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Abstract

We show the uniqueness and construction (of the Z matrix in Theorem 1,
to be exact) of a matrix decomposition and give an affirmative answer to a
question proposed in [J. Math. Anal. Appl. 407 (2013) 436-442].
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1 Introduction

Several recent papers [2, 3, 4, 5, 10] are devoted to the study of matrices with
numerical range in a sector of the complex plane. In particular, this includes the
study of accretive-dissipative matrices and positive definite matrices as special
cases. A matrix decomposition plays a fundamental role in these works. The
aim of this paper is twofold: show the uniqueness along with other properties
of the key matrix in the decomposition and give an affirmative answer to a
question raised in [12].

As usual, the set of n×n complex matrices is denoted by Mn. For A ∈Mn,
the singular values and eigenvalues of A are denoted by σi(A) and λi(A), respec-
tively, i = 1, . . . , n. The singular values are always arranged in nonincreasing
order: σ1(A) ≥ · · · ≥ σn(A). If A is Hermitian, then all eigenvalues of A are
real and ordered as λ1(A) ≥ · · · ≥ λn(A). Note that σj(A) = λj(|A|), where |A|
is the modulus of A, i.e., |A| = (A∗A)1/2 with A∗ for the conjugate transpose
of A. We denote σ(A) = (σ1(A), . . . , σn(A)) and λ(A) = (λ1(A), . . . , λn(A)).

For a square complex matrix A, recall the Cartesian (or Toeplitz) decompo-
sition (see, e.g., [1, p. 6] and [7, p. 7]) A = <A+ i=A, where

<A =
1

2
(A+A∗), =A =

1

2i
(A−A∗).
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There are many interesting properties for such a decomposition. For in-
stance, <(R∗AR) = R∗(<A)R for any A ∈ Mn and any n × m matrix R. A
celebrated result due to Fan and Hoffman (see, e.g., [1, p. 73]) sates that

λj(<A) ≤ σj(A), j = 1, . . . , n. (1)

For A ∈Mn, the numerical range of A is the set in the complex plane

W (A) = {x∗Ax | x ∈ Cn, ‖x‖ = 1}.

For α ∈ [0, π2 ), let Sα be the sector in the complex plane given by

Sα = {z ∈ C | <z > 0, |=z| ≤ <z tanα} = {reiθ | r > 0, |θ| ≤ α}.

Apparently, if the numerical range W (A) is contained in a sector Sα for
some α ∈ [0, π2 ), then A is nonsingular and <A is positive definite. Moreover,
W (A) ⊆ Sα implies W (R∗AR) ⊆ Sα for any nonzero n×m matrix R.

If W (A) is contained in the first quadrant of the complex plane, then <A
and =A are positive semidefinite. We call such a matrix A accretive-dissipative.
Note that if A is accretive-dissipative and nonsingular, then W (A) ⊆ eiπ/4Sπ/4,

i.e., W (e−iπ/4A) ⊆ Sπ/4. With continuity argument, we assume that the
accretive-dissipative matrices to be considered in this paper are nonsingular.

We write A ≥ 0 if A is positive semidefinite and A > 0 if A is positive
definite. For two Hermitian matrices A and B of the same size, we denote
A ≥ B if A−B ≥ 0. Note that A ≥ B implies λj(A) ≥ λj(B) for all j.

In Section 2, we provide a detailed analysis of the so-called sectoral de-
composition and show some important properties. In section 3, we use the
decomposition and majorization as a tool to obtain some norm inequalities; a
question raised in [12] is answered.

2 A matrix decomposition with a sector

We begin with discussions on a matrix decomposition which we refer to as
the sectoral decomposition. The existence of the matrix decomposition with
numerical range contained in a sector has appeared in [2, Lemma 2.1]. A similar
observation was made by London [13] three decades ago (or even earlier by
A. Ostrowski and O. Taussky) to prove a number of existing results by the
factorization. This decomposition theorem, though simple as it looks, has been
heavily used in recent papers [2, 3, 4, 5, 10]. In light of its importance and for
completeness and convenience, we restate it here; we then show the uniqueness
and give a way of constructing the key matrix Z in the decomposition.

Theorem 1 (Sectoral decomposition) Let A be an n × n complex matrix
such that W (A) ⊆ Sα for some α ∈ [0, π2 ). Then there exist an invertible matrix
X and a unitary diagonal matrix Z = diag(eiθ1 , . . . , eiθn) with all |θj | ≤ α such
that A = XZX∗. Moreover, such a matrix Z is unique up to permutation.
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Proof. Existence. Write A = M + iN , where M = <A and N = IA are
Hermitian. Since W (A) ⊆ Sα, A is invertible and M is positive definite. By [7,
Theorem 7.6.4] or [16, Theorem 7.6], M and N are simultaneously *-congruent
and diagonalizable, that is, P ∗MP and P ∗NP are diagonal for some invertible
matrix P . It follows that we can write A = QDQ∗ for some diagonal matrix D
and invertible matrix Q. Since W (A) ⊆ Sα, we have W (D) ⊆ Sα. Thus we can
write D = diag(d1e

iθ1 , . . . , dne
iθn), where dj > 0 and |θj | ≤ α, j = 1, . . . , n. Set

X = Qdiag(
√
d1, . . . ,

√
dn) and Z = diag(eiθ1 , . . . , eiθn). Then A = XZX∗, as

desired.
Uniqueness. Suppose that A = XZ1X

∗ = Y Z2Y
∗ are two decompositions

of A, where X and Y are nonsingular, Z1 and Z2 are unitary and diagonal.
We may assume Y = I (otherwise replace X with Y −1X). We show that Z1

and Z2 have the same main diagonal entries (regardless of order). For this, we
show that β ∈ C is a diagonal entry of Z1 with multiplicity k if and only
if β is a diagonal entry of Z2 with the same multiplicity. Without loss of
generality, we may assume β = 1 (or multiply both sides by β̄ and continue
the discussion on X(β̄Z1)X∗ = β̄Z2). Let Z1 = C1 + iS1 and Z2 = C2 + iS2

be the Cartisian decompositions of Z1 and Z2, respectively. Then C1 and C2

are positive definite. Since β = 1 is a diagonal entry of Z1 with multiplicity
k, 1 appears on the diagonal of C1 k times, so S1 has k zeros on its diagonal.
Thus rank(XS1X

∗) = n − k. As XS1X
∗ = S2, we have rank(S2) = n − k.

This implies that C2 contains k 1’s on its diagonal. We conclude that Z2 is
permutation similar to Z1.

Note that cosα is decreasing in α on [0, π2 ), the following are immediate.

Corollary 1 Let A be an n×n complex matrix such that W (A) ⊆ Sα for some
α ∈ [0, π2 ) and let A = XZX∗ be a sectoral decomposition of A, where X is
invertible and Z is unitary and diagonal. Then

(i). I ≤ secα (<Z).

(ii). RR∗ ≤ secα
(
R(<Z)R∗

)
for any matrix R.

(iii). σ2
j (R) ≤ secαλj

(
R(<Z)R∗

)
≤ secασj

(
RZR∗

)
for any R and j.

(iv). σ2
j (X) ≤ secαλ

j
(<A

)
≤ secασ

j
(A) for all j = 1, . . . , n.

The following result gives a way of constructing the unique matrix Z.

Theorem 2 Let A be an n×n complex matrix with the Cartesian decomposition
A = M + Ni, where M is positive definite and N is Hermitian. Then the
matrix Z in Theorem 1 is determined by the eigenvalues of M−1N . Let µj be
the eigenvalues of M−1N and let 1 + iµj = |1 + iµj |eiγj , |γj | < π

2 , j = 1, . . . , n.
Then Z = diag(eiγ1 , . . . , eiγn). Let γ(A) = maxj |γj |. Then W (A) ⊆ Sγ(A).

Proof. Since M > 0, there is an invertible matrix P such that P ∗MP = I
and P ∗NP = D is diagonal (see, e.g., [16, p. 213]). Recall that when X and
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Y are both n × n matrices, XY and Y X have the same eigenvalues. We have
λj(P

∗NP ) = λj(PP
∗N) = λj(M

−1N). It follows that P ∗AP = I+Di and D is
the diagonal matrix of the eigenvalues µj of M−1N . Let 1 + iµj = |1 + iµj |eiγj ,
|γj | < π

2 , j = 1, . . . , n. Then Z = diag(eiγ1 , . . . , eiγn). With γ(A) = maxj |γj |,
we see that W (Z), W (I +Di), and W (A) are all contained in Sγ(A).

Corollary 2 Let A be an n×n complex matrix such that W (A) ⊆ Sα for some
α ∈ [0, π2 ). Then there exist a normal matrix Λ such that A = (<A)1/2Λ(<A)1/2.
Moreover, ‖Λ‖2 ≤ secα for the spectral norm ‖ · ‖2 on Mn.

Proof. Let A = M + Ni with M = <A and N = =A. Take Λ = I +
M−1/2NM−1/2i. Then Λ is normal and W (Λ) ⊆ Sα. For any unit vector z,
z∗Λz is a point in the xy-plane with x-coordinate x = 1. It follows that the
numerical radius of Λ, i.e., w(Λ) = max{|z∗Λz| | z ∈ Cn, z∗z = 1}, is no more
than secα (as the hypotonus of the right triangle with the adjacent leg of length
1). Since Λ is normal, all the singular values of Λ are no more than secα. In
particular, for the spectral norm ‖Λ‖2, we have ‖Λ‖2 ≤ secα.

Let θa and θb be respectively the largest and smallest values of the θj ’s in
Theorems 1 and 2. For the Z in the decomposition, W (Z) is the region formed
by the portion of the unit circle from eiθa to eiθb and the line segment from eiθa

to eiθb . For the Λ in the corollary, W (Λ) is the vertical line segment x = 1 from
the point (1, tan θa) to the point (1, tan θb). All these figures are contained in
Sθc , where θc = max{|θa|, |θb|}, which is nothing but the γ in Theorem 2.

Below is an addition-closure property for the numerical ranges in a sector.

Proposition. Let A,B ∈Mn. If W (A),W (B) ⊆ Sα for some α ∈ [0, π2 ), then

W (A+B) ⊆ Sα.

Proof. Consider the Cartesian decompositions of A and B,

A = R1 + iS1, B = R2 + iS2.

Since W (A) and W (B) are contained in Sα, we have R1 + R2 > 0. Note that
for a, b, c, d > 0, (a+ b)/(c+ d) ≤ max{a/c, b/d}. We compute, for any x 6= 0,

|x∗(S1 + S2)x|
x∗(R1 +R2)x

≤ |x∗S1x|+ |x∗S2x|
x∗(R1 +R2)x

≤ x∗|S1|x+ x∗|S2|x
x∗R1x+ x∗R2x

≤ max

{
x∗|S1|x
x∗R1x

,
x∗|S2|x
x∗R2x

}
≤ tanα.

This says |x∗=(A+B)x| ≤ x∗<(A+B)x tanα. Thus, W (A+B) ⊆ Sα.

We note here that fractional roots (powers) of elements in Banach algebras
are studied in [9] by means of numerical range sectors.
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3 Norm inequalities for partitioned matrices

Recall that a norm ‖ · ‖ on Mn is unitarily invariant if ‖UAV ‖ = ‖A‖ for any
A ∈ Mn and all unitary U, V ∈ Mn. The unitarily invariant norms of matrices
are determined by nonzero singular values of the matrices via symmetric gauge
functions (see, e.g., [16, Theorems 10.37 and 10.38]). If B is a submatrix of
A ∈ Mn, then ‖B‖ is understood as the norm of the n × n augmented matrix
B with 0’s, and conventionally B has n singular values with the trailing ones
0; that is, σ(B) = (σ1(B), . . . , σr(B), 0, . . . , 0) ∈ Rn, where r is the rank of B.
Thus σ(A) and σ(B) are both in Rn.

Let A be an n-square complex matrix partitioned in the form

A =

[
A11 A12

A21 A22

]
, where A11 and A22 are square. (2)

In [12], the following norm inequalities are proved (in Hilbert space).

LZ1 [12, Theorem 3.3]: Let A ∈ Mn be accretive-dissipative and partitioned as
in (2). Then for any unitarily invariant norm ‖ · ‖ on Mn,

max{‖A12‖2, ‖A21‖2} ≤ 4‖A11‖ ‖A22‖. (3)

LZ2 [12, Theorem 3.11]: Let A ∈ Mn be accretive-dissipative and partitioned
as in (2). Then for any unitarily invariant norm ‖ · ‖ on Mn,

‖A‖ ≤
√

2 (‖A11‖+ ‖A22‖). (4)

It is asked in [12] as an open problem whether the factor 4 in (3) and the
factor

√
2 in (4) can be improved. Indeed, the factor

√
2 in (4) is optimal.

To construct such an accretive-dissipative matrix, we can find a matrix whose
numerical range is contained in the sector Sπ/4, then rotate it by +π/4. The

normal matrix B =
[
1
0
0
1

]
+
[
0
1
1
0

]
i =

[
1
i
i
1

]
has eigenvalues 1+ i and 1− i. So the

matrix A = eiπ/4B is accretive-dissipative. A and B have the same repeated
singular value

√
2. Thus, for the trace norm (sum of all singular values),

2
√

2 = ‖A‖ =
√

2 (‖A11‖+ ‖A22‖) =
√

2 (1 + 1).

However, the factor 4 in (3) can be improved to 2 (see Corollary 3). In this
section, we show some more general results than (3) and (4).

We adopt the following standard notations. Let x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Rn. We denote the componentwise product of x and y by x ◦ y.
i.e., x ◦ y = (x1y1, . . . , xnyn). We write x ≤ y to mean xj ≤ yj for j = 1, . . . , n.
We say that x is weakly majorized by y, written as x ≺w y, if the partial sum
of the first k largest components of x is less than or equal to the corresponding
partial sum of y for k = 1, . . . , n. We write x ≺ y if x ≺w y and the sum of all
components of x is equal to that of y. (See, e.g., [14, p. 12] or [16, p. 326].)

It is well known (see, e.g., [14, p. 368] or [16, p. 375]) that, for A,B ∈ Mn,
‖A‖ ≤ ‖B‖ for all unitarily invariant norms ‖ · ‖ on Mn if and only if σ(A) ≺w
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σ(B). So, to some extend, the norm inequalities are essentially the same as the
singular value majorization inequalities. The Fan-Hoffman inequalities (1) yield
immediately ‖<A‖ ≤ ‖A‖ for any A ∈ Mn and any unitarily invariant norm
‖ · ‖ on Mn. The following is a reversal. Two useful facts are: the singular value
majorization of product σ(AB) ≺w σ(A) ◦ σ(B) (see, e.g., [16, p. 363]) and its
companion norm inequality ‖AB‖2 ≤ ‖AA∗‖ ‖B∗B‖ (see, e.g., [6, p. 212]).

Lemma 1 Let A ∈Mn have W (A) ⊆ Sα for some α ∈ [0, π2 ). Then

σ(A) ≺w secαλ(<A).

Equivalently, for all unitarily invariant norms ‖ · ‖ on Mn,

‖A‖ ≤ secα‖<A‖.

Proof. Let A = XZX∗ be a sectoral decomposition of A, where X is invertible
and Z is unitary and diagonal. Then

σ(A) = σ(XZX∗) ≺w σ(X) ◦ σ(Z) ◦ σ(X∗) = σ2(X) ≤ secαλ(<A).

The last “≤” is by Corollary 1 (iv). The norm inequality follows at once.

Theorem 3 Let A ∈ Mn be partitioned as in (2) and assume W (A) ⊆ Sα for
some α ∈ [0, π2 ). Then for any unitarily invariant norm ‖ · ‖ on Mn,

max{‖A12‖2, ‖A21‖2} ≤ sec2α ‖A11‖ ‖A22‖. (5)

Proof. Let A11 be p × p. By Theorem 1, let A = XZX∗ be a sectoral
decomposition of A, where X is invertible and Z is unitary and diagonal. We

partition X as X =

[
X1

X2

]
, X1 ∈ Mp×n. Then <A11 = X1(<Z)X∗1 , <A22 =

X2(<Z)X∗2 , and A12 = X1ZX
∗
2 . Using Corollary 1 (ii), we have

‖A12‖2 = ‖X1ZX
∗
2‖2 ≤ ‖X1X

∗
1‖ ‖X2Z

∗ZX∗2‖
≤ sec2 α‖X1(<Z)X∗1‖ ‖X2(<Z)X∗2‖
= sec2 α‖<A11‖ ‖<A22‖
≤ sec2 α‖A11‖ ‖A22‖.

So (5) is true for A12. The inequality for A21 is similarly proven.

If A is a positive definite matrix, then α = 0 and secα = 1 in (5).

Corollary 3 Let A ∈ Mn be accretive-dissipative and partitioned as in (2).
Then for any unitarily invariant norm ‖ · ‖ on Mn,

max{‖A12‖2, ‖A21‖2} ≤ 2 ‖A11‖ ‖A22‖. (6)
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Proof. Set α = π/4 in the theorem. Then sec2 α = 2.

(6) is stronger than (3). Moreover, the constant factor 2 is best possible
for all accretive-dissipative matrices and unitarily invariant norms. Let B =[
1
0
1−i
1

]
. One may check that <B > 0 and <B ≥ ±=B, which yield x∗(<B)x ≥

|x∗(=B)x| for all x ∈ C2. (Note that <B 6≥ |=B|.) So W (B) ⊆ Sπ/4 and

A = eiπ/4B is accretive-dissipative. For the trace norm, apparently, ‖A12‖2 =
2 = 2(1 · 1) = 2‖A11‖ ‖A22‖. This answers a question raised in [12, p. 442].

To present next theorem, we need a lemma which is interesting on its own.

Lemma 2 Let H =
[
H11

∗
∗
H22

]
be an n × n positive semidefinite matrix, where

H11 and H22 are square submatrices (possibly of different sizes). Then

λ(H) ≺ λ(H11) + λ(H22). (7)

Consequently, for all unitarily invariant norms ‖ · ‖ on Mn,

‖H‖ ≤ ‖H11‖+ ‖H22‖. (8)

Proof. Note that a matrix P is positive semidefinite if and only if P = Q∗Q

for some matrix Q. Let H =
[
S∗

T∗

]
[S, T ] =

[
S∗S
∗

∗
T∗T

]
with H11 = S∗S and

H22 = T ∗T . Using the fact that matrices XY and Y X have the same nonzero
eigenvalues for any (p× q) matrix X and any (q × p) matrix Y , we arrive at

λ(H) = λ
([S∗

T ∗

]
[S, T ]

)
= λ

(
[S, T ]

[
S∗

T ∗

])
= λ(SS∗ + TT ∗) ≺ λ(SS∗) + λ(TT ∗)

= λ(H11) + λ(H22).

Here we regard λ(H11) and λ(H22) as vectors in Rn (by adding 0’s).

Remark: It is known [14, p. 308] that if H =
[
H11

∗
∗
H22

]
is Hermitian, then(

λ(H11), λ(H22)
)

= λ(H11 ⊕H22) ≺ λ(H).

It is also known (see [15] or [11]) that if H =
[
H11

K∗
K
H22

]
is positive semidefinite,

where K is Hermitian or skew-Hermitian, then

λ(H) ≺ λ(H11 +H22).

We must also point out that (8) has appeared in [6, p. 217] and a more
general result is available in [8, Theorem 2.1]. We include our proof here as it
is short and elementary, and the most elegant one in author’s opinion.

Theorem 4 Let A ∈Mn be partitioned as in (2) and let W (A) ⊆ Sα for some
α ∈ [0, π2 ). Then for any unitarily invariant norm ‖ · ‖ on Mn,

‖A‖ ≤ secα (‖A11‖+ ‖A22‖). (9)
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Proof. By Lemma 1 and noticing that <A =
[
<A11

∗
∗
<A22

]
> 0, we have

‖A‖ ≤ secα‖<A‖ ≤ secα(‖<A11‖+ ‖<A22‖).

The desired inequality follows at once since ‖<X‖ ≤ ‖X‖ for any X.

If A is positive definite, then α = 0 and Theorem 4 reduces to (8). If A is
accretive-dissipative, then (4) is immediate by setting α = π/4 in (9).
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