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ABSTRACT 
Research evaluating perceptual responses to music has 
identified many structural features as correlates that 
might be incorporated in computer music systems for 
affectively charged algorithmic composition and/or ex-
pressive music performance. In order to investigate the 
possible integration of isolated musical features to such a 
system, a discrete feature known to correlate some with 
emotional responses – rhythmic density – was selected 
from a literature review and incorporated into a prototype 
system. This system produces variation in rhythm density 
via a transformative process. A stimulus set created using 
this system was then subjected to a perceptual evaluation. 
Pairwise comparisons were used to scale differences be-
tween 48 stimuli. Listener responses were analysed with 
Multidimensional scaling  (MDS). The 2-Dimensional 
solution was then rotated to place the stimuli with the 
largest range of variation across the horizontal plane. 
Stimuli with variation in rhythmic density were placed 
further from the source material than stimuli that were 
generated by random permutation. This, combined with 
the striking similarity between the MDS scaling and that 
of the 2-dimensional emotional model used by some af-
fective algorithmic composition systems, suggests that 
isolated musical feature manipulation can now be used to 
parametrically control affectively charged automated 
composition in a larger system. 

1. INTRODUCTION 
Computer music systems for algorithmic composition can 
use both musical feature-sets and specifications for iso-
lated musical features as input rules. Whilst many such 
systems exist, research documenting the precise affective 
correlation of isolated musical features is sparse. In the 
future, affective correlations to these musical features 
might be exploited by systems for emotionally-driven 
algorithmic composition. However, perceptual evalua-
tions of discrete musical features in the context of these 
affective correlations are not readily available. This paper 
presents work towards this goal by implementing an iso-
lated musical feature in a prototype system and subjecting 
the generated output to a perceptual evaluation. 
   When considering the selection of an appropriate musi-
cal feature to implement, previous research discussing 
affective performance algorithms confirmed that feature 

choice is a complex issue [1].  Therefore, a survey of 
affective responses to musical features in literature was 
carried out in order to determine likely correlates for af-
fective algorithmic composition. Interested readers can 
find more exhaustive reviews on the link between music 
and emotion in [2] and the recent special issue in Musciae 
Scientiae [3].  

1.1 Musical features as perceptual vectors 

Whilst some musical features have well-defined acoustic 
cues, others have more complicated, even overlapping 
cues. Pitch, for example, is well correlated acoustically 
with fundamental frequency, whilst tremolo is well corre-
lated with amplitude envelope. Meter, on the other hand, 
which has been found to be correlated with some emo-
tions by Kratus [4], correlates with both frequency and 
time-derived acoustic cues [5] as a combination of dura-
tion, accent, and repetition. Therefore an awareness of 
listeners’ methods for perceiving such features, and any 
hierarchical interaction between such features becomes 
important when selecting an isolated musical feature for 
experimentation.  
   A literature review of existing systems for affectively 
driven algorithmic composition suggested that modality, 
rhythm, and melody had been most commonly imple-
mented, with 29, 29, and 28 instances respectively in the 
literature [6]. Other major features that had been imple-
mented by systems surveyed in the literature included 
timbre, dynamics, tempo, and articulation. Of the two 
most popular features, modality and rhythm, modality 
included 9 direct references and 20 references to sub-
features (register, key, tonality etc). Rhythm included 11 
direct references and 18 references to sub-features (meter, 
duration, time-signature etc). Therefore, rhythm appeared 
to be the most universally agreed upon feature-set includ-
ed in existing systems for affective algorithmic composi-
tion. However, for the purposes of this prototype system 
and its evaluation, rhythm would be a difficult selection 
as an isolated feature for perceptual evaluation due to the 
complex interaction of many of the sub-features and con-
tributory acoustic cues involved. Therefore, the most 
common sub-feature of rhythm was chosen for the proto-
type system in this experiment, in order to minimize un-
wanted interaction from other musical features. 
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2. PROTOTYPE DESIGN 
Rowe [7] describes three methodological approaches to 
algorithmic composition: generative, sequenced, or trans-
formative. Transformative systems use existing material 
as the source – one or more transformations are applied to 
the input material in order to yield related material at the 
output stage. A simple inversion might be considered an 
example of a transformative process. Given the success-
ful implementation of previous transformative systems 
(see for example, the Experiments in Musical Intelligence 
work of Cope [8]–[10]), the prototype system was de-
signed to use a transformation algorithm in order to ma-
nipulate the selected, isolated musical feature (rhythmic 
density – a temporal aspect of music derived from pulses 
or beats, tempo, and meter). Transformative systems have 
the advantage over generative systems of an ‘in-built’ 
limiting rule-set, established by the seed material. With a 
transformative system, for example, there is no necessity 
to specify a large body of additional structural rules out-
side of those affected by the chosen feature. If such a 
system can be shown to achieve perceptual variation with 
a limited musical rule set, then in the future it should be 
adaptable to generative operation by the addition of ap-
propriate structural rules (that need not be based on musi-
cal feature selection or perceptual correlation). This 
would also facilitate work towards a larger system for 
affective algorithmic composition based on the selective 
manipulation of a broader range of musical features with 
underlying emotional correlations. 

2.1 Transformative algorithm 

The prototype system was developed using OpenMusic 
[11] and Common Lisp. The system functions offline and 
currently works with monophonic data only. The system 
has three phases; a learning phase, a transformation 
phase, and a generation phase. At the learning phase, the 
system takes a seed input and separates the musical struc-
ture into measures, deriving a two-order transition matrix 
of pitch and rhythm tree information (a hierarchical list 
representing rhythmic structures with probability values 
for the transitions between these structures). These values 
are stored as an array. A statistical analysis of rhythmic 
density is then carried out on the array by searching for 
the number of pulses in each measure via note onset and 
duration values. Each measure is then assigned a density 
value. At the transformation phase, the density value is 
used as an index in order to create new permutations from 
a Markov chain of pitch and rhythm tree information via 
the transition matrix. Permutations can be created solely 
from measures with high-density index values, low-
density index values, or a combination (assuming that 
there is enough variation in the original seed material). 
The permutations are used by the generation phase to 
allow the output to be saved as a MIDI format file for 
subsequent editing and playback. A signal flow of the 
prototype system is shown in Figure 1. If successful, the 
prototype system could be expanded by increasing the 
nth-order of the Markov chain to include more complex 
transitions, other musical features and higher level musi-

cal structures, once the relevant perceptual correlations 
have been determined.  

3. PERCEPTUAL EVALUATION  
The construction of a ‘perceptual space’ using Multidi-
mensional Scaling Analysis (MDS) from a set of listener 
evaluations has previously been shown to be a useful way 
to construct statistically meaningful dimensional models 
from listener perceptions of music [12]–[15]. Confidence 
in the model can be evaluated by statistical measures 
from the analysis in order to firstly determine the best-fit 
dimensionality for the model, and secondly to create a 
plot of the stimuli showing respective and relative simi-
larities in the model. With all MDS analysis, dimensional 
labels cannot be established by this kind of evaluation. 
This experiment therefore represents the first of a two-
stage validation of the prototype system – with the expec-
tation that, if successful, a second stage will include a 
verbal elicitation experiment to provide labels for the 
scaled data. Stimuli should be presented to the listeners in 
the second experiment in the order that they are arranged 
in the best-fit perceptual space from this experiment, with 
the aim being to provide meaningful emotional (or at 
least perceptual) labels for the movement in each of the 
resulting dimensions.  

3.1 Stimulus set generation/selection 

Stimuli for the experiment were created using the proto-
type system and 4 seed inputs from a study evaluating 
affective responses and neurophysical correlations in 
electroencephalogram (EEG) to western classical music 
[16]. These seed inputs were selected with the partial 
intention of adapting a BCMI system to the control of an 
affective algorithmic composition system using EEG in 
future. Thus, seed material which had already been per-
ceptually evaluated with EEG seemed to be a useful start-
ing point. The sources from [16] were Peter and the Wolf 
(Prokofiev), Brandenburg Concerto No. 5 (J.S. Bach), 
Four Seasons: Spring (Vivaldi), and Adagio for Strings 
(Barber). This seed material was edited to produce short 
excerpts of 30s in duration, in order to facilitate timely 
comparisons in the experiment itself, and reduce listener 
fatigue.  
   With MDS analysis, a minimum of 4 stimuli per di-
mension to be revealed in the final analysis is required. In 
order to allow for up to 4 dimensions of variation in the 
stimuli generated by the prototype system, 16 stimuli 
were prepared from the 4 seed inputs: 

• 1-4: original material, edited in duration only 
• 5-8: lower density rhythmic transformations ap-

plied to seed material 
• 9-12: higher density rhythmic transformations 

applied to seed material 
• 13-16: permutation only (Markov shuffling) 

with no rhythmic transformations 
   All stimulus material was limited to the same duration 
and condensed to monophonic playback via a piano tim-
bre (Type 0 MIDI file).  
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Figure 1. Signal flow of prototype system. Various permutations are possible, including the generation of a permuted set of 
measures using existing rhythm trees, a permuted set of measures with increased density (number of pulses extracted from oth-
er measures), and a permuted set of measures with decreased density.  
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Figure 2 shows an excerpt from the seed material before 
it has been separated by the system into measures. Figure 
3 shows a lower density excerpt generated from the same 
seed by the prototype system. The seed in this case was 
an excerpt from J.S. Bach’s Brandenburg Concerto No. 
5, which mainly consists of 1/16th notes, with the excep-
tion of the material in the latter half of the sample. When 
the density transformation seeks to find material with 
lower density than the current measure, it uses the rhyth-
mic tree suggested by this lower density material as a 
template from which to create new permutations of the 
material in the ‘lower density’ output. The score itself is 
not optimised by the routine and could be edited by hand 
for ease of reading.  
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Figure 2. Excerpt of seed material, condensed to a 
monophonic piano arrangement of taken from J.S. 
Bach’s Brandenburg Concerto No. 5 

 

3

44& . . . . . . . . .
3

. . .
3

3
3 3

& .3 . .
. #

.
.

.

. . . . . . . . .
3 3 3

3

œ œ œ# œ ≈ œ œ œ œ ≈ œ# œ œ œ ≈ œ œ œ œ
≈ ≈
œ œ ≈œ# r ‰œ#R ≈

≈ ≈ ‰œ œ œ ≈ ≈œ
r ≈ ‰œ ™J œ≈ œj ≈

œ œ ≈œ œ# ‰œr
≈ ≈ œr ‰œ œœ ≈ ≈ œR ‰œ# œ œ

≈
≈ œR

‰œ œ œ
≈ œ# œœœ ≈ œœœœ ≈ œ œ œ œ ≈ œ# œœœ ≈

 
 

Figure 3. ‘Lower density’ excerpt created by markov 
permutation of measures from seed material, with a 
lower density index used as the basis for selection of 
rhythm trees. Note the algorithm has made use of tri-
plets to emulate the pattern from the latter half of the 
seed material. 

3.2 Experiment procedure and listening panel 

Twenty two listeners participated in the experiment. Each 
participant had some experience of critical listening (all 
participants were in the third and final year of undergrad-
uate study in music technology). Ethical approval for the 
experiment was granted by the Humanities and Perform-
ing Arts research committee of Plymouth University. All 
participants were aged between 22-35 and received no 
financial incentive to take part in the experiment.  Two of 
the participants were female. The experiment was con-
ducted near-simultaneously (participants broadly began 
the experiment at the same time, in the same room) via 22 
iterations of a Max/MSP graphical user interface on desk-
top computers. The same brand and model of circumaural 
headphones was used by all participants. Participants 
were allowed to adjust volume levels according to their 
own preference during a familiarization exercise. The 
familiarization exercise also allowed listeners to hear the 
full range of stimuli in a non-linear fashion before under-
taking the main experiment.  
   In the main experiment, listeners were presented with 
136 randomly ordered pairs of stimuli, split over two tests 

of approximately 35 minutes in duration. Listeners were 
asked to compare and rate the similarity between each 
pair on a hidden 100-point scale with end-points labeled 
‘not at all similar’ and ‘the same’.  

4. RESULTS 
Listener responses were collated to produce a dissimilari-
ty matrix which was then subjected to an Individual Dif-
ferences Scaling (INDSCAL) MDS analysis. The statisti-
cal ‘measures-of-fit’ determined by the analysis (dimen-
sionality, RSQ or square of the correlation coefficient, 
and Kruskal stress) are shown in Table 1.  
 
Dimensionality RSQ RSQ im-

provement in 
next increase 
in dimension-
ality 

Stress 
(Kruskal 
stress 
formula 
1) 

1-D 0.99914 0.00067 0.574 

2-D 0.99981 0.00001 0.200 

3-D 0.99982 0.00014 0.109 

4-D 0.99996 n/a 0.072 

Table 1. Statistical ‘measures-of-fit’ determined by 
MDS INDSCAL analysis of listener responses. 
Measures in bold indicate a quality criterion has been 
met. The maximum possible RSQ improvement at 4-
Dimensions is given by 1-(4-D RSQ). 

 
As with any MDS analysis, increasing the number of 
dimensions will decrease the amount of stress on the so-
lution, hence determining the optimum solution is not 
simply a matter of looking for the lowest stress. Hence, 
the statistical measures in Table 1 were then examined to 
determine the ‘correct’ dimensionality (the number of 
dimensions which best represented the perceived varia-
tion in the stimulus set). Criteria which can be used as 
indicators of statistical quality in such analysis include 
RSQ greater than 0.95 [17], stress greater than 0.20 and 
optimally as low as 0.05 [18], and a negligible improve-
ment in RSQ at the next increase in dimensionality. Table 
1 shows that RSQ was greater than 0.95 in all dimension-
alities, suggesting that each gave a confident solution. 
The RSQ improvement at each additional dimension was 
also low, though the lowest improvement is found be-
tween the 2 and 3-Dimensional solutions. Stress was 
highest in the 1-Dimensional solution, but was below the 
threshold of <0.20 in all other solutions. Examination of a 
scree plot showing stress against dimensionality showed 
a significant knee (which can also be interpreted as an 
indicator of ‘correct’ dimensionality), at 2-Dimensions, 
shown in Figure 4. Together, these results strongly sug-
gested a 2-D solution. The spread in a Shepard diagram at 
2-Dimensions, as shown in Figure 5, was also examined, 
with a low spread in the data confirming a statistically 
good fit. 
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Figure 4. Scree plot showing a significant knee at 2-D, 
with stress at 0.200. 

 

 

Figure 5. Shepard diagram showing a low spread be-
tween similarities and distances in the 2-D solution with 
stress at 0.200. 

 
With a confident solution at 2-Dimensions, the perceptual 
space could then be plotted. 

5. DISCUSSION 
The permuted stimuli, as shown in Figure 6, are generally 
plotted closer to the respective seeds than the density 
transformations, suggesting that a permutation in overall 
musical structure has less perceptual significance to lis-
teners than a variation in rhythmic density. This is some-
what surprising as it suggests that even when the output is 
modified significantly by this process of random permu-
tation, the output retains more perceptual similarity to the 
seed material than the output generated by selectively and 
deliberately manipulating rhythmic density.  
   Two anomalies are present in the 2-Dimensional per-
ceptual space. The ‘Adagio’ group (from Adagio for 
Strings by Barber) appears to show the placing of the 
seed stimulus and the high density transformation in posi-
tions which do not follow the general trend. This might 

be explained by the significantly lower density found in 
the Adagio seed material – a slow, sparse piece of music 
in comparison to the other seed sources. Similarly, the 
‘Brand’ group (from Brandenburg Concerto No. 5 by J.S. 
Bach) also exhibits some unusual placing in the perceptu-
al space. In this group, although the permutation remains 
the closest stimulus to the original seed, the density trans-
formations are positioned atypically. The seed material 
for this group is considered to be the ‘most dense’ by the 
prototype system, with the largest number of onsets and 
shortest durations. This might explain why the ‘Brand’ 
group is presented approximately opposite the ‘Adagio’ 
group, and also why the listeners perceived the variation 
in this unexpected manner. However, if the angle of the 
configuration is rotated whilst still maintaining the direc-
tion of perceived density in other seed groups from left to 
right, but with low to high instead of high to low in di-
mension 2, the stimuli in question then appear to be or-
dered BrandLD, BrandP, BrandE, and BrandHD, as 
would be expected according to the general trends ob-
served above.  
 

 
Figure 6. Perceptual space in 2-Dimensions after MDS 
INDSCAL analysis. Movement can be seen from low to 
high density stimuli. Coloured annotations show group-
ing of stimuli based on seed material. Stimuli appended 
-E are original edited seed excerpts. Stimuli appended -
P are permutations with no intended change in rhythmic 
density. Stimuli appended -LD are the low density 
transformations, and stimuli appended -HD are the high 
density transformations.  

 
    The perceptual space shows that transformed stimuli 
are loosely grouped near to their seed material, with a 
general trend that low density transformations are found 
in the upper left of their seed group, and high density 
transformations in the lower right of their seed group. 
Overall there is a tendency for an increase in density to 
be plotted across the perceptual space from the upper left 
of the space to the lower right. This spacing bears a simi-
larity to some existing work using the circumplex model 
of affect [19], a 2-Dimensional emotional space with di-
mensions based on arousal and valence, which has been 
adapted to music and to affectively-charged algorithmic 
composition in some systems [20], [21]. Whilst such ob-
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servations can only be casually drawn, Barber’s adagio 
seems to be a ‘sadder’, more somber piece, whilst the 
Brandenburg concerto is faster, more lively, higher ener-
gy and subjectively ‘happier’, found at the opposite end 
of the 2-D space. This strongly suggests that isolated mu-
sical feature manipulation is compatible with this method 
of parameterizing affect in such systems, and that in the 
future, a larger system, incorporating several such isolat-
ed features as part of an affective control system, should 
be possible. A larger system would have the advantage of 
being able to generate affectively charged music automat-
ically, and reactively, responding to the user’s emotional 
state.   However, as MDS analysis cannot reveal the 
names of dimensions given by this analysis, a subsidiary 
verbal elicitation experiment should now be undertaken 
before rhythmic density could be included in such a sys-
tem. Furthermore, the degree of control over the percep-
tual unidimensionality in the correlations noted above is 
to some extent dependent on the initial density of the seed 
material, which was itself limited to a small range from 
the western classical repertoire. 

6. CONCLUSIONS 
In order to determine whether isolated musical features 
could be used in a larger affective algorithmic composi-
tion system, a prototype for generating new musical 
structures from seed material with varying levels of 
rhythmic density was developed and evaluated by means 
of a pairwise dissimilarity experiment.  
   The pairwise dissimilarity experiment concluded that 
listener responses could be plotted to a 2-Dimensional 
solution with reasonable statistical confidence. A subse-
quent verbal elicitation experiment could now be used to 
label these dimensions. Within the 2-Dimensional space, 
randomly permuted stimuli were found to be perceptually 
more similar to the seed material than stimuli created 
with deliberate variation in rhythmic density. This is a 
surprising finding and has implications for the incorpora-
tion of a larger range of isolated musical features in an 
affective algorithmic composition system.  
   The 2-Dimensional MDS scaling also showed a marked 
similarity to the 2-Dimensional model of affect which 
some algorithmic composition systems have adopted in 
order to automatically generate emotionally charged mu-
sic. This further suggests that additional isolated feature 
manipulation could contribute to a larger system for af-
fectively charged algorithmic composition in the future.  
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