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ABSTRACT

This paper introduces x-OSC: a WiFi-based I/O board in-

tended to provide developers of digital musical instruments

with a versatile tool for interfacing software to the physical

world via OSC messages. x-OSC features 32 I/O channels

supporting multiple modes including: 13-bit analogue in-

puts, 16-bit PWM outputs and serial communication. The

optimised design enables a sustained throughput of up to

370 messages per second and latency of less than 3 ms.

Access to settings via a web browser prevents the need

for specific drivers or software for greater cross-platform

compatibility. This paper describes key aspects x-OSC’s

design, an evaluation of performance and three example

applications.

1. INTRODUCTION

The ubiquity of high-performance computational devices

is raising the baseline expectations of computer literacy

and the prioritisation of programming skills within school

curricular [1]. As technology becomes increasingly famil-

iar, an appetite for technological experimentation is giving

rise to a new range of development platforms designed to

make technological innovation accessible to all [2]. Princi-

pal examples include the Processing language/environment

[3], which provides powerful abstractions for the devel-

opment of cross-platform graphical software, and the Ar-

duino development board, which has empowered artists,

designers, and makers to create embedded hardware solu-

tions [4].

Developers of digital musical instruments (DMIs) are no-

table users and creators of modern devices that are opti-

mised to connect real-world electronics with music com-

position and performance software [5]. For example, Axel

Mulder’s I-Cube system [6], Fléty et al’s EtherSense [7]

and Kartadinata’s gluion [8] each represent solutions that

have emerged from research into interactive music sys-

tems. Similarly, the interface device presented in this paper

has been designed to meet the challenges associated with

live music performance and represents a high-performance,

robust, potable, low-latency and highly-compatible inter-

face device suitable for a wide range of applications. The

following sections of this paper will set out the context
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Figure 1. Data flow diagram for one of two data gloves in

the current version of The Gloves

leading to the development of x-OSC with a review of re-

lated work; the implementation, specification and perfor-

mance results will then be summarised; before closing with

a range of example applications and concluding remarks.

2. BACKGROUND: THE GLOVES

The authors of this paper are developers of a glove-based

gestural music interaction system built in collaboration with

the singer/songwriter Imogen Heap [9, 10]. The current

system structure and communication channels are shown

in Fig. 1.

The system hardware transmits the current state of 16

bend sensors to measure the wearer’s finger flexion, plus

five inertial measurement units (IMUs) measuring orien-

tations of the limbs and upper torso. In the opposite di-

rection, the hardware responds to commands controlling

LEDs and haptic motors to provide the wearer with pri-

mary feedback. These bidirectional data streams are en-

coded into a bespoke data protocol developed specifically

for the system. The communications channel between the

sensing of motion and the production of audio comprises

five nodes, which each receive, translate and forward data

to the next node. As each translation contributes to the

overall latency of the system, it is reasonable to consider

a more refined arrangement that implements open sound

control (OSC) in hardware directly, an approach suggested

by the inventors of OSC and developers of the uOSC plat-

form [11].
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3. RELATED DEVICES

Developers of DMIs require devices that have the capacity

to connect software applications with a range of electronics

that can measure control input and produce output actua-

tion. There is an abundance of electronic devices appropri-

ate for this task, which significantly differ in their intended

use and design.

3.1 Development Boards

Many devices represent highly accessible development

boards with accompanying software tools that simplify the

embedded firmware development process. For example,

Arduino [4] provides a range of development boards with a

unique programming language (based on Wiring) and de-

velopment environment (based on Processing [3]). Simi-

larly, the Create USB interface may be programmed in ei-

ther BASIC, the Arduino language or C, to cater for users

with differing levels of expertise [12].

3.2 Interface Devices

Typically, developers of DMIs produce firmware that en-

ables multiple analogue or digital I/O (input/output) chan-

nels to be accessed by software running on a host com-

puter. However, a range of interface devices are designed

to obviate the need for embedded development by enabling

the device channels to be configured in firmware, commu-

nicating with the host software via a MIDI, USB or net-

work link, often without the need for device drivers to be

installed. In this sense, the device interface can be con-

sidered as a direct extension of the developer’s host soft-

ware [13].

MIDI Devices

The I-CubeX Digitizer [6] and the Eroktronix MidiTron

[14] enable the reception of sensor readings and the de-

livery of actuator control messages via MIDI. Both de-

vices enable configuration for different scenarios via MIDI

SysEx commands. However, These devices are limited by

their dependence on the MIDI hardware specification and

consequently require additional peripherals for the host com-

puter.

USB Devices

Modern MIDI-based interface devices, such as the Eobody3

[15], bypass this hardware limitation by using the USB

MIDI standard to connect directly to the host computer.

Further configurable USB interface devices include the

GAINER [16] and Arduino installed with the Firmata li-

brary [13]. Both examples implement a serial protocol to

enable I/O pins to be configured using commands from

a compatible host application, without the need for user

firmware development.

Open Sound Control (OSC) Devices

As modern computers come equipped with high-speed net-

work support, OSC represents an ideal communications

protocol for interface devices. OSC is a widely supported

(over 80 languages/platform implementations [17]),

Figure 2. x-OSC board top (left) and bottom (right), size:

31 × 47 mm

lightweight network protocol designed specifically for com-

munication between computers and multimedia devices [18].

Devices such as IRCAM’s EtherSense [7] and glui’s gluion

[8], connect to a host computer via an Ethernet connection

to exchange I/O and configuration messages. Schmeder

and Freed’s uOSC [11] provides a versatile firmware solu-

tion for connecting software with a range of development

boards via a USB serial connection using the OSC proto-

col.

Wireless Devices

The development boards and interface devices discussed

above are limited by their dependence on wires (although

serial connections may be tunnelled through Bluetooth,

XBee or similar radio devices), however, many practical

application scenarios demand untethered portable solutions.

IRCAMs WiSe Box [19] digitiser provides host access to

16 analogue input readings at up to 333.3Hz via OSC when

connected via a WiFi access point. The high message rate,

small form factor and WiFi support make the WiSe Box

ideal for collaborative interactive music system develop-

ment. However, as the device is unable host ad-hoc net-

works, configuration is achieved over a custom USB se-

rial connection/protocol. Furthermore, it is designed ex-

clusively for the acquisition of sensor readings, making

the WiSe Box unsuitable for actuation/feedback, a feature

which is often considered essential for the development of

DMIs.

4. X-OSC

x-OSC is a wireless I/O board that provides host software

access to 32 multi-functional I/O channels via OSC mes-

sages over WiFi. There is no user programmable firmware

or software to install making x-OSC immediately compat-

ible with any WiFi-enabled platform.

As shown in Fig. 2, a simple hardware layout of two 18-

way header sockets provide access to 16 inputs on the left

hand side and 16 outputs on the right. The headers also

provide a regulated 3.3 V output to power user electronics

and an unregulated power input/output that provides direct

access to the x-OSC battery. The standard pitch sockets are

compatible with breadboards or direct connections using
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jumper wires. Other features include a battery connector,

battery level measurement, an RGB status LED and a ping

button. The on-board WiFi module incorporates a PCB

antennae eliminating the need for an external antennae.

4.1 Inputs

16 dedicated inputs (0 V to 3.3 V) can be independently

configured to be either analogue or digital. Digital inputs

can be configured to use internal pull-up/down resistors

and to minimise latency their state is only transmitted on

change. All 16 analogue inputs are sampled with 13-bit

resolution and sent simultaneously at a specified update

rate up to 370 Hz. Analogue mode inputs also provide a

compare function to send a message each time a specified

threshold is crossed. This enables low-latency threshold

detection without the need for a high message rate.

4.2 Outputs

16 dedicated outputs can be independently configured to

digital, pulse or PWM modes. In digital mode, an out-

put can be set to high or low enabling simple control of

LEDs, relays, or generation of control logic signals. In

pulse mode, an output can be triggered to generate a pulse

with a period of 1 ms to 1 minute at a resolution of 1

ms. This may be useful for momentary actuators such a

solenoid driving the strike mechanism of a percussive in-

strument. An output in PWM mode can generate a PWM

waveform from 5 Hz to 250 kHz with a duty cycle reso-

lution up to 16-bit. PWM is commonly used as a DAC

where fixed frequency and variable duty cycle approximate

an analogue signal. For example, this may be used to con-

trol the brightness of a light or the speed of a motor. Each

3.3V output is driven by a line-driver to protect the micro-

controller outputs and source/sink up to 50 mA per chan-

nel.

4.3 Serial

In addition to modes described above, the first four inputs

and outputs can be configured to serial mode with each

transmit and receive pair utilising a dedicated hardware

UART module. Each serial channel supports baud rates

in the range 9600 to 1 M baud and incorporates a 2 kB

buffer to ensure high throughput without loss of data. Re-

ceived serial data is framed before being sent as OSC-blob

messages. Framing boundaries are determined by a user

defined buffer size, timeout and optional framing charac-

ter.

4.4 Network modes

x-OSC can be configured to operate in one of two network

modes: ad hoc or infrastructure. In ad hoc mode, x-OSC

creates a network for other devices to join. Multiple de-

vices can connect to a single x-OSC with simultaneous ac-

cess to its I/O. Infrastructure mode allows x-OSC to con-

nect to an existing network. The device IP address can be

configured to be static or use DHCP to be assigned an ap-

propriate IP address by the network server. The assigned

IP address can be discovered by pressing the ping button,

Figure 3. x-OSC settings viewed on web browser

which causes x-OSC to broadcast a message indicating the

IP address over the network. Alternatively, a ping message

can be sent to x-OSC by another network device. Infras-

tructure mode enables multiple x-OSCs to operate on the

same network and be addressed by multiple host devices

also connected to the network. A connection to a router

can also provide an inherent interface to x-OSC via Ether-

net or from remote internet connections.

4.5 Configuration via browser

An embedded web server enables all internal settings to be

configured using a web browser, see Fig. 3. Settings may

be viewed and modified during run-time without interrupt-

ing the OSC messages. Incorrect network settings can ren-

der x-OSC inaccessible; access can be re-established by

pressing and holding the ping button to restart the device

in ad hoc mode with default settings.

4.6 OSC messages

x-OSC transmits and receives OSC messages using the User

Datagram Protocol (UDP) transport layer.

Although OSC is widely supported, many platforms fail

to incorporate the full specification [11]. To maximise

compatibility, x-OSC messages are limited to four of the

fundamental data types: int32, float32, OSC-string and

OSC-blob. For example, Boolean arguments are repre-

sented by an int32 and null arguments by an argument

value of zero. In addition to this, messages sent to x-OSC

may use int32 and float32 interchangeably.

A set of OSC messages were defined that enable com-

munication of I/O data to and from x-OSC as well as con-

figuration of the internal x-OSC settings. Additional OSC
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messages include battery data, a ping message and override

commands for the built in LED.

5. OPTIMISED DESIGN

x-OSC’s design was optimised for throughput, latency and

high-performance I/O. A key aspect of this design is the

use of Microchip’s TCP/IP stack, a networking library for

Microchip microcontrollers and Microchip WiFi modules.

Many competitor WiFi devices incorporate an internal net-

working stack to provide a self-contained and easy-to-use

module compatible with any microcontroller. However, in-

corporation of the stack on the host processor provides the

firmware with direct access to low-level stack processes

and enables specific optimisations to be implemented.

5.1 Hardware

The key hardware components are Microchip’s

dsPIC33EP512MC806 digital signal controller and

MRF24WG0MA WiFi module. The MRF24WG is Mi-

crochip’s highest performing WiFi module, capable of up

to 5 Mbit sustained throughput and maximum transmit

power of +18 dBm. The dsPIC33E was specifically cho-

sen for its high-performance and wide range of advanced

peripherals:

• 16-bit architecture, 70 MIPS and 53 kB RAM repre-

sents one of Microchip’s highest performing micro-

controllers to minimise latency caused by heavy pro-

cessing tasks such as maintaining the TCP/IP stack,

processing OSC messages and floating-point opera-

tions.

• 512 kB of program space is enough to hold the main

application, TCP/IP stack, and embedded webpage

server content while leaving space for future devel-

opments. The current firmware size is 177 kB.

• Two ADCs (10-bit at 1.1 MHz and 12-bit at 500

kHz) and 9 direct memory access (DMA) channels

enable the implementation of the 16 analogue inputs

with minimal CPU loading.

• 16 PWM modules with dedicated timers in addition

to nine general purpose timers for precise scheduling

of I/O functionality with minimal CPU loading.

• Remappable peripherals are essential to enable the

multifunctional modes of x-OSC’s I/O channels.

5.2 Firmware

The firmware uses Microchip’s TCP/IP Stack v5.42.06 with

only essential application modules enabled. The stack’s

SPI library was modified to use the maximum 10 MHz

full-duplex baud rate supported by the dsPIC33E. A key

aspect of the optimised design is the extensive use of the

advanced peripherals offered by dsPIC33EP so that most

I/O functionality may be executed without CPU interven-

tion.

Analogue sampling of the inputs utilises the 1.1 MHz

10-bit ADC, 16-channel multiplexer and DMA to yield

measurements of all 16 inputs at 533 Hz with 13-bit res-

olution. This was achieved by configuring the ADC to

continuously sample at 546 kHz while the multiplexer se-

quenced between each of the 16 inputs each ADC sample.

A DMA channel assigned to the ADC writes each sample

to a predefined pattern of address in RAM in ping-pong

mode to alternate between two alternative blocks of RAM

every 1024 samples (64 samples per channel) enabling the

ADC to continue sampling uninterrupted without the risk

of overwriting unprocessed samples. When analogue in-

put data is required, the CPU computes a scaled mean of

each channel’s 64 samples to yield a 13-bit result through

oversampling [20]. The battery voltage was measured in a

similar way using the 12-bit ADC and computing the mean

of 16 samples to attenuate noise.

The 16 independent PWM outputs utilise 16 16-bit PWM

modules with dedicated timers and four of the nine general

purpose timers as clock references. Each output channel is

able to achieve both an independent frequency and duty-

cycle between 5 Hz and 250 kHz and 8.1-bit to 16-bit res-

olution (dependent on the frequency) respectively. Use of

4 general purposes timers provides each PWM timer with

simultaneous access to all possible prescaling options to

maximise the PWM frequency resolution and range. The

frequency range of 5 Hz to 250 kHz is divided by approx.

218,000 steps with a non-linear resolution of 3.66 µs at

lower frequencies and 14.31 ns at higher frequencies. The

output pulse mode is achieved by a 1 kHz CPU interrupt

for 1 ms resolution and inherent synchronisation between

pulses performed on different channels.

5.3 Power consumption

The optimisations of throughput, latency and I/O perfor-

mance come at a cost in power consumption. The current

consumption was measured as up to 225 mA in infrastruc-

ture mode or up to 300 mA in ad hoc mode. A 1000 mAh

lithium polymer battery (of a similar physical size to x-

OSC) may be expected to last approximately 3 hours.

6. EVALUATION OF PERFORMANCE

An important aspect of WiFi performance is the network

connection delay. This may be critical if a connection is

lost unexpectedly. The time taken to connect to a router

was found to be approximately 30 seconds. The time taken

for x-OSC to create an ad hoc network was found to be ap-

proximately 15 seconds, however recreating this network

after another device had connected required only 6 sec-

onds. Infrastructure configurations were found to provide

better throughput and latency performance than ad hoc.

The following investigations represent a host computer con-

nected to a router via an Ethernet cable, the router hosts the

WiFi network to which x-OSC is connected. The only net-

work traffic was between x-OSC and the host machine.

6.1 Throughput

Throughput was quantified as the maximum sustained ana-

logue input packet/s. Each packet contains an OSC mes-

sage representing 16 floats, the complete UDP packet is

142 bytes long. The maximum throughput was found to

be approximately 370 packets per second when sending
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approximately 50,000 samples)

alone and when three x-OSCs are sending to the same host

machine simultaneously. As only three prototype modules

were available at the time of writing, performance with

more than three x-OSC devices could not be investigated.

6.2 Closed-loop latency

Closed-loop latency was quantified as the delay between

a physical change on an input and the resulting physical

change on an output. This measurement incorporates sam-

pling jitter, sending to the host application via WiFi, pro-

cessing by the host application and sending of the respond-

ing output change to x-OSC via WiFi. A 1 Hz square wave

was used to create a changing input signal and a PC appli-

cation was written to set an output equal to that input. Both

the input and output signals were connected to the inputs

of an XOR gate to generate a 2 Hz wave form with a pulse

width equal to the closed-loop latency. This pulse width

was logged using a frequency counter for several hours.

This arrangement is shown in Fig. 4. Investigations were

conducted for ideal conditions where only the waveform

input and output messages were sent and received, and for

loaded conditions where x-OSC was simultaneously send-

ing analogue input messages to the host application at 200

packet/s. The results are shown in Fig. 5. Under loaded

conditions the mean closed-loop latency was measured at

10.9 ms, for ideal conditions, this figure dropped to 5.5

ms. It is therefore assumed that under ideal conditions the

latency for sending input data only is approximately 2.75

ms.

A previous x-OSC design used the older MRF24WB WiFi

module in place of the MRF24WG. Investigations found

Figure 6. The x-OSC data glove, incorporating an IMU,

RGB LED, vibration motors and e-textile flex sensors

the MRF24WB provided a maximum throughput of 290

packet/s which would reduce to 100 packet/s with three

devices sending simultaneously. The closed-loop latency

was found to be 8.4 ms in ideal conditions and 15.8 ms

when also sending analogue input packets at 200 Hz.

7. EXAMPLE APPLICATIONS

In this section three example applications of x-OSC will

be described to provide practical and divergent examples

of its potential utility.

7.1 Data Gloves

The primary motivation for the development of x-OSC was

to enhance the glove-based musical system discussed in

section 2. Compatibility with the x-OSC glove (made by

Hannah Perner-Wilson and shown in Fig. 6) was achieved

using the oscpack C++ library [21]. Nine analogue inputs

were used to take readings from the resistive e-textiles sen-

sors, and one serial input was used to receive accelerom-

eter, gyroscope, magnetometer and orientation data from

an IMU. Five PWM outputs were used to control an RGB

LED and a pair of haptic feedback motors.

Each x-OSC glove operates in infrastructure mode, con-

necting to a router positioned close to the performer to re-

duce the risk of WiFi interference [19]. The remaining six

input, and 11 output channels provides scope for future de-

velopment.

7.2 Solar Wind Chime

A second example application of x-OSC is in the context

of an art/science communication project lead by the artist

and designer Helen White. The aim of the project is to

create a ‘solar wind chime’: an installation incorporating a

physical chime which responds to readings of solar particle

emissions provided in real-time by the National Oceanic

and Atmospheric Administration. The chimes resonate and

animate to produce an audio/visual manifestation of so-

lar wind fluctuations. In this installation, 12 x-OSC out-

put PWM channels are tuned to resonate the aluminium
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Figure 7. Solar wind chime: top of aluminium tube with

electromagnet (left) and solar wind chime assembly design

(right)

tubes of the solar wind chime, (shown in Fig.7). Further-

more, DC signals can be used to stimulate the physical dis-

placement of the tubes. The solar wind readings are inter-

preted and remapped to OSC messages within a Processing

sketch, using the oscP5 library [22].

7.3 Hexapod Robot

To demonstrate application of x-OSC beyond typical cre-

ative technology domains, x-OSC is used to connect soft-

ware running on the host computer with a Sparkfun 12

servo hexapod robot, equipped with two IR range sensors

as shown in Fig. 8. The software, written in C# using

the Ventuz OSC library [23], implements a basic gait and

avoidance algorithm which is used to drive twelve PWM

output channels connected to each servo and two analogue

input channels to take readings from the IR sensors.

8. CONCLUSION

x-OSC was developed for creative/music applications but

its high-performance and versatility make it a valuable tool

for any application requiring a real-time interface between

software and electronic sensors or actuators. The hardware

and firmware design has been optimised to achieve sus-

tained throughput of up to 370 messages per second and

latency of less than 3 ms. The widely supported OSC pro-

tocol enables any WiFi enabled platform to interface to the

32 multi-functional I/O channels without the need for spe-

cific drivers or software. Real-time access to settings via

browser provides a convenient interface during develop-

ment and eliminates the need for supporting software.
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