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Abstract

We show the uniqueness and construction (of the Z matrix in Theorem 1,

to be exact) of a matrix decomposition and give an affirmative answer to a
question proposed in [J. Math. Anal. Appl. 407 (2013) 436-442].
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1 Introduction

Several recent papers [2, 3, 4, 5, 10] are devoted to the study of matrices with
numerical range in a sector of the complex plane. In particular, this includes the
study of accretive-dissipative matrices and positive definite matrices as special
cases. A matrix decomposition plays a fundamental role in these works. The
aim of this paper is twofold: show the uniqueness along with other properties
of the key matrix in the decomposition and give an affirmative answer to a
question raised in [12].

As usual, the set of n x n complex matrices is denoted by M,,. For A € M,,,
the singular values and eigenvalues of A are denoted by o;(A4) and \;(A), respec-
tively, ¢ = 1,...,n. The singular values are always arranged in nonincreasing
order: o1(A) > -+ > 0,(A). If A is Hermitian, then all eigenvalues of A are
real and ordered as A;(A) > --- > A, (A). Note that ;(A4) = A\;(|A]), where |A]
is the modulus of A, i.e., |A] = (A*A)'/? with A* for the conjugate transpose
of A. We denote (A4) = (01(4),...,0,(A)) and A(4A) = (AM1(4),..., \(4)).

For a square complex matrix A, recall the Cartesian (or Toeplitz) decompo-
sition (see, e.g., [1, p.6] and [7, p.7]) A = RA +iSA, where

71 * e 7& _A*
RA=S(A+ A, SA= (A=A,



There are many interesting properties for such a decomposition. For in-
stance, R(R*AR) = R*(RA)R for any A € M,, and any n x m matrix R. A
celebrated result due to Fan and Hoffman (see, e.g., [1, p.73]) sates that

Ni(RA) <0oj(A), j=1,...,n (1)
For A € M,,, the numerical range of A is the set in the complex plane
W(A) ={a*Az |z € C",||z|| = 1}.
For o € [0, %), let S, be the sector in the complex plane given by
Sy ={2€C|Rz>0,|92| < Rztana} = {re’? | r > 0,]0] < a}.

Apparently, if the numerical range W (A) is contained in a sector S, for
some « € [0, ), then A is nonsingular and RA is positive definite. Moreover,
W(A) C S, implies W(R*AR) C S, for any nonzero n x m matrix R.

If W(A) is contained in the first quadrant of the complex plane, then RA
and $A are positive semidefinite. We call such a matrix A accretive-dissipative.
Note that if A is accretive-dissipative and nonsingular, then W(A) C e™/4S, /4,
ie., W(e im/*4) C Sr/a-  With continuity argument, we assume that the
accretive-dissipative matrices to be considered in this paper are nonsingular.

We write A > 0 if A is positive semidefinite and A > 0 if A is positive
definite. For two Hermitian matrices A and B of the same size, we denote
A>Bif A— B > 0. Note that A > B implies A;(A4) > A;(B) for all j.

In Section 2, we provide a detailed analysis of the so-called sectoral de-
composition and show some important properties. In section 3, we use the
decomposition and majorization as a tool to obtain some norm inequalities; a
question raised in [12] is answered.

2 A matrix decomposition with a sector

We begin with discussions on a matrix decomposition which we refer to as
the sectoral decomposition. The existence of the matrix decomposition with
numerical range contained in a sector has appeared in [2, Lemma 2.1]. A similar
observation was made by London [13] three decades ago (or even earlier by
A. Ostrowski and O. Taussky) to prove a number of existing results by the
factorization. This decomposition theorem, though simple as it looks, has been
heavily used in recent papers [2, 3, 4, 5, 10]. In light of its importance and for
completeness and convenience, we restate it here; we then show the uniqueness
and give a way of constructing the key matrix Z in the decomposition.

Theorem 1 (Sectoral decomposition) Let A be an n X n complex matriz
such that W(A) C S, for some a € [0, 5). Then there exist an invertible matriz
X and a unitary diagonal matriz Z = diag(e®, ..., ") with all |0;| < a such

that A = XZX*. Moreover, such a matriz Z is unique up to permutation.



Proof. FEuxistence. Write A = M 4 iN, where M = RA and N = JA are
Hermitian. Since W(A) C S,, A is invertible and M is positive definite. By [7,
Theorem 7.6.4] or [16, Theorem 7.6], M and N are simultaneously *-congruent
and diagonalizable, that is, P*M P and P*N P are diagonal for some invertible
matrix P. It follows that we can write A = QDQ* for some diagonal matrix D
and invertible matrix Q. Since W(A) C S, we have W (D) C S,. Thus we can
write D = diag(d1e™, ... d,e), where d; > 0 and |0;| < o, j = 1,...,n. Set
X = Qdiag(\/dy,...,V/d,) and Z = diag(e?®1,... ). Then A = XZX*, as
desired.

Uniqueness. Suppose that A = XZ1 X* = YZ,Y* are two decompositions
of A, where X and Y are nonsingular, Z; and Z, are unitary and diagonal.
We may assume Y = I (otherwise replace X with Y ~1X). We show that Z;
and Z5 have the same main diagonal entries (regardless of order). For this, we
show that 8 € C is a diagonal entry of Z; with multiplicity & if and only
if g is a diagonal entry of Z; with the same multiplicity. Without loss of
generality, we may assume B = 1 (or multiply both sides by 3 and continue
the discussion on X (87,)X* = BZ,). Let Z; = C; +iS; and Zo = Cy + iS5
be the Cartisian decompositions of Z; and Zs, respectively. Then C; and Cs
are positive definite. Since § = 1 is a diagonal entry of Z; with multiplicity
k, 1 appears on the diagonal of C; k times, so S; has k zeros on its diagonal.
Thus rank(XS1X*) = n — k. As X5 X* = Sy, we have rank(S3) = n — k.
This implies that Cy contains k& 1’s on its diagonal. We conclude that Zs is
permutation similar to Z. [ |

™

Note that cos a is decreasing in o on [0, 5 ), the following are immediate.

Corollary 1 Let A be an n x n complex matriz such that W(A) C S, for some
a €[0,%) and let A = XZX* be a sectoral decomposition of A, where X is
invertible and Z is unitary and diagonal. Then

)

)

(ili). 0F(R) <seca;(R(RZ)R*) < secao;(RZR*) for any R and j.
)

L o3 (X) < seca)\j(%A) < secaaj(A) forallj=1,...,n.

The following result gives a way of constructing the unique matrix 7.

Theorem 2 Let A be an nxn complex matriz with the Cartesian decomposition
A = M + Ni, where M is positive definite and N is Hermitian. Then the
matriz Z in Theorem 1 is determined by the eigenvalues of M—'N. Let p; be
the eigenvalues of M—'N and let 1 +ip; = |1 +ip;le, || <5, i=1,...,n.
Then Z = diag(e",...,e""). Let v(A) = max; |y;|. Then W(A) C S, (4.

Proof. Since M > 0, there is an invertible matrix P such that P*MP = 1
and P*NP = D is diagonal (see, e.g., [16, p.213]). Recall that when X and



Y are both n x n matrices, XY and Y X have the same eigenvalues. We have
\j(P*NP) = )\;(PP*N) = \;(M~1N). It follows that P*AP = I+ Di and D is
the diagonal matrix of the eigenvalues p; of M~'N. Let 1 +ip; = |1 +iu;le?,
vl < %,7=1,...,n. Then Z = diag(e",...,e""™). With y(A) = max; ||,
we see that W(Z), W (I + Di), and W (A) are all contained in S, 4).

Corollary 2 Let A be an n xn complex matriz such that W(A) C S, for some
o € [0,%). Then there exist a normal matriz A such that A = (RA)V/2A(RA)Y/2.
Moreover, |All2 < seca for the spectral norm || - ||2 on M.

Proof. Let A = M + Ni with M = RA and N = SA. Take A = [ +
M~Y2NM~='/2i. Then A is normal and W(A) C S,. For any unit vector z,
z*Az is a point in the zy-plane with z-coordinate x = 1. It follows that the
numerical radius of A, i.e., w(A) = max{|z*Az| | z € C", 2*z = 1}, is no more
than sec « (as the hypotonus of the right triangle with the adjacent leg of length
1). Since A is normal, all the singular values of A are no more than seca. In
particular, for the spectral norm ||A||2, we have ||All2 < seca. |

Let 0, and 6, be respectively the largest and smallest values of the 6;’s in
Theorems 1 and 2. For the Z in the decomposition, W(Z) is the region formed
by the portion of the unit circle from e*®* to ¢’ and the line segment from e*%«
to €. For the A in the corollary, W (A) is the vertical line segment z = 1 from
the point (1,tanf,) to the point (1,tané,). All these figures are contained in
Sp,, where 0, = max{|0,],|0s|}, which is nothing but the 4 in Theorem 2.

Below is an addition-closure property for the numerical ranges in a sector.

Proposition. Let A,B € M,,. If W(A),W(B) C S, for some a € [0, %), then
W(A+ B) C S,.
Proof. Consider the Cartesian decompositions of A and B,
A=R; +1i5, B = Ry 4 155.

Since W(A) and W (B) are contained in S,, we have Ry + Re > 0. Note that
for a,b,c,d > 0, (a+b)/(c+ d) < max{a/c,b/d}. We compute, for any = # 0,

|z*(S1 + S2)z| < |x*S1z| + |x*Saz|

x*(Rl + RQ)JJ - x*(Rl + RQ)JZ

< x*|S1|z + 2*|Se|x

- x*Rix + r*Rox
x*|S1|z x*|Sa|z

<

- max{ r*Rix’ z*Raex

< tana.

This says |2*3(A + B)z| < 2*R(A + B)xtana. Thus, W(A+ B) C S,,. |

We note here that fractional roots (powers) of elements in Banach algebras
are studied in [9] by means of numerical range sectors.



3 Norm inequalities for partitioned matrices

Recall that a norm || - || on M,, is unitarily invariant if |[UAV| = ||A| for any
A € M, and all unitary U,V € M,,. The unitarily invariant norms of matrices
are determined by nonzero singular values of the matrices via symmetric gauge
functions (see, e.g., [16, Theorems 10.37 and 10.38]). If B is a submatrix of
A € M, then ||B|| is understood as the norm of the n x n augmented matrix
B with 0’s, and conventionally B has n singular values with the trailing ones
0; that is, o(B) = (01(B),...,0+(B),0,...,0) € R", where r is the rank of B.
Thus o(A) and o(B) are both in R™.
Let A be an n-square complex matrix partitioned in the form

A— l:All Aqo

Aoy A22:| ,  where Ay and Aoy are square. (2)

In [12], the following norm inequalities are proved (in Hilbert space).

LZ1 [12, Theorem 3.3]: Let A € M, be accretive-dissipative and partitioned as

in (2). Then for any unitarily invariant norm || - || on M,,
max{|| Avz|?, | A2 |*} < 4/ Av | [| Azz]- (3)
LZ2 [12, Theorem 3.11]: Let A € M, be accretive-dissipative and partitioned
as in (2). Then for any unitarily invariant norm || - || on M,
1Al < V2 ([ Aw]| + [| Aza))- (4)

It is asked in [12] as an open problem whether the factor 4 in (3) and the
factor v/2 in (4) can be improved. Indeed, the factor /2 in (4) is optimal.
To construct such an accretive-dissipative matrix, we can find a matrix whose
numerical range is contained in the sector Sy /4, then rotate it by +m/4. The
normal matrix B = [(1) [1)] + [(1) (1)] 1= [1 H has eigenvalues 1+¢ and 1 —4. So the
matrix A = e"™/4B is accretive-dissipative. A and B have the same repeated

singular value v/2. Thus, for the trace norm (sum of all singular values),
2vV2 = [|All = V2 ([ Aun || + [ A22]) = V2 (1 +1).

However, the factor 4 in (3) can be improved to 2 (see Corollary 3). In this
section, we show some more general results than (3) and (4).

We adopt the following standard notations. Let =z = (21,...,2,),y =
(Y1,.-.,Yn) € R™. We denote the componentwise product of x and y by z o y.
ie,zoy=(T1y1,...,TnYn). We write z <y to mean z; <y; for j=1,...,n.
We say that x is weakly majorized by y, written as x <,, y, if the partial sum
of the first k largest components of x is less than or equal to the corresponding
partial sum of y for k =1,...,n. We write z < y if x <, ¥ and the sum of all
components of z is equal to that of y. (See, e.g., [14, p.12] or [16, p. 326].)

It is well known (see, e.g., [14, p.368] or [16, p.375]) that, for A, B € M,
|A]| < ||B] for all unitarily invariant norms || - || on M, if and only if (A4) <,



o(B). So, to some extend, the norm inequalities are essentially the same as the
singular value majorization inequalities. The Fan-Hoffman inequalities (1) yield
immediately |[|[RA|| < ||A]| for any A € M, and any unitarily invariant norm
I || on M,,. The following is a reversal. Two useful facts are: the singular value
majorization of product o(AB) <, 0(A) o o(B) (see, e.g., [16, p.363]) and its
companion norm inequality |AB||? < [|[AA*| ||B*B|| (see, e.g., [6, p.212]).

Lemma 1 Let A € M,, have W(A) C Sy for some o € [0,%). Then

o(A4) <y seca A(RA).
Equivalently, for all unitarily invariant norms || - || on M,
[IA]| < secalRA.

Proof. Let A = XZX* be a sectoral decomposition of A, where X is invertible
and Z is unitary and diagonal. Then

0(A) = 0(XZX*) <y 0(X) 00(Z) 0 0(X*) = 0%(X) < seca \(RA).
The last “<” is by Corollary 1 (iv). The norm inequality follows at once. |

Theorem 3 Let A € M, be partitioned as in (2) and assume W (A) C S, for
some o € [0, 5). Then for any unitarily invariant norm || - || on My,

max{[| Aiz|? | 421 [1*} < sec®a[|Ar ||| Azz]- (5)
Proof. Let A1 be p X p. By Theorem 1, let A = XZX™* be a sectoral
decomposition of A, where X is invertible and Z is unitary and diagonal. We
Xl], X; € Mpyx,,. Then RA;; = X;(RZ2)X}, RAgp =

Xo
Xo(RZ)X5, and A2 = X1 ZX5. Using Corollary 1 (ii), we have

partition X as X = [

[Awll® = [IX:ZX5)? < |1 X X7 [ X2 2" 2 X5
< sec?a Xy(RZ) X} | Xo(R2) X
= sec? al|RAL || |RA]|
< sec af Ap ||| Az
So (5) is true for Aj5. The inequality for As; is similarly proven. |

If A is a positive definite matrix, then o = 0 and seca =1 in (5).

Corollary 3 Let A € M, be accretive-dissipative and partitioned as in (2).
Then for any unitarily invariant norm || - || on M,

max{||Ar2?, [[A21[*} < 2| Ava | [[ Azl (6)



Proof. Set a = 7/4 in the theorem. Then sec? o = 2. |

(6) is stronger than (3). Moreover, the constant factor 2 is best possible
for all accretive-dissipative matrices and unitarily invariant norms. Let B =
[(1) 1?} One may check that #B > 0 and RB > +3B, which yield z*(RB)x >
|2*(3B)z| for all 2 € C2. (Note that RB # [SB|.) So W(B) C Sys and
A = ¢™/*B is accretive-dissipative. For the trace norm, apparently, ||A1s||? =
2=2(1-1) =2[|A11|| [|A22||. This answers a question raised in [12, p.442].

To present next theorem, we need a lemma which is interesting on its own.

*  Hoo
Hyy and Hoo are square submatrices (possibly of different sizes). Then

Lemma 2 Let H = [H“ - ] be an n X n positive semidefinite matriz, where

AH) < A(H11) + AM(Haz2). (7)
Consequently, for all unitarily invariant norms || - || on M,
[H| < [[Hiall + [[H2zl]- (8)

Proof. Note that a matrix P is positive semidefinite if and only if P = Q*Q
for some matrix Q. Let H = f: [S,T] = [S:S pep | With Hyp = S*S and
Hys = T*T. Using the fact that matrices XY and Y X have the same nonzero
eigenvalues for any (p x ¢) matrix X and any (¢ X p) matrix Y, we arrive at

AH) = A( [; [S,T]) :)\([S,T} ;])
—  A(SS* +TT*) < A(S5%) + A(TT")
—  A(Hu1) + A(Hao).

Here we regard A(H11) and A(Haz) as vectors in R™ (by adding 0’s). |

Remark: It is known [14, p. 308] that if H = {H*“ H*m] is Hermitian, then

(A(Hll), )\(HQQ)) = )\(Hll D HQQ) < )\(H)
It is also known (see [15] or [11]) that if H = {II{({} HI;] is positive semidefinite,
where K is Hermitian or skew-Hermitian, then

/\(H) =< )\(Hll + Hgg).

We must also point out that (8) has appeared in [6, p.217] and a more
general result is available in [8, Theorem 2.1]. We include our proof here as it
is short and elementary, and the most elegant one in author’s opinion.

Theorem 4 Let A € M, be partitioned as in (2) and let W(A) C S, for some
a€[0,%). Then for any unitarily invariant norm || - || on M,

[A]l < sec ([ Ava[] + [ Azzl])- (9)



Proof. By Lemma 1 and noticing that A = [%A“ RA } > 0, we have
* 22

[A]l < sec af[RA|| < seca([|RAw [ + [|RAz2l]).

The desired inequality follows at once since |[RX|| < || X|| for any X. |

If A is positive definite, then oo = 0 and Theorem 4 reduces to (8). If A is
accretive-dissipative, then (4) is immediate by setting o = /4 in (9).
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