
On the Development and Distribution of R Packages:
An Empirical Analysis of the R Ecosystem

Alexandre Decan Tom Mens Maelick Claes
Philippe Grosjean

COMPLEXYS Research Institute
∗

University of Mons, 7000 Mons, Belgium

ABSTRACT
This paper explores the ecosystem of software packages for
R, one of the most popular environments for statistical com-
puting today. We empirically study how R packages are de-
veloped and distributed on different repositories: CRAN ,
BioConductor, R-Forge and GitHub. We also explore the
role and size of each repository, the inter-repository depen-
dencies, and how these repositories grow over time. With
this analysis, we provide a deeper insight into the extent
and the evolution of the R package ecosystem.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance
and Enhancement—Version Control ; D.3.3 [Software En-
gineering]: Programming Languages

Keywords
software ecosystem, software distribution, software develop-
ment, package, R, software repository mining

1. INTRODUCTION
A wide range of environments for statistical computing

have been proposed and used over the years. The most
important ones are SAS, SPSS, R, Stata, Statistica, Minitab,
Systat and JMP. While SAS and SPSS have been the market
leaders in the past, R is catching up rapidly. According to
Hornik [10], the number of R packages available in CRAN ,
the main and official distribution of R packages, is witnessing
a slightly “sub-exponential” growth. Muenchen [12] counted
the number of CRAN packages against each major release of
R (until version 3.0.2), and observed a quadratic growth. He
states: “To put this growth in perspective [...] During 2013

∗This research was carried out in the context of ARC re-
search project AUWB-12/17-UMONS- 3 financed by the
Ministère de la Communauté française - Direction générale
de l’Enseignement non obligatoire et de la Recherche scien-
tifique, Belgium.

.

alone, R added more functions/procs than SAS Institute has
written in its entire history!”

The R programming language also continues to increase
in popularity. The Tiobe index for June 20151 ranked R as
the 13th most popular programming language. The “Trans-
parent Language Popularity Index”2 ranked R as the 14th
most popular programming language, all language categories
confounded.

Because of this popularity of the R language and its soft-
ware package ecosystem, it is important to study this ecosys-
tem in more detail. In particular, we wish to get insight in
the effect of other package repositories on CRAN .

Taking the point of view of a R package user, we focus
on the following questions in this paper. Where and how
are packages developed and distributed? How do packages
depend on one another? Do we observe change over time
related to these questions?

The R community has raised concerns about the way R
packages are currently distributed, what problems current
package management systems suffer from, and how they
could be solved [13]. Among others, we wish to know whether
the increasing popularity of GitHub as a host for developing
many R packages has become a “game changer”. Indeed, it
is quite straightforward to develop and install packages di-
rectly from GitHub, possibly avoiding the need for having
one’s package distributed on CRAN or BioConductor.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses the R package repositories that will be con-
sidered as part of our analysis. Section 3 presents related
work. Section 4 explains how we have extracted all data
necessary for our analysis. Section 5 presents the results of
our exploratory empirical analysis. Section 6 discusses the
threats to validity of our research, Section 7 presents future
work, and Section 8 concludes.

2. CONSIDERED R REPOSITORIES
The R ecosystem is based on software packages. The main

R distribution installs by default a dozen or so base pack-
ages, and another dozen or so recommended packages (the
exact number depends on the installed version of R). These
packages will be excluded from the analysis in this paper.
In addition to these core R packages, many additional pack-
ages are developed and distributed by different contributors
through different repositories.

2.1 R package distributions
1www.tiobe.com/index.php/content/paperinfo/tpci
2lang-index.sourceforge.net, July 2013 update.

Table 1: Characteristics of considered R package repositories
Repository
name

URL Number of pack-
ages [Date]

Role Development status

CRAN cran.r-project.org 6411 [19-03-2015] Distribution only Stable package releases only
BioConductor bioconductor.org 997 [19-03-2015] Distribution only Stable package releases only
GitHub github.com 5150 [17-02-2015] Mainly development,

rolling release distro
(e.g., with devtools)

Git version control

R-Forge r-forge.r-project.org 1883 [18-03-2015] Mainly development,
rolling release distro
(e.g., with devtools)

SVN version control

CRAN , the Comprehensive R Archive Network, can be
considered as the official repository that contains the broad-
est collection of R packages. It aims at providing stable
and high-quality packages compatible with the latest ver-
sion of R. Quality is ensured by forcing package maintainers
to follow a strict policy. Packages are tested daily using the
command-line tool R CMD check. When these tests fail,
package maintainers have to resolve the problems before the
next major R release. Problematic packages are archived,
making it impossible to install them automatically3, as they
will no longer be included in CRAN until a new package
version is released that resolves the problems.

Another important distribution of R packages is BioCon-
ductor (abbreviated to BioC hereafter), focusing on soft-
ware packages and datasets dedicated to bioinformatics. The
datasets are subdivided into experiment data and annotation
data. Together, they make up more than half of all packages
available on BioC . Since the focus of this paper is on R’s
software ecosystem, these datasets will be treated separately
during our analysis.

While fully compatible with the format of CRAN pack-
ages, BioC packages are not installed by default: users must
configure their R installation with a BioC mirror. As for
CRAN , packages that fail the daily check will be dropped
from the next release of BioC .4

2.2 R package development forges
While CRAN and BioC are the largest and most well-

known package repositories for the distribution of R pack-
ages, other repositories are frequently used for the develop-
ment of R packages. Thanks to R packages like devtools
(available since 2011), development of R packages is facili-
tated, and direct installation of packages from a source code
repository like Git or Subversion becomes straightforward.
As such, there is no longer a strict need to rely on package
distributions. Therefore, R development forges have become
an important and integral part of the R package ecosystem.

The two R package development forges that we consider
in our study are R-Forge and GitHub. R-Forge is specialized
at hosting R code. Its main target is to provide a central
platform for the development of R packages, offering SVN
repositories, daily built and checked packages, bug tracking,
and so on. GitHub, a web platform for Git’s distributed
version control system, is also becoming increasingly popular

3It is still possible to install them manually.
4The check results and available packages for current and
past releases of BioC are available on
www.bioconductor.org/checkResults

for R package development.
Table 1 provides a brief comparison of the four R package

repositories considered in our study. It also provides an
idea of the size of each repository, in terms of the number of
provided R packages. When installing packages from CRAN
or BioC , only the most recent version is guaranteed to work
with the latest version of R.

Support for multiple repositories is built deeply into R.
For example, the R function install.packages can take the
source repository as an optional argument, or can be used
to install older versions of a given package. While R-Forge
and GitHub are focused on development, packages can be
installed directly from these forges using functions of the
devtools package. For example, the function install github
allows the installation of R packages directly from GitHub,
while the function install-svn allows the installation from a
Subversion repository (such as the one used by R-Forge).
By default, these functions will install the latest package
version, but optional parameters can be used to install a
specific commit.

3. RELATED WORK
Our research aims at studying the characteristics of R

packages in function of the repository in which they are
developed or distributed. A similar question, though not
restricted to R packages, was studied by Beecher et al. in
[3, 1]. They explored how the structure, complexity and
decay of open source projects may be influenced by the
repository in which they are retained (e.g., SourceForge, Sa-
vannah, Debian, RubyForge, GNOME, KDE). They con-
cluded that membership of a particular repository may de-
pend on the maturity and quality of the project. For ex-
ample, SourceForge tends to host more early inceptors and
immature projects, while Debian tends to hosts high-quality
mature projects.

A number of researchers have studied the evolution of R
packages. We are not aware of any studies taking into ac-
count other R package distributions (such as BioC) or de-
velopment forges (such as R-Forge or GitHub). All related
research seems to be restricted to the official package distri-
bution CRAN .

German et al. [7] studied the evolution of CRAN from
an ecosystemic viewpoint. They compared the characteris-
tics, growth, dependencies and community structure of core
packages and user-contributed packages. They also analysed
the user and develop communities by studying mailing list
traffic. In earlier work [5], we have studied the maintainabil-
ity of CRAN packages in terms of errors discovered by the
R CMD check tool, and how this relates to package depen-

dencies and package updates. Based on these insights, in [4]
we presented a web-based dashboard for helping R package
maintainers deal with such issues.

There has been quite some empirical research on the soft-
ware ecosystem of GitHub repositories, though not specifi-
cally related to R packages. Dabbish et al. [6] focused on
the social and community aspects of GitHub. Vasilescu et al.
[14] compared the involvement on GitHub with the activity
on Stack Overflow, a Q&A website for software develop-
ers. Vasilescu et al. [15] studied a large sample of GitHub
projects developed in Java, Python and Ruby. They com-
pared direct code modifications (commits) with indirect ones
(pull requests) and related this to success or failure of con-
tinuous integration with TRAVIS-CI. Gousios et al. [8, 9]
provide GHTorrent, a scalable way to analyse GitHub data.

4. DATA EXTRACTION
An R package is a tar.gz archive that can contain code,

examples, tests, data sets, and so on. It also includes a
mandatory DESCRIPTION file that contains metadata de-
scribing the package’s characteristics such as name, purpose,
maintainer, version, imports and dependencies.

In order to carry out our empirical analysis, we need to
extract data from each of the targeted R package reposito-
ries. We wrote a set of R and Python scripts to retrieve
and process the data. A replication package is available on
github.com/ecos-umons/iwseco2015.

CRAN – The metadata of R packages on CRAN was
retrieved using extractoR5, an R package that we already
developed and used in earlier work [5]. It downloads the
CRAN package sources, extracts their contents and stores
the DESCRIPTION file metadata into R data.frame ob-
jects. Using this tool we collected, since September 2013,
the metadata of 7,654 packages with their associated ver-
sions and dependencies. We explored in detail the state of
CRAN on 19 March 2015, containing 6,411 non-archived
packages.
BioC – On the same date, we extracted the metadata

from the DESCRIPTION files of all 997 R software pack-
ages corresponding to release 3.0 of BioC . A list of candi-
date packages was retrieved from the SVN6 and the DE-
SCRIPTION files were retrieved. We separately considered
annotation data packages and experiment data packages for
our analysis.
R-Forge – We first identified 1,883 repositories on R-

Forge on 18 March 2015 using the full repository list7. Some
of those repositories contained no package, while others con-
tained more than one package, since we identified several
DESCRIPTION files corresponding to distinct package names.
An automatic script extracted the metadata of 2,217 pack-
ages based on the DESCRIPTION files contained in those
1,883 repositories.
GitHub – GitHub Archive8 is a tool that collects and

stores data from GitHub that usually are not available any-
more on GitHub after some time. We relied on the events
stream collected by GitHub Archive to identify potential
active R repositories on GitHub. First, we collected from

5github.com/ecos-umons/extractoR
6hedgehog.fhcrc.org/bioconductor/branches/RELEASE 3
0/madman/Rpacks/ (username/password: readonly)
7r-forge.r-project.org/softwaremap/full list.php
8www.githubarchive.org

GitHub Archive all events that occurred for two years until
31 December 2014, when GitHub released its new (partially
backward incompatible) API. Then, we filtered out all events
of type PushEvent that were related to repositories whose
language was flagged ‘R’ by their owner. This resulted in
a list of 121,385 candidate repositories that could contain
R packages. We checked for the presence of a DESCRIP-
TION file at the root of those repositories, and fetched this
file on 17 February 2015. As we are interested in comparing
GitHub with other package sources like CRAN and BioC ,
if packages with the same name were found in two or more
distinct repositories (including forks), we assumed the pack-
age belonging to the oldest repository to be the main one.
Importantly, we also filtered out the repositories belonging
to the GitHub accounts cran and rpkg, as these two accounts
were used to mirror (part of) the contents of CRAN . This
resulted in 5,150 distinct R packages from GitHub.

5. EMPIRICAL RESULTS

5.1 Where and how are R packages developed
and distributed?

Figure 1 shows the overlap of R packages on different dis-
tributions and development forges. The overlap between
CRAN and BioC is very limited, as expected. Both
package distributions only have 4 packages in common, cor-
responding to 0.4% of all considered BioC packages and only
0.06% of all considered CRAN packages.

Many packages on CRAN also appear on GitHub, since
both repositories serve different purposes (distribution and
development, respectively). We also observe in Figure 1 that
the intersection of packages that can be found on CRAN and
GitHub is non negligible. 18.1% of all considered CRAN
packages can also be found on GitHub. 22.5% of all R pack-
ages on GitHub are also present on CRAN . This relatively
large proportion of overlap can be explained by the fact that
CRAN is only a distribution platform, and cannot be used
for collaborative development. Hence, many R packages
are developed on GitHub, while stable releases of
these packages are published on CRAN . We observe
something similar when comparing BioC with GitHub, and
for the same reasons. Indeed, 20.6% of all packages on BioC
have a counterpart on GitHub.

R-Forge has 12.3% of its packages in common with GitHub,
while as much as 45.2% of its packages are in common with
CRAN . This shows that R-Forge serves as a develop-
ment platform for some of the packages that get dis-
tributed through CRAN . This is not true for BioC : only
1.1% of all R-Forge packages are also available on BioC .

One of our goals is to study whether development forges
like GitHub are overtaking CRAN and BioC as a primary
source of R packages. To do so, we consider the set of all
R packages that are available on GitHub on 17 February
2015, and study since when they were created and had a
counterpart in other R package repositories.

Figure 2 suggests that the monthly number of newly cre-
ated repositories for CRAN and BioC packages on GitHub
is slightly increasing over time. This seems to imply that,
over time, developers of packages that are distributed
on CRAN and BioC decide to use GitHub as a host
for developing their packages. This does not seem to
affect the growth of the packages in the CRAN and BioC
distributions. Figure 3 shows that the number of packages in

3789 52501157

790

203 31

github
cran

bioconductor

3878
4410

1000

1101

114 843
158

github
cran

r-forge

4680 774
198

1925

266
196

github

bioconductor

r-forge

Figure 1: Intersections of R packages belonging to GitHub, CRAN , BioC and R-Forge

Jan
2012

Jan
2013

Jan
2014

Jul Jul Jul

creation date

0

50

100

150

200

250

300

350

400

n
u
m

b
e
r

o
f

re
p
o
si

to
ri

e
s

Newly created repositories on GitHub, by month

GitHub

GitHub \ (CRAN ∪ BioConductor ∪ R-Forge)

GitHub ∩ CRAN

GitHub ∩ BioConductor

GitHub ∩ R-Forge

Figure 2: Monthly number of newly created reposi-
tories on GitHub containing R packages.

GitHub ∩ CRAN grows faster than the number of packages
distributed on CRAN .

We did not find evidence of packages disappearing from
CRAN or BioC due to their migration to GitHub. As shown
in Figure 1, in March 2015 CRAN and BioC still remain
the primary sources for the distribution of stable R pack-
ages. As such, development of R packages through
GitHub seems to complement distribution of pack-
ages through CRAN and BioC , and perhaps even has
a catalyst effect.

Jan
2014

Oct Apr Jul Oct

date

102

103

104

n
u
m

b
e
r

o
f

p
a
ck

a
g
e
s

(i
n
 l
o
g
a
ri

th
m

ic
 s

ca
le

)

Evolution of the number of R packages

CRAN
GitHub \ (CRAN ∪ BioConductor)

GitHub ∩ CRAN

BioConductor

Figure 3: Evolution of the number of R packages in
CRAN , GitHub and BioC .

Figures 2 and 3 also reveal that GitHub is increasingly
hosting R packages that do not have a counterpart

in CRAN or BioC . Many of these packages are no longer
actively maintained today. Those that do, may be developed
for personal use only, or could still be unstable but at some
point in the future may turn into stable packages that could
become distributed in CRAN or BioC .

5.2 How do packages depend on one another?
Every R package needs to specify in its DESCRIPTION

file the packages it depends upon. In our analysis we con-
sider as dependencies those packages that are listed in the
Depends: and Imports: fields of the DESCRIPTION file, as
these are the ones that are required to install and load a
package.9

If an R package depends on another, do these packages be-
long to the same repositories, or do we observe many inter-
repository dependencies? We expect most of such inter-
repository dependencies to go towards CRAN since it is the
official R package distribution. We also expect many de-
pendencies from other repositories towards BioC since it is
an active package distribution that offers the same quality
checks as CRAN , and also because it contains many use-
ful datasets. Therefore, when considering dependencies to
packages belonging to BioC , we also count dependencies to
dataset packages belonging to BioC .

As can be seen in Figure 1, the same package may belong
to different repositories (for example, GitHub may store the
development version while CRAN may contain the stable
release version of the package). To cope with this, we define
a total order > on the set S = {CRAN , BioC software, BioC
datasets, GitHub, R-Forge, Unknown} such that CRAN >
BioC software > BioC datasets > GitHub > R-Forge >
Unknown. This total order privileges the distributed version
of a package over its development version. For example,
if a package p1 on GitHub depends on a package p2 that
belongs to both CRAN and GitHub, it will be counted as a
dependency from GitHub to CRAN.

Using this total order we can introduce some dependency
metrics. Let α, β ∈ S be two R package repositories (i.e.,
sets of packages). We define:
deps(α, β) = {(p1, p2) ∈ α× β |

p1 depends on p2 ∧ @γ ∈ S : (p2 ∈ γ ∧ γ > β)}

dependsOn(α, β) =
|{p1 ∈ α | ∃p2 ∈ β : (p1, p2) ∈ deps(α, β)}|

|α|

requiredBy(α, β) =
|{p1 ∈ α | ∃p2 ∈ β : (p2, p1) ∈ deps(β, α)}|

|α|
9R CMD check also verifies Suggests: dependencies.

Table 2: Number of packages primarily belonging to repository α that depend on or are needed by at least
one package primarily belonging to repository β.

β
Metrics α CRAN BioC software BioC datasets GitHub R-Forge Unknown

dependsOn(α, β) 61.0% 2.1% 0.1% 0% 0% 0%
requiredBy(α, β) CRAN 24.9% 5.8% 0.1% 15.7% 8.6% –
|deps(α, β)| 10,560 212 4 1 1 0

dependsOn(α, β) BioC 58.8% 77.1% 9.3% 0.2% 0.1% 1.1%
requiredBy(α, β) software 6.5% 26.5% 2.8% 12.6% 4.8% –
|deps(α, β)| 1,615 2,748 133 2 1 13

dependsOn(α, β) BioC 15.2% 77.1% 17.5% 0% 0% 0%
requiredBy(α, β) datasets 0.2% 6.2% 4.3% 1.9% 0.3% –
|deps(α, β)| (1,115 packages) 333 1,567 204 0 0 0

dependsOn(α, β) 48.9% 5.2% 7.4% 5.7% 0.3% 2.7%
requiredBy(α, β) GitHub 0% 0% 0% 4.9% 0.1% –
|deps(α, β)| 8,614 684 37 386 15 156

dependsOn(α, β) 37.2% 2.3% 0.1% 0.7% 5.8% 1.5%
requiredBy(α, β) R-Forge 0.1% 0.1% 0% 0.6% 5.0% –
|deps(α, β)| 1,830 93 4 19 136 36

|deps(α, β)| counts all dependency relationships from pack-
ages in α to packages in β, dependsOn(α, β) gives the ratio
of distinct packages in α depending on at least one pack-
age in β, and requiredBy(α, β) the ratio of distinct packages
in α on which at least one package in β depends. Table 2
presents these metrics for all pairs of considered R pack-
age repositories. Unknown represents those dependencies for
which we did not find a matching package name in any of the
considered repositories. This value was especially high for
GitHub (140 packages with 156 dependencies to 89 unknown
packages).

CRAN is self-contained: the majority of dependen-
cies of its packages stay within CRAN : 61% of all CRAN
packages depend on another CRAN package. This is ex-
pected, since otherwise the packages would not pass the R
CMD check. Note that only 24.9% of all CRAN packages
are required by other CRAN packages.

BioC depends primarily on CRAN and on itself :
58.8% of all BioC packages depend on CRAN packages,
while 77.1% of all BioC packages depend on other BioC
packages. Similar to CRAN , 26.5% of all BioC packages
are required by other CRAN packages. We also observe that
9.3% of BioC software packages depend on BioC datasets.

GitHub and R-Forge depend primarily on CRAN :
87.1% of GitHub dependencies and 86.4% of R-Forge depen-
dencies go to CRAN packages.

This shows that CRAN is still at the center of the
ecosystem and that it has a minority of packages forming a
core required by other packages both from CRAN and other
sources.

6. THREATS TO VALIDITY
We only considered a subset of the R ecosystem, consist-

ing of only 4 package repositories, but covering more than
12,000 distinct R software packages. While other R pack-
age repositories exist, given their small size we have not
included them in our analysis. The Omega Project for Sta-
tistical Computing” (www.omegehat.org) hosts around one
hundred R packages. RForge (rforge.net), not to be confused
with R-Forge, provides a collaborative environment for R
package developers based on SVN repositories, and contains

less than two hundred packages, many of which are no longer
active. GitHub competitors like BitBucket (bitbucket.org),
Gitorious (www.gitorious.com) and Gitlab (gitlab.com) are
considerably less frequently used for hosting R package de-
velopment.

While for BioC we explicitly excluded (or treated differ-
ently) the packages containing datasets, we were not able
to do the same for the other repositories, since we found no
automated way to distinguish “ordinary” software packages
from datasets. If an R package contains both data and func-
tions, it is hard to decide whether it should be regarded as
a software package or a dataset.

For part of our analysis, we relied on information ex-
tracted from SVN or Git, or from hosting services like GitHub.
There are many potential perils and pitfalls that should be
taken into consideration when doing so [2, 11]. Some of
them can be avoided, others or inherent to the limitations
of the considered version control systems or hosting services.
For example, how should forking be taken into account?
In our analysis, we excluded all forks. We also relied on
GithubArchive as a proxy of GitHub data to extract events,
but we cannot guarantee that this data is fully consistent
and complete.

For GitHub, we assumed that the R package DESCRIP-
TION file always resides in the root directory of each Git
repository. While this may have lead to the exclusion of
some packages in our analysis, it avoids the inclusion of
many “false positive” packages that are identical clones of
existing CRAN package sources used by developers to avoid
external dependency problems.

We also found that some GitHub accounts containing R
packages (in particular, accounts cran and rpkg) actually
served as partial mirrors of CRAN . These accounts were
excluded from our analysis, but we have no guarantee that
other accounts may also be mirrors of R packages developed
or distributed elsewhere.

The chosen date of the R package ecosystem snapshot, and
the chosen duration for the historical analysis may influence
our results. Repeating the same analysis for other dates
would allow us to confirm the observed results. For the
historical analysis of the GitHub data, we based ourselves on

the packages still existing in GitHub in February 2015. We
were not able to extract historical information from GitHub
repositories that have been removed before that date.

7. FUTURE WORK
Our analysis of the R software package ecosystem can be

extended in many ways. An important avenue of future re-
search is to study the evolution over time: do we observe im-
portant changes in the diversity of the ecosystem over time?
Is there a relationship between the quality and survival of
the packages contained in each considered repository? How
does the popularity of packages (e.g., expressed in number
of downloads or number of incoming dependencies) relate
to these characteristics? How easy is it to install R pack-
ages depending on their provenance? What happens to R
packages (especially in CRAN and BioC) after they have
become archived?

Another future research track concerns a socio-technical
analysis of the R package ecosystem: how do package devel-
opers collaborate? Do we observe a different collaboration
behaviour depending on the considered repository? Does
this behaviour correlate with desirable properties of pack-
ages?

Finally, we wish to study the impact of ongoing initia-
tives to facilitate R package management and producing re-
producible results. Examples are the Drat R Archive Tem-
plate10, the Managed R Archive Network 11, the Repro-
ducible R Toolkit12, and packrat, a portable and reproducible
dependency management system for R projects.

8. CONCLUSION
In this paper, we studied the ecosystem of R packages

beyond the official CRAN repository. We also considered
the BioConductor package distributions, and we explored
two R package development forges: GitHub and R-Forge. In
total, we analysed the origin and the dependencies of more
than 12,000 packages that were still available in March 2015.

We observed that CRAN remains the center of the R
package ecosystem, since its packages do not depend on ex-
ternal packages, while BioConductor, R-Forge and GitHub
strongly depend on CRAN packages. BioConductor also
contains many packages required by the others, but with an
order of magnitude difference compared to CRAN .

We also observed that GitHub is becoming increasingly
used as a collaborative development platform for R pack-
ages, both for packages already distributed on CRAN and
BioConductor, as well as for new packages that do not have
any counterpart in the considered distributions or forges.
We did not observe any positive or negative effect of this in-
creased use of GitHub on the growth of the number of CRAN
or BioConductor packages.

In the future we intend to explore “the GitHub effect” in
more detail, taking into account other factors such as the
quality and longevity of packages, as well as a possible effect
on the collaborative behaviour of package developers.

9. REFERENCES
[1] K. Beecher, A. Capiluppi, and C. Boldyreff.

Identifying exogenous drivers and evolutionary stages
10github.com/eddelbuettel/drat
11mran.revolutionanalytics.com/packages
12projects.revolutionanalytics.com/rrt

in FLOSS projects. Journal of Systems and Software,
82(5):739–750, 2009.

[2] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton,
D. M. Germán, and P. T. Devanbu. The promises and
perils of mining Git. In Working Conf. Mining
Software Repositories, pages 1–10. IEEE Computer
Society, 2009.

[3] A. Capiluppi and K. Beecher. Structural complexity
and decay in FLOSS systems: An inter-repository
study. In European Conf. Software Maintenance and
Reengineering, pages 169–178, March.

[4] M. Claes, T. Mens, and P. Grosjean. maintaineR: A
web-based dashboard for maintainers of CRAN
packages. In Int’l Conf. Software Maintenance and
Evolution, 2014.

[5] M. Claes, T. Mens, and P. Grosjean. On the
maintainability of CRAN packages. In Int’l Conf. on
Software Maintenance, Reengineering, and Reverse
Engineering, pages 308–312, 2014.

[6] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D.
Herbsleb. Social coding in GitHub: transparency and
collaboration in an open software repository. In Int’l
Conf. Computer Supported Cooperative Work, pages
1277–1286, 2012.

[7] D. M. Germán, B. Adams, and A. E. Hassan. The
evolution of the R software ecosystem. In European
Conf. Software Maintenance and Reengineering, pages
243–252, 2013.

[8] G. Gousios and D. Spinellis. GHTorrent: Github’s
data from a firehose. In Working Conf. Mining
Software Repositories, pages 12–21, 2012.

[9] G. Gousios, B. Vasilescu, A. Serebrenik, and
A. Zaidman. Lean GHTorrent: GitHub data on
demand. In Working Conf. Mining Software
Repositories, pages 384–387, 2014.

[10] K. Hornik. Are there too many R packages? Austrian
Journal of Statistics, 41(1):59–66, 2012.

[11] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. Germán, and D. Damian. The promises and
perils of mining GitHub. In Working Conf. Mining
Software Repositories, pages 92–101, 2014.

[12] R. A. Muenchen. The popularity of data analysis
software. Technical report, r4stats.com, 2015. Last
consulted on 8 April 2015.

[13] J. Ooms. Possible directions for improving dependency
versioning in R. R Journal, 5(1):197–206, June 2013.

[14] B. Vasilescu, V. Filkov, and A. Serebrenik.
StackOverflow and GitHub: Associations between
software development and crowdsourced knowledge. In
SocialCom, pages 188–195. IEEE, 2013.

[15] B. Vasilescu, S. Van Schuylenburg, J. Wulms,
A. Serebrenik, and M. van den Brand. Continuous
integration in a social-coding world: Empirical
evidence from GitHub. In Int’l Conf. Software
Maintenance and Evolution, pages 401–405, Sept 2014.

