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ABSTRACT 
Timbral Hauntings (2014) is an interactive installation 
system created by Michael Musick that considers the 
impact of echoes from the past on the perception of the 
present and their capacity to induce future sonic expec-
tancy. This paper discusses details in producing Timbral 
Hauntings including motivation, core concepts, and tech-
nical particulars. It specifically discusses the composi-
tional processes using music information retrieval (MIR) 
and feature extraction techniques to classify phrases and 
pull information from the ‘past’ to re-shape the ‘present’. 
Concepts of temporal dynamics will be discussed by ex-
amining the compositional process during analy-
sis/feature extraction, classification and re-structuring, 
and synthesis phases.  

1. INTRODUCTION 
Timbral Hauntings (2014) is an interactive installation 
work that borrows ideas from soundscape analysis and 
the convergence of how “echoes and ethos” reshape the 
present and future. This paper focuses on the exploitation 
of feature extraction and automatic sound classification 
techniques common in the field of music information 
retrieval (MIR) to the creation of Michael Musick’s inter-
active music system installation Timbral Hauntings. Mu-
sick has been involved with the composition and perfor-
mance of sonic ecosystems [1] for four years within the 
Sonic Spaces Project. This composition was approached 
from a desire to address specific problems found in past 
works from the Sonic Spaces Project, specifically, the 
need for controlled decision making, based on larger col-
lections of data. This is accomplished by applying analy-
sis and organizational techniques common in the research 
domain of MIR to an ecosystemic-like [2] interactive 
performance system that builds on past work from the 
Sonic Spaces Project. To accomplish this, modules repre-
senting the specific tasks of the system were composed, 
with considerations of how MIR analysis and classifica-
tion could benefit these processes.  

As is not atypical with many electroacoustic works, this 
piece comes from a concern for the manipulation of tim-
bre and space within music [3]. This led to an immediate 

connection to the timbre-based instrument and sound 
source classification research common in MIR [4]. These 
tools were examined for their potential use in real-time 
timbral-based compositions. Ultimately, this led to the 
development of a system, which analyzes the timbral 
properties of a physical space (in this case a room in 
which it is installed), picks the most frequently occurring 
classification output, then applies these timbral properties 
to the incoming signals captured by microphones. The 
processed input signal is then projected into the space, 
while using classifications results to predict likely future 
acoustic events.  

 This paper presents an overview of the system creation, 
the technical and aesthetic choices that were made, and a 
discussion of the participant experience.   

2. THEORETICAL BACKGROUND AND 
RELATED WORK 

Interactive music systems refer to systems that exhibit 
changed states in accordance to input data at their inter-
face [5]. These systems are typically thought of as ma-
chines that ‘listen’ to a performer via a microphone or 
controllers such as digital keyboards and then analyze the 
incoming signals rhythmic, harmonic, and melodic quali-
ties in order to accompany or follow the human musician. 
There are numerous examples of systems that exhibit 
high-level pitch-driven decision-making processes based 
on user musical input. Prominent examples include 
George Lewis’ Voyager [6], John Biles’ GenJam [7], and 
Robert Rowe’s Cypher [5]. Both interactive systems, as 
well as more general music generating systems are in-
creasingly reliant on MIR-based techniques, including 
machine learning, to achieve the human-machine interac-
tivity sought by composers, such as in [8]. Even with the 
high-level decision-making processes that are being in-
corporated, and the increasing complexity that these types 
of systems exhibit, the primary interaction for the ma-
chine, is that of listening to and reacting to a human per-
former who inputs data directly into the interface. 

Within interactive music systems there are a subset of 
systems which are composed with the capability of listen-
ing to themselves in order to affect their own state [9]. 
These systems may provide data to the interface them-
selves, which is then potentially re-introduced back to the 
system, essentially creating various levels of feedback 
loops. These can exist as control signals, internal audio 
signals, and audio signals mitigated via the room through 
speakers and microphones. This has the potential of cre-
ating a complex relationship between all of the various 
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components and agents within an interactive system, 
whereby changes in any one may cause global system 
changes. In the case that the interface a physical room 
where the system is installed, participants and external 
agents that enter the space, equally become part of this 
complex relationship between all parts. This interplay 
between technology, physical space, and external partici-
pants/community is one of the defining characteristics of 
ecosystemic compositions [10]–[12].  

This project’s focus on the ecosystemtic compositional 
domain with an emphasis on timbre and interactive per-
formance concepts was significantly influenced by the 
work of Agostino Di Scipio. Di Scipio’s Audible Ecosys-
temics project [5] as well as other works from his later 
Modes of Interference [13] project have been especially 
influential in part due to the notion of creating music 
emergent from the complex relationships between all of 
the agents within these systems. Di Scipio’s system com-
positions are able to achieve this emergent quality by his 
explicit shift away from “creating wanted sounds via in-
teractive means, towards creating wanted interactions 
having audible traces” [2]. In a sense, he creates systems 
where the compositional focus is on the relationships and 
possible interactions between the various components of 
the ‘ecosystem’. This idea has been an important meta-
phor in the Sonic Spaces Project1, just as it has had an 
important role in influencing the work of others including 
[14].  

The goal for the composition of Timbral Hauntings and 
the study around it has been to apply analysis and deci-
sion making techniques from MIR to individual agents 
within the Sonic Spaces Project. This project also came 
from a desire of exploring potential creative application 
around the data available from and the infrastructure of 
the Citygram project, which can be used to stream sound-
scape feature vectors through its cyber-physical sensor 
network. A complete explanation of the Citygram project, 
including goals, technologies, musical applications, and 
infrastructure can be found in [15]–[18]. Future iterations 
of Timbral Hauntings that leverage the Citygram infra-
structure are currently being developed. This will ulti-
mately lead to the inclusion of multiple physical spaces 
each hosting its own sonic ecosystems, where each sys-
tem is fully interconnected and reliant upon each other. 

3. APPROACH 
The basic approach for the development of Timbral 
Hauntings was to identify an appropriate programming 
environment, the various timbre features that could be 
used to drive the sonic re-interpretation of the present, a 
way of classifying and “picking” the feature sets that 
would accomplish this, and then fine-tuning the system to 
optimize performance for specific tasks. Although a sig-
nificant amount of preliminary planning was involved, as 
the project quickly grew, it diverged away from this orig-
inal formalization.  

                                                
1 For more about the Sonic Spaces Project please visit:  
http://michaelmusick.com/category/the-sonic-spaces-project/ 

3.1 Program Modules 

It was clear from the beginning that this piece would re-
quire three major sections.  

1. Data Acquisition and Feature Extraction 
2. Machine Learning and Classification 
3. Sound Processing and Performance 

This model closely follows the ideas laid out by Black-
well and Young [19] and built on by Bown et al. [20] in 
which they propose to work within a PfQ modular com-
position system for the direct development of interactive 
systems, such as this one, that leverage extensive analysis 
techniques. In this framework, P are the analysis mod-
ules, f pattern processing (in this case classification and 
hierarchical organization), and Q modules for the sound 
synthesis (or digital signal processing of sound in this 
case). Q, the final module constitutes the main part of the 
ecosystem, as it is here that the agents must use the data 
acquired form P and f to create a self-regulating, inter-
connected sonic ecosystem. 

Within each of these components, separate processes 
were developed to handle the specifics of the task. Con-
ceptually speaking, to design these sections, the decision 
was made to work backwards in order to determine what 
features and/or control signals were needed to produce 
the desired interactions for the sounding agents in the 
final Q stage. The next part of this paper discusses the 
desired interactions in the Q section, followed by what 
was conceived of for P and f in order to facilitate these 
interactions. Following this conceptualization, the system 
modules were built in tandem to ensure the data that was 
being passed around would work the way it was intended.  

3.1.1 Signal Processing - ( Q, The Final Stage ) 

One of the main driving ideas was the creation of a sys-
tem where interactions of the sounding agents heavily 
utilized the information of the past to reshape the present 
and predict the future. The resulting music that emerges 
from the system is then always directly tied to the echoes, 
events, and happenings of the past. The qualities of the 
past are thereby embedded in the nature of agents as they 
are created within the system to interact with the sonic 
energy present in the room. 

The major challenges for this problem included: (1) de-
termining how to extract meaningful features that would 
allow the system to choose a frequently occurring past 
event and (2) how to embed these features into agents to 
transform the current audio events in the space. The 
transformations that were explored included filtering and 
shifting of current “live” sonic events through the appli-
cation of past sonic event characteristics represented by 
extracted features. This project also worked to explore 
ways the system could try and predict the next sounding 
events in the space by utilizing frequently occurring 
phrases that would be the ‘same’ sonic event likely pro-
duced in the future. 

In addition to testing and prototyping the features that 
could be used as timbral re-interpreters, a need to obtain 
control signals that could be used for the further re-
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interpreting of current audio events was also found. Spe-
cifically, determining a control signal that could be used 
to alter the temporal speed and direction of the timbre 
events. Finally, from the identified interaction goals it 
was known that a control signal needed to be found that 
could be used to efficiently evaluate moments of the pre-
sent against near-matches of the past.  

3.1.2 Analysis and Feature Extraction - ( P ) 

After determining a need for both timbral and gestural 
features for the synthesis stage, the project focused on 
outlining possible ways of extracting this data. The prob-
lems that had to be solved in the analysis section includ-
ed: (1) finding suitable features to describe the timbral 
and gestural properties of audio events and (2) imple-
menting ways to extract and store those features in a real-
time process for later use. Ultimately, as will be dis-
cussed below, it was determined that the identification of 
timbre classes and the application of those timbre classes’ 
characteristics through a filter would need to be handled 
by separate signal processing techniques.  

It became clear that a secondary decision-based feature 
set, describing the past, was also needed to provide fur-
ther control variables for agents in the Q module. The 
decision to pursue the analysis of gesture came from re-
search in the area of music theory that uses common ges-
tural motifs to help analyze moments in classical music 
compositions [21]. This was the inspiration for trying to 
represent and classify frequently occurring gestures. 

3.1.3 Decision Making and Classification - ( f ) 

After determining the features that would yield the neces-
sary control signals and feature sets for the Q stage, a 
final step to consider was to explore an appropriate algo-
rithm for classification that could choose which feature 
sets to pass to agents at their time of creation in the Q 
stage. Multiple means of machine learning approaches 
were thus considered. However, the aesthetic goals of this 
piece were to create a system, which could be used for 
public installations or with improvising ensembles. The 
nature of the typical sonic events of either would be diffi-
cult to “know” prior to performance. Additionally, this 
piece is concerned with allowing for any events in a 
space to be considered as a potentially valid historical 
sonic event that could affect future agents and interac-
tions. This eliminates most techniques, because super-
vised machine learning algorithms require labeled train-
ing data prior to deployment. Therefore it seemed obvi-
ous that unsupervised, real-time learning techniques 
would be more appropriate for providing this flexibility. 

3.2 Environment 

The Sonic Spaces Project, and as such, Timbral 
Hauntings are live systems that are intended to be in-
stalled in spaces where external agents and participants 
can interact with, and listen to the compositions as they 
emerge and fill a room. Much of the work involving MIR 
has utilized offline approaches to analysis, training, and 
modeling using tools such as MATLAB and Python. Un-

fortunately, it is difficult to do real-time audio in 
MATLAB, which has been a standard for MIR research 
[22], especially when using it on the OS X platform. Alt-
hough the MATLAB environment was used for early 
prototyping of feature extraction techniques and composi-
tion of potential interactions, this composition was moved 
to SuperCollider in order to facilitate real-time interac-
tion. This programming environment allows for real-time 
audio processing, and is well equipped to handle the 
types of analysis and processing that were under consid-
eration for the project.  

Much of the Sonic Spaces Project’s work, including 
system implementation has been accomplished in the 
SuperCollider environment. SuperCollider allows for 
considerable amounts of flexibility in coding practice and 
it is a very efficient audio processing and synthesis envi-
ronment. For custom algorithms that are unavailable in 
SuperCollider, it is not exceedingly difficult to implement 
in native C++. It is a proven client for using machine 
listening applications and includes a growing base of 
researchers writing third party unit generators (UGens) 
and also using SuperCollider’s analysis and MIR capabil-
ities for composition purposes [23].  

Ultimately, the final implementation in SuperCollider 
utilized external machine listening and MIR libraries. 
However, the development and testing process included 
working between MATLAB and SuperCollider in order 
to continue prototyping interactions for each stage of the 
system and to insure complete understanding of how each 
analysis algorithm was being put to use. 

3.3 Deployment Tweaking and Testing 

The plan for this system was to build each module up 
piece by piece, ensuring that communication between the 
modules was considered throughout the development 
process. The system was to be built by verifying ideas 
and techniques through a combination of work in 
MATLAB and SuperCollider. This way, implementations 
of MIR specific techniques could be explored to ensure 
understanding of the expected outcomes before using the 
equivalent functions in SuperCollider.  

4. APPLIED TO A SYSTEM 
This section discusses the implementation of the system 
and more fully explores the development flow of the 
composition. It also gives specifics as to how the system 
works, and how compositional choices were made. Note 
that even though the system was not developed sequen-
tially from start to finish but was rather conceptualized 
backwards, the presentation of various components will 
be described and detailed here in the order that it is repre-
sented within the computer code. 

4.1 Initial Considerations 

In order to consider the entire physical space as the inter-
face for a system, it is important to provide a sufficient 
number of audio inputs to cover the space. This is espe-
cially important when trying to capture the spatial timbral 
characteristics. The compositional focus in this project 
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was not on instrument-specific timbre but rather on the 
collective timbre of physical spaces. For this reason, ex-
cept during stage Q, all feature extraction stages take a 
mix of an array of microphones covering the space. Dur-
ing the initial stages of development as well as early 
presentations of the work, all of the spaces where the 
Timbral Hauntings system has been installed have been 
relatively confined; therefore two microphones are cur-
rently used. The number of microphones is flexible, and 
for installation of the system in larger spaces, more mi-
crophones can easily be incorporated. 

One key aspect of MIR is to develop and select appro-
priate low-level acoustic descriptors as a way of improv-
ing results – a classic garbage-in-garbage-out (GIGO) 
system. This concept has been applied at every stage of 
the signal processing chain and is one of the reasons for 
utilizing high-quality hardware and transducers. Of the 
highest importance is the use of high-quality micro-
phones, at least in regards to the Sonic Spaces Project. 
Consequently feature sets, when used for analysis or oth-
er digital signal processing applications, tend to produce 
more robust results when using these high-quality input 
signals. 

4.2 Development of the Timbral Analysis and Classi-
fication System 

The system starts by taking in the mixed audio signal 
from the room’s microphone array. This signal is then 
routed to various components that require audio input for 
analysis. In order to classify the room’s various timbre 
events, Mel-Frequency Cepstrum Coefficients (MFCC’s) 
[24] were used. MFCC’s have found wide use for auto-
matic musical instrument recognition and have been 
found to robustly reflect timbre in general. For this pro-
ject, a DFT with a hann window size of 1024 samples, 
hop size of 50%, and sampling rate of 44.1kHz proved to 
provide acceptable results when prototyping the system 
in MATLAB. These parameters did not change after 
evaluating and testing other parametric values in the final 
SuperCollider implementation. In SuperCollider, the 
frames from the DFT are passed to the MFCC UGen. For 
the current implementation, it has been found that using 
13 MFCCs resulted in efficient classification results. The 
MFCC UGen returns a control rate signal, which is then 
passed through a one-second long moving averaging fil-
ter, which serves to remove high-frequency irregularities 
caused and creates a feature signal that appropriately de-
scribes the room’s timbral characteristics. This resulting 
control rate signal from this MFCC SynthDef is then 
passed to the classification SynthDef.   

In order to do classification of salient acoustic events, a 
frequency-domain based onset detector was used for 
acoustic event detection [25]. This onset detector allows 
for the filtering of novel acoustic events, which are then 
passed through, a frequency-bin based whitening process 
[26] before threshold-based triggering occurs. For the 
type of input expected in this system, a weighted phase 
detection algorithm worked well in tracking both changes 
in amplitude, pitch, and novel sound sources. The trigger 
threshold was also assigned to an adaptive process, which 

scaled the threshold down, over the course of 16 seconds, 
after a new timbre classification occurs. (This is a user 
tunable parameter, and different values work better in 
different spaces.) This was found to limit re-triggering of 
a single sonic event.  

When an event is identified from the onset detection 
UGen, a trigger is passed to the classifier UGen causing it 
to analyze the extracted features. As mentioned above, an 
unsupervised learning algorithm was determined to pro-
vide the desired flexibility for this project. For this rea-
son, a real-time k-means clustering algorithm was im-
plemented for the classifier [27]. This classifier works by 
re-computing the k centroids every time a new acoustic 
event is detected. It was found that determining the opti-
mal number of k to use is still an active area of research 
lacking common practices [28]. For that reason, multiple 
k values were auditioned. Currently, six seems to provide 
a suitable solution, although this too is a user adjustable 
parameter where varying values may produce more ap-
propriate results depending on the characteristics of the 
installation space. Originally, the number for centroids 
was determined and equal to the number of expected tim-
bres. However, it was found that choosing a number 
slightly larger than the expected number of timbres re-
sults in better accuracy for the system.  

Other options considered during initial prototyping in 
MATLAB, included; Linear Predicative Coding (LPC) 
coefficients, and single value spectral measures, such as 
spectral centroid and spectral flatness. MFCCs seemed to 
provide a large enough feature set to create acceptable 
results with minimum samples in the k-means algorithm. 
Figure 1, shows a typical k-means representation of a 
whistle; these 13 coefficients are then passed to the clas-
sifier as an array of floating point numbers. Alternative 
machine learning approaches have also been considered. 
However, as mentioned earlier, a willingness to accept all 
possible sonic events is important to the theoretical goals 
of this piece. Therefore, machine-learning techniques that 
require pre-labeled, supervised training data were not an 
option. 

Figure 1. Relative MFCC Coefficient output for a whistle. 
These values are passed to the K-Means classifier as an 

array of floats. 
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4.3 Development of Gesture Feature Extraction 

During prototyping, the resulting audio from the Q mod-
ule did exhibit convincing characteristics of the analyzed 
audio. However, the resulting sonic material was too sim-
ilar to the original acoustic events, and more abstraction 
in the composed interactions seemed necessary. For this 
reason, it was decided to explore the use of additional 
control signals that could be embedded within each of the 
agents, along with the timbre characteristic descriptors in 
the Q module. This focused on the identification of tem-
poral gesture features extracted from audio as a way of 
further transforming the end result. Fundamental fre-
quency estimations from the identified timbre class were 
originally considered. However, it was decided that this 
parameter should be a separate descriptor of past spatial 
sonic events that are not necessarily the same as the tim-
bre classifications. This provided a decoupling from the 
timbre features used, as they were being applied to the 
synthesis module, resulting in a more interesting interac-
tion on the part of the agents.  

The motivation for exploring gestures came from a mu-
sic theory study on using gestures of pitches to describe 
common anticipations in classical era compositions [21]. 
This led to another discussion in the same source, which 
examined the mechanics of gesture as they relate to hu-
man physical motion and how motion changes gradually, 
“ramping in and out of the motion.” To track changes in 
musical gesture, the system computes the first derivate of 
an autocorrelation-based fundamental frequency estima-
tor. The pitch detector was limited to frequencies be-
tween 80 and 3 kHz and also requires a minimum ampli-
tude threshold of 0.01 Root-Mean-Squared (RMS) as 
well as a minimum peak threshold, which helps eliminate 
octave errors.  

 To normalize these features to a linear scale they are 
converted to MIDI note numbers, which in SuperCollider 
are represented as floating point numbers, and not limited 
to integer representations. These values are then passed 
through a moving average filter of 512 samples. Finally, 
the slope between these floating-point MIDI values is 
measured. Figure 2 shows an output signal captured by 
this process. These events are recorded, and after the 
classifier chooses a class, the most recent event, which 
matches the most frequently occurring class, is passed to 
the Q module where it is embedded in the newest agent 
as a control signal.  

In order to classify these events, it was necessary to re-
duce feature dimensions to a manageable size to an ap-
proximately 6-18 feature size range, which matches the 
size range used for MFCC classification. This is accom-
plished by passing the signal through a curve-fitting algo-
rithm and using the computed coefficients (except for the 
intercept value) as the features to describe an acoustic 
event. No such solution exists in SuperCollider at this 
moment, and attempts to create a non-optimized process 
through SuperCollider’s client language severely slowed 
down system performance. A solution that was developed 
entailed sending gesture signals to Python via a Unix 
terminal process. This allows access to Python’s Numpy 
polyfit method, and the unloading of processing from 
SuperCollider: after Python has computed the result, the 

coefficients are returned to SuperCollider. The output of 
the Python process is shown in Figure 3. These features 
are then passed to a separate classifier, which classifies 
and eventually chooses a gesture class.  

4.4 Choosing A Class 

The classifiers initially need to be self-trained with a us-
er-defined number of samples. Once a training count 

threshold is passed, the classifiers outputs a class based 
on the computed k-centroid values for each feature sam-
ple passed in. The classifiers track the most frequently 
occurring feature classification by employing a simple 
array count, equating to an indexed slot for each potential 
class ID. Once the classifiers registers a critical number 
of samples, they choose the most frequently occurring 
class by picking the index of each array with the highest 
count.  

Once a “most frequent” class is chosen, the classifiers 
reset their counts to 0. However, the system keeps their 
historical training data for future classification decisions. 
This allows for changes in the timbral events that may 
occur in the installation space while considering histori-
cal data as an ever-present factor, and takes into consid-
eration the system’s own output to the space as a poten-
tial source of influence. 

When a class is  chosen the system selects a recent, cor-
responding audio recording for the timbre feature set and 
a control rate recording for the gesture feature set. These 
recordings are then transferred from short-term storage 
over into new, local-private buffers, which are then hand-
ed over to the Q module, where they are assigned to a 
newly created agent, along with pointers to the feature 
extraction control signals from P. The short-term class 

Figure 3. Visualizing a 10-degree polynomial best-fit curve 
produced by Python for a gesture event.  

Figure 2. A 3” gesture generated from rotating tingsha bells.  
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audio and control recording buffers are also reset at this 
point, along with the entirety of the classification module. 
Figure 4 shows an overview of the P and f process, in-
cluding the feature extraction, temporary recording buff-
ers, and classifiers. 

4.5 Q Module 

The Q module is where new agents are created and also 
embedded with “characteristics” of the past. These agents 
are embedded with the identified “most-frequent” feature 
sets, which are used to: 

1. Process current live signals occurring in the space.  
2. Identify likely “future” events for playback, effec-

tively predicting the “future.” 
The MFCC’s were originally going to be used as a way 
of obtaining filter coefficients for the re-interpretation of 
live audio by agents. However, the Linear Predictive 
Coding (LPC) technique was far more suited for this task. 
The LPC algorithm effectively produces filter coeffi-
cients that can be used for resonant filters [29], which 
reflect the a signal’s spectrum. Typical applications of 
this technique have been to separate a signal’s spectrum 
from its excitation function, which offers a composer the 
ability to change parameters of the signal independently 
and then resynthesize the altered signal (e.g. Paul Lan-
sky’s Idle Chatter). For the purposes of this system, the 
LPC technique is used solely as a way of analyzing past 
spectra and shaping the spectra of new audio events.  

Full audio recordings are captured and stored for poten-
tial use in this module during the classification process. 
Recordings can be up to 16-seconds in length if no other 
event triggers first. This 16-second long recording is then 
truncated to remove any silence, and only the portion of 
the signal containing active audio is passed to the agents 
in the Q module. This signal is then run through the LPC 
analyzer/filter (from this point forward, this signal will be 
referred to as the analysis signal). 

By storing complete audio signals, the Q module can 
optimally process them prior to routing through the LPC 
UGen. This module does a number of processes in order 
to increase the “richness” of interactions. Chief among 
them is to alter the playback speed of the analysis signal. 
This is accomplished with the gesture feature that is also 
passed to the module. The gesture signal is slowed down 

by 25% of the original speed and then used as a scalar for 
the playback speed argument of the analysis signal. This 
gives the playback speed argument speed profiles, which 
have been derived from the historical events of the instal-
lation space. The playback speed is normalized to a float-
ing-point number between ± 2.0 times the original speed, 
with negative values causing a reverse playback to occur.  

The analysis signal is then run through a low pass filter 
with a cutoff of 8 kHz. Traditionally, LPC synthesis has 
been found to produce optimal acoustic results at lower 
sampling rates as it was developed to model speech spec-
tra. Unfortunately, this system requires a sampling rate 
that is 44.1 kHz or higher. Dampening high frequency 
components has been used as form of compromise to 
achieve effective results. Subjectively, during prototyp-
ing, this process did allow for clearer results to occur 
when using the analysis signal to drive impulse trains 
running through the filter.  

Next, the analysis signal is passed through a pitch shift-
ing UGen, which uses a synchronous granular synthesis 
algorithm. The shift factor for this UGen is inversely pro-
portional to the timescale of the playback, compensating 
for some of the pitch shifting effects caused during that 
process. However, at the outer edges this scaling does 
breakdown, which serves as an effect in itself.  

Finally, the analysis signal’s values are extracted before 
compression and normalization occur. When the uncom-
pressed signal is above a tunable RMS threshold, the 
compressed signal is allowed to pass, otherwise it is gat-
ed. This allows for a stronger signal to be passed to the 
LPC module while suppressing background noise.  

This is the final form of the analysis signal before it is 
routed to the LPC UGen. The LPC UGen then computes 
128 poles, operating with a 512 sample, double buffer to 
handle the changing of filter coefficients. The input sig-
nal that is passed through the filter is delayed by 2 se-
conds from the original input in the room. This signal 
does not go through a true whitening process, as is sug-
gested for LPC impulse signals, but is subjected to multi-
ple stages of resonating comb filters and an all-pole re-
verb algorithm, which serve to broaden the spectrum with 
frequencies from the signal itself. When passed through 
the LPC filter, this signal is given characteristics of pre-
vious “frequent” occurring sonic events that have oc-
curred in the system.  

Figure 4. P and f flow diagram. After the classifiers make a decision, they send the candidate buffers to the new agent in 
Q, along with the feature extraction control signals. 
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In addition to the “re-shaping” of present material in the 
historical sounds of the past, this system also tries to pre-
dict the future through the examination of the present 
against the past. During the analysis and recording pro-
cess, the time-stamped MFCC values are stored in a sepa-
rate signal buffer at a granularity of 20ms. When the can-
didate timbre class is chosen, the classifier takes this 14-
channel signal along with the audio signal. This signal is 
then passed to a function that transforms it into a KD-
Tree [30], where timestamps serve as the identifier values 
for each node of the tree. This tree structure is then em-
bedded during the creation of new agents in the Q mod-
ule. The agent analyzes the ‘present’ signal, as it looks 
for nearest-neighbor matches with a tunable threshold of 
the current MFCC values in relation to the KD-Tree. If a 
match within a certain threshold is found, then the time-
stamp key is used to grab grains of sounds from the 
stored audio signal that are 20ms ahead of the time-
stamp. These grains are then played back through the 
system, where pitch, position and playback speed are a 
function of the distance between the two MFCC sets.  

This interaction is particularly interesting, as it reliably 
matches current moments in the room to ‘candidate’ sig-
nals in the agent’s tree. This ‘playback’ of what the sys-
tem has decided is the future is usually also a close 
enough match as to confuse the participants’ perception 
as to what sounds occurred from agents in the room, or 
were created from the system. This interaction also has a 
tendency to ‘re-trigger’ itself, creating an interconnection 
between components, which ultimately adds to a sense of 
progression in the piece, as it creates rhythmic moments 
from grains of sounds that slowly fade away as the total 
composition changes.  

In addition to the two main interactions that each agent 
is created with (transformation of the present and predic-
tion of the future), they are also passed pointers to the 
internal control busses with the feature extraction signals 
from P. These signals include; a 12-tet chromagram that 
is sampled at every onset and is the average of the last 
identified phrase, spectral flux, and RMS. These are used 
as further control over the composed interactions in the Q 
module. Live control signals also allow the agents in Q to 
monitor sonic saturation of the space. When this occurs, 
the agents either die off, or take measures to reduce their 
sonic output to protect the balance of the ecosystem. 

These processes described in this section are recreated 
in each agent for each new class chosen by the classifier. 
The number of candidates that can be playing at any one 
time is currently set to 4, but this is a user adjustable val-
ue. As new agents are created, old ones die out.  

5. SUMMARY 
This work asks participants in the installation space to 
consider the impact and influence that moments in history 
can have on the present and future. The echoes of the past 
are always with us, and Timbral Hauntings works to ex-
ploit this idea by building a memory of these events and 
choosing the most frequently occurring ones to directly 
change the course of the future. In this case, hauntings of 
these memories are embedded in the ‘nature’ of agents as 
they are created in the system. The system is programmed 

so that only a small group of agents can survive at any 
given time. This means that as new agents come into be-
ing, older ones die out. The contributed sonic events are 
what is left of them to haunt the system.  

This piece is best suited in spaces that reinforce the no-
tion that ‘we are always with the past.’ It is best if relics, 
mementos, and history can exist in the space of the sys-
tem: affecting the sonic characteristics of the room, and 
reminding participants of the people and events that have 
come before them. Spaces that have their own unique 
sonic characteristics are also preferred. They impart their 
resonant frequencies, room nodes, and reverberant quali-
ties into the composition itself. With the room as the in-
terface, a strong interrelationship occurs between system, 
participants, and space. As can be seen in Figure 5, the 
piece is intended to offer room for participants to simply 
sit, ponder, and listen, as the music that emerges changes 
in response to the sonic events occurring in the space. 
Participants are also encouraged to influence the future of 
the system by contributing sonic energy to the space. 
They are free to use any of the instruments supplied 
around the room, or to make sound in anyway that they 
are inspired to. Regardless of what they do, their presence 
in the space effects the future, whether it is directly con-
tributing sonic material, or simply existing in the space, 
allowing their mass to change the sonic characteristics of 
the room, and disturb potential nodes. This piece main-
tains strong relationships between the sonic events of the 
space; whether created from digital agents or external 
physical agents, the room itself, the past, and the present. 
All components rely on each other to create the final mu-
sic that emerges during a performance of the ecosystemic 
composition and installation, Timbral Hauntings2. 
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