Re A_{22}\right\|\right) .
$$

The desired inequality follows at once since $\|\Re X\| \leq\|X\|$ for any X.
If A is positive definite, then $\alpha=0$ and Theorem 4 reduces to (8). If A is accretive-dissipative, then (4) is immediate by setting $\alpha=\pi / 4$ in (9).

Acknowledgement

The author is thankful to S.W. Drury and M. Lin for reference [5] which initiated this work; he is also indebted to M. Lin for his valuable input and discussions.

References

[1] R. Bhatia, Matrix Analysis, GTM 169, Springer-Verlag, New York, 1997.
[2] S.W. Drury, Fischer determinantal inequalities and Higham's Conjecture, Linear Algebra Appl. (2013), http://dx.doi.org/10.1016/j.laa.2013.08.031.
[3] S.W. Drury, A Fischer type determinantal inequality, Linear Multilinear Algebra (2013), http://dx.doi.org/10.1080/03081087.2013.832244.
[4] S.W. Drury, Principal powers of matrices with positive defintie real part, preprint.
[5] S.W. Drury and M. Lin, Singular value inequalities for matrices with numerical ranges in a sector, preprint.
[6] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
[7] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 2nd edition, 2013.
[8] E.-Y. Lee, Extension of Rotfel'd theorem, Linear Algebra Appl. 435 (2011) 735-741.
[9] C.-K. Li, L. Rodman, and I. Spitkovsky, On numerical ranges and roots, J. Math. Anal. Appl. (2003) 329-340.
[10] C.-K. Li and N. Sze, Determinantal and eigenvalue inequalities for matrices with numerical ranges in a sector, J. Math. Anal. Appl. 410 (2014) 487-491.
[11] M. Lin and H. Wolkowicz, An eigenvalue majorization inequality for positive semidefinite block matrices, Linear Multilinear Algebra 60 (2012) 13651368.
[12] M. Lin and D. Zhou, Norm inequalities for accretive-dissipative operator matrices, J. Math. Anal. Appl. 407 (2013) 436-442.
[13] D. London, A note on matrices with positive definite real part, Proc. Amer. Math. Soc. 82 (1981) 322-324.
[14] A.W. Marshall, I. Olkin, and B. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer, New York, 2nd edition, 2011.
[15] R. Turkmen, V. Paksoy, and F. Zhang, Some inequalities of majorization type, Linear Algebra Appl. 437 (2012) 1305-1316.
[16] F. Zhang, Matrix Theory: Basic Results and Techniques, Springer, New York, 2nd edition, 2011.

