
CONTROLLING A SOUND SYNTHESIZER USING 

TIMBRAL ATTRIBUTES 

 
Antonio Pošćić Gordan Kreković 

Faculty of Electrical Engineering and Computing, 

University of Zagreb, Croatia 
antonio.poscic@fer.hr 

Faculty of Electrical Engineering and Computing, 

University of Zagreb, Croatia 
gordan.krekovic@fer.hr 

ABSTRACT 

In this paper we present the first step towards a novel 

approach to visual programming for sound and music 

applications. To make the creative process more intuitive, 

our concept enables musicians to use timbral attributes 

for controlling sound synthesis and processing. This way, 

musicians do not need to think in terms of signal pro-

cessing, but can rely on natural descriptions instead. A 

special point of interest was mapping timbral attributes 

into synthesis parameters. We proposed a solution based 

on fuzzy logic which can be applied to different synthe-

sizers. For a particular synthesizer, an audio expert can 

conveniently define mappings in form of IF-THEN rules. 

A prototype of the system was implemented in Pure Data 

and demonstrated with a subtractive synthesizer. A sur-

vey conducted among amateur musicians has shown that 

the system works according to their expectations, but 

descriptions based on timbral attributes are imprecise and 

dependent on subjective interpretation. 

1. INTRODUCTION 

The visual programming paradigm became very popular 

among computer musicians and multimedia artists in the 

last decade. One of the main reasons for the increasing 

acceptance of this approach is a faster learning curve 

compared to traditional textual programming [1]. Graph-

ical representations of computer programs are closer to 

the way how humans mentally represent problems, so it is 

easier to understand and develop programs using the 

visual approach [2]. Many visual programming editors 

support direct manipulation of graphical objects which 

further helps users to perceive how their actions affect the 

program [3]. The visual programming paradigm also 

brings other psychological benefits which are particularly 

important for musicians and artists as they usually do not 

have strong backgrounds in programming [4]. 

Besides these benefits, there is one more factor specifi-

cally related to computer music, multimedia, and interac-

tive art. In this domain, digital processing of audio sig-

nals, images, and videos is a fundamental part of every 

application. Many modern visual programming environ-

ments offer ready-to-use program elements which im-

plement digital signal processing algorithms and facilitate 

integration with peripheral devices. In the context of 

music and sound processing, such elements are oscilla-

tors, filters, audio effects, score following algorithms, 

auto-tuners, etc. Using prepared elements, musicians and 

artists do not need to cope with low-level signal pro-

cessing. Thanks to the general psychological benefits of 

the visual programming paradigm and visual program-

ming environments designed to meet practical needs, 

visual programming is now widely recognized among 

computer musicians and multimedia artists. 

In visual programming environments for sound and mu-

sic processing, audio signals usually participate in the 

data flow. Pure Data, Max/MSP, Kyma, AudioMulch, 

and Reaktor are some of the most popular environments 

which rely on this paradigm. While visual programming 

based on signal flow ensures maximal flexibility, it forces 

the user to think about music and sound art in terms of 

signal processing. Musicians have to understand how 

certain program elements affect the audio signal and 

which parameter values should be chosen to achieve the 

desired sound quality. 

With regards to these benefits of visual programming 

and to make the creative process more straightforward for 

musicians, within this research we present our vision and 

the foundations of a novel approach to visual program-

ming for sound and music applications. One of the cor-

nerstones of this concept relies on the notion that control 

over sound synthesizers, audio effects, and other ele-

ments for generating or modifying audio signals is estab-

lished through timbral attributes. Instead of manipulating 

audio signals and parameters of program elements, musi-

cians can focus on their musical ideas and realize them by 

describing timbral characteristics of a desired sound. For 

example, a musician can specify that the sound needs to 

be “metallic”, “bright”, and “harsh”. Besides the target 

timbre, it is also possible to define timbral changes 

through time. The focus of this paper is, thus, on the 

usage and transformation of timbral characteristics. The 

approach presented in this research will be later used as 

one of the main building blocks of the aforementioned 

innovative visual programming language and environ-

ment. 

There are two main factors which make the described 

concept challenging. The first one is a lack of theoretical 

and notational support related to timbre [5]. While other 

characteristics such as pitch and rhythm have more for-

mal notations, timbral attributes are not standardized. 

Copyright: © 2013 Antonio Pošćić, Gordan Kreković. This is an open-

access article distributed under the terms of the Creative Commons 

Attribution License 3.0 Unported, which permits unrestricted use, distri-

bution, and reproduction in any medium, provided the original author 

and source are credited. 

467

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



They are meaningful to musicians, but not convenient as 

an input to computer systems. 

The second big challenge is mapping timbral attributes 

into parameters of sound synthesizers or audio effects. 

Such relations are usually complex and ambiguous. Addi-

tionally, mappings should work for different synthesis 

techniques and different types of audio effects so they 

have to be adequately generic. Existing works include 

several attempts at synthesizing sound specified by tim-

bral attributes. Miranda used a machine learning algo-

rithm to induce relations between quasi-timbral attributes 

and synthesis parameters [6]. However, the available 

attributes were always associated with the structure of a 

sound synthesizer so Miranda’s approach would not work 

for any synthesizer other than the one designed as a part 

of his system. A research conducted by Gounaropoulos 

and Johnson employed a neural network to learn map-

pings between timbral attributes and audio features of a 

sound characterized by such attributes. This research used 

the backward-propagation algorithm to control the syn-

thesizer [7]. As the algorithm was specifically designed 

to work in the case when synthesis parameters are direct-

ly related to audio features, it can be only applied to addi-

tive synthesis. The problem of controlling synthesis pa-

rameters with timbral attributes was not sufficiently ex-

plored nor solved in such a way that the solution could be 

adapted to different synthesis techniques. 

Since this is also one of the central problems in our 

concept of a visual programming language and environ-

ment based on attribute flow, as mentioned before, in this 

paper we primarily focused on that issue. We devised, 

implemented, and evaluated a novel approach for map-

ping timbral attributes into synthesis parameters using 

fuzzy logic. Such a solution can be applied to an arbitrary 

sound synthesizer. The concrete implementation and 

demonstration was done using the programming language 

C and the visual programming environment Pure Data. 

We developed an external (Pure Data plugin) which ena-

bled using a fuzzy logic library within Pure Data and 

demonstrated the solution on a subtractive synthesizer. 

2. ATTRIBUTE-BASED VISUAL 

PROGRAMMING FOR MUSICAL 

COMPOSITION 

The encompassing approach and concept presented in 

this paper are based on the notion that combining intui-

tive inputs (such as timbral characteristics) with visual 

programming elements and time-dependent control flow 

will enable musicians and other users to innovate their 

approaches towards music, sound creation, and sound 

modeling. Similar concepts based on a fusion of different 

paradigms can be observed throughout various works and 

designs in the field. One notable example is the sound 

design language Kyma [8] which enables the manipula-

tion of sound objects in the domain of time. 

Our concept defines that timbral attributes should be 

used in a way that can be usually found in the field of 

dataflow languages while also allowing time-based con-

trol of sound flows. This duality of our approach, not 

found in similar works, results in a visual programming 

language and environment relying on two paradigms [9]: 

icon based [10] and diagram based [11] visual program-

ming. The icon based programming portion is linked with 

defining and selecting the timbral attributes through vari-

ous possible user interfaces. On the other hand, the dia-

gram based side of the concept is related to the links and 

interdependence between various manipulation objects 

such as synthesizers, VST plugins, etc. The time-bound 

connection between portions of the target sequence of 

sounds is established in a manner that resembles audio 

editing software such as Audacity [12]. 

Considering the aforementioned concepts, it’s im-

portant to stress that attribute-based flow has not been 

selected by accident but it's rather a design choice made 

to enhance symbiosis with the targeted visual program-

ming paradigm. The paradigm thus contains user inter-

face elements derived from tools such as the aforemen-

tioned Audacity as well as elements belonging to visual 

programming languages such as Pure Data. By combin-

ing these traits, we enable the users to efficiently explore 

the possible synthesized sounds both in the time domain 

and in the different domains of sound characteristics. 

Using concepts that are usually present in diagram and 

dataflow languages, such as the possibility to connect 

blocks that manipulate the attribute flow, the user will be 

able to architect sound sequences and define links be-

tween sounds. On the other hand, the user will have 

means to change and adapt the individual generated 

sounds by directly influencing the behavior of sound 

synthesizing blocks. The approach based on fuzzy logic 

that is demonstrated in this article should be seen as one 

of the possible methods encapsulated in these blocks. Our 

preliminary research has shown that attribute flow is best 

suited to achieve these objectives and desired characteris-

tics. These ideas and implementations will be further 

explored in future works. 

One of the crucial characteristics of the system is also 

the ability to include a variety of different approaches 

with regards to mapping timbral attributes into synthesis 

parameters. The possible methods, beside the fuzzy logic 

method described in this research, include neural net-

works, classifier cascades, regression tree analysis, etc. 

3. PROOF OF CONCEPT 

The first and very important step towards the concept of 

visual programming based on attribute flow was to estab-

lish mappings between timbral attributes and synthesis 

parameters. To solve this problem, we suggest an ap-

proach which uses an expert system based on fuzzy logic. 

Within this research we implemented that solution and 

tested it with a subtractive sound synthesizer. 

3.1 Mapping timbral attributes into synthesis param-

eters 

Previous attempts to synthesize sounds from their timbral 

descriptions relied on machine learning algorithms [6, 7]. 

The idea was to induce relations between timbral attrib-

utes and synthesis parameters by learning from examples 

of synthesized sounds. Such a problem is hard to solve 

for a general case, since there can be more than one solu-

468

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



tion in the space of synthesis parameters for a certain 

sound quality. Relations between timbral attributes and 

synthesis parameters are therefore ambiguous. To formu-

late the problem so that it can be solved with known 

machine learning techniques, both previous researches 

were limited to one specific sound synthesizer. As de-

scribed in the first chapter, authors used a priori 

knowledge about employed synthesizers and adapted 

algorithms to work with them. 

To find a solution which could be applied to sound syn-

thesizers with different structures, we decided to use an 

expert system based on fuzzy logic instead of a machine 

learning technique. Fuzzy logic is a form of probabilistic 

logic derived from the mathematical branch of fuzzy sets 

[13]. Compared to the traditional two-value logic where 

variables can be either true or false, fuzzy logic supports 

the concept of partial truth so variables can have a truth 

value that ranges between 0 and 1. This concept makes 

fuzzy logic convenient for quantifying imprecise infor-

mation and making decisions based on incomplete data 

[14]. Furthermore, facts and rules can be described using 

linguistic terms which make the concept closer to human 

reasoning. 

Linguistic variables are subjective and context-

dependent variables whose values are words. For exam-

ple, if the timbral attribute “warmth” is observed in the 

role of a linguistic variable, its values could be “very 

high”, “high”, “moderate”, “low”, and “very low” as 

shown in Figure 1. Inputs in a fuzzy logic system are 

usually numeric so it is necessary to convert these numer-

ic values into linguistic terms. The linguistic terms can be 

considered fuzzy sets since an input value can have par-

tial membership in more sets at the same time. For exam-

ple, if the attribute “warmth” has the numeric value 0.85, 

it is situated between “very high” and “high” according to 

Figure 1. Therefore, the value belongs to both sets but not 

by the same degree. Fuzzy sets can use different types of 

membership functions such as triangular, trapezoidal, 

bell-shaped, and sigmoid functions. 

 

Figure 1. Fuzzy membership functions for the attribute 

“warmth”. 

A model for making decisions based on fuzzy logic us-

es a rule set defined by linguistic variables. Typically, 

fuzzy rules are specified in the form of IF-THEN state-

ments: 

IF (x1 IS S1) AND/OR ..., (xn IS Sn) THEN y IS T, 

where xi represents input fuzzy variables, y is the output 

variable, while Sn and T stand for input and output fuzzy 

sets. The first step of applying the model is to convert 

input variables into fuzzy logic variables using member-

ship functions. Subsequently, output variables are calcu-

lated by evaluating the rules. In most applications, out-

puts have to be numerical values so fuzzy output varia-

bles must be defuzzified. Algorithms used for evaluating 

the rules and for the defuzzification process are explained 

in [14, 15]. 

Fuzzy rule sets are appropriate for representing expert 

knowledge of a certain domain. As the rules have a sim-

ple form, they can be conveniently written, discussed, 

and tuned by human experts. Systems based on fuzzy 

logic have been used in many different fields such as 

engineering, economics, finance, geology, meteorology, 

and sociology. Various problems from the musical do-

main were also approached using fuzzy logic. It has been 

employed for evaluating computer music [16], recogniz-

ing rhythmic structures [17], coding of musical gestures 

for interactive live performances [18], analyzing the emo-

tional expression in music performance and body motion 

[19], mapping visual information into aural information 

and vice-versa [20], sound synthesis [21], and several 

other applications. 

For setting synthesis parameters, Hamandicharef and 

Ifeachor employed an expert system based on fuzzy logic 

[22]. The purpose of their system was to find such syn-

thesis parameters so that the synthesized sound mimics 

the target sound. The inputs of the expert system were 

audio features extracted from the target sound, while the 

outputs were parameters for the sound synthesizer. Audio 

experts were involved in building the fuzzy model and 

specifying relations between audio features and synthesis 

parameters. 

We believe that having experts define rules is also ben-

eficial in our case. Namely, for each synthesizer intended 

to be controlled using timbral attributes, a fuzzy model 

has to be defined once. Since the model is stored outside 

the program code, there is no need for programming, so 

the model can be easily defined and tuned by sound syn-

thesis experts. In practice, such experts could be synthe-

sizer manufacturers or users who thoroughly understand 

the architecture of a specific synthesizer. Once the model 

is ready, other users can control the synthesizer by adjust-

ing timbral attributes without writing or changing the 

fuzzy model. 

This way, the expert system based on fuzzy logic can be 

used for sound synthesizers with various structures. The 

only requirement to adapt the system to work with a dif-

ferent synthesizer is to write a new fuzzy model. On the 

other hand, the previous solutions based on machine 

learning algorithms were not capable of such adaptation. 

Those solutions relied on a priori knowledge about the 

synthesizer structures, so training machine learning algo-

rithms to work with different synthesizers was impossi-

ble. 

We expect an expert system based on fuzzy logic to 

work well with synthesis techniques for which the rela-

tions between timbral attributes and synthesis parameters 

are continuous or semi-continuous. Most of the popular 

synthesis techniques, such as subtractive and additive 

synthesis, satisfy the criterion. On the other hand, fre-

quency modulation is not one of the supported synthesis 

techniques since the ratio of modulator and carrier fre-

469

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



quencies is in a very complex relation with the perception 

of harmonicity. For that reason, we will limit this re-

search to subtractive synthesis and extend it to other 

synthesis techniques in the future. 

The selection of attributes used to describe the desired 

sound in our system was taken from [7]. Those attributes 

are: bright, warm, harsh, thick, metallic, woody, hit, 

plucked, and constant amplitude. The set of timbral at-

tributes is not supposed to be orthogonal and it should 

instead only serve as an intuitive vocabulary for defining 

target sounds. In the sound description, an absolute value 

between 0 and 1 is assigned to each attribute. A value of 

0 means that the particular quality is not presented in the 

sound, while the value 1 indicates that the quality is very 

prominent. 

3.2 Implementation 

Within this research we have developed a system for 

mapping timbral attributes to synthesis parameters which 

can be used in the Pure Data visual programming envi-

ronment. To create an interface between Pure Data and a 

fuzzy logic library, we have implemented an external 

Pure Data component. It accepts a list of timbral attrib-

utes as input and calculates defuzzified outputs for the 

variables declared in the Fuzzy Control Language file. 

The Fuzzy Control Language (FCL) is a standardized 

(International Electrotechnical Commission standard, 

IEC 61131-7) language used to define and implement 

fuzzy logic models. 

A similar implementation of a Pure Data external exists 

which is based on the libfuzzy library and the Fuzzy In-

ference System (FIS) notation [23]. However, the FIS 

notation is inferior both in usability and flexibility when 

compared to FCL. One example of the characteristics 

which make FIS less ergonomic is the requirement for 

each rule to be written using variable indices. This kind 

of deficiency could prove to be an insurmountable obsta-

cle for typical users such as musicians when creating a 

large rule set. 

The fuzzy logic implementation described in this paper 

relies on the jFuzzyLogic library [24]. Since Pure Data 

externals are natively written in C, a number of different 

C/C++ fuzzy logic libraries had been evaluated before we 

chose the jFuzzyLogic library. For example, the afore-

mentioned libfuzzy library presents a valid fuzzy logic 

implementation in cases when the FIS input format is 

acceptable. None of the available open source C/C++ 

libraries were adequate due to obsolescence and improper 

or incomplete support for the Fuzzy Controller Language. 

Since jFuzzyLogic was written in Java, wrapper func-

tions that rely on Java Native Interface calls [25] have 

been implemented. These functions serve as glue code 

between the main functions of the external written in C 

and the jFuzzyLogic library. Proper error handling is also 

provided through these wrapper functions. To improve 

performance, a caching system based on the sglib library 

[26] has been implemented to reduce the number of out-

put recalculations. 

For demonstration and evaluation of the system we 

used a simple subtractive synthesizer with one oscillator 

and sub-oscillator, a noise generator, two filters (low-pass 

 

Figure 2. Block diagram of the subtractive synthesizer 

used in the experiments. 

and band-pass), an amplitude envelope generator, two 

low-frequency oscillators, and a chorus effect. The block 

diagram of the synthesizer is shown in Figure 2. 

This is obviously a simple synthesizer which is not 

completely capable of producing sound qualities for all 

chosen timbral attributes as one might expect. However, 

it should not be considered a limitation, because the main 

goal of our system is to mimic a human expert and do the 

best with a given sound synthesizer regardless of its 

structure and capabilities. For the purposes of the evalua-

tion, we implemented the synthesizer as a Pure Data 

patch and connected it to our external object as shown in 

Figure 3. 

 

Figure 3. Example of using the external object within a 

Pure Data patch. The external object for fuzzy logic is 

called fuzzext. 

470

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



The fuzzy logic model for mapping timbral attributes 

into synthesis parameters was defined in the FCL lan-

guage. Inputs of the model are 9 timbral attributes rang-

ing from 0 to 1 and there are 24 outputs with different 

ranges representing synthesis parameters. For the fuzzifi-

cation and defuzzification processes, we defined triangu-

lar and trapezoidal functions specifically for each input 

and output variable. As the defuzzification technique, the 

model uses center of gravity. The rule set for calculating 

synthesis parameters consists of 85 rules in IF-THEN 

form. Some examples of the rules are as follows: 

IF harsh IS little THEN filterlfo_r IS small; 

IF plucked IS very_prominent OR hit IS prominent OR 

hit IS very_prominent THEN volume_s IS very_small; 

IF warm IS prominent OR warm IS very_prominent THEN 

filterfreq_r IS moderate; 

IF warm IS prominent OR warm IS very_prominent THEN 

osc1type_r IS square; 

IF woody IS very_prominent OR woody IS prominent OR 

woody IS moderate THEN osc1type IS square; 

4. EVALUATION 

The purpose of the evaluation was twofold: to test the 

functionality of our system and to assess to what extent 

the chosen timbral attributes are appropriate for describ-

ing sounds. The evaluation was conducted among 6 ama-

teur musicians who were asked to manually set synthesis 

parameters for 5 given sound descriptions. These descrip-

tions were formed in the same way as the inputs in our 

system. For example: 

bright 0.8, warm 0.6, harsh 0.1, thick 0.2, metallic 0.1, 

woody 0.7, hit 0.1, plucked 0.1, constant amplitude 0.6 

The participants did not receive any further explanations 

regarding the attributes so they had to interpret the given 

descriptions entirely by themselves. To compare the re-

sults of manual parameter manipulation with the results 

obtained algorithmically, we used the same descriptions 

as inputs in our system and generated the sounds. 

After the participants finished their tasks of manual sound 

design, they received the sounds generated by our system 

and a survey. In the first set of questions they were asked 

to evaluate how the sounds synthesized by our system fit 

the sound descriptions. The second set of questions re-

garded the similarity between their sounds and the sounds 

generated using our system. All these questions were of 

rating scale type with 5 available options. For the first set 

of questions the scale included a range from very poor (1) 

to very well (5), while the second set included options 

ranging from very different (1) to very similar (5). Final-

ly, the third set consisted of the following general ques-

tions: 

1. How clear were the given descriptions based on at-

tributes? (1 - very unclear, 5 - very clear) 

2. How difficult was setting the parameters manually? 

(1 - very easy, 5 - very difficult) 

3. How helpful the system for automatic synthesis 

from timbral attributes can be helpful for musicians? 

(1 - very little, 5 - very much) 

5. RESULTS 

The average grade for the questions concerning how the 

generated sounds met the given descriptions was 3.9 and 

the median grade was 4. These statistical values were 

calculated taking into consideration all 6 participants and 

all 5 sounds. The best rated sound with the prominent 

"plucked" attribute had an average grade of 4.2, while all 

other sounds had averages 4.0 or below. The questions 

regarding perceptual similarity to their sounds were grad-

ed by the participants with an average of 2.7. The median 

was 4. Distribution of all grades is shown in Figure 4. 

The average grades on last three questions were 3.7, 

3.2, and 3.9 respectively for clarity of such descriptions, 

difficulty of manual parameter setting, and potential use-

fulness of our approach. 

 

Figure 4. For each grade from 1 to 5 this chart shows 

how many times that grade appeared in the answers 

from all participant and for all sounds. The blue bars 

represent grades for achieving given sound descriptions, 

whilst the red ones represent grades for perceptual simi-

larity to participants’ sounds. 

6. DISCUSSION 

The results have shown that descriptions based on timbral 

attributes are somewhat imprecise for synthesizing exact 

sounds. The sounds that were created manually are per-

ceptually different from automatically generated exam-

ples, but the participants were still quite satisfied with the 

results. To overcome this problem, our system could be 

improved to generate more than one option for any given 

description, thus allowing musicians to choose the most 

accurate instance of a sound. 

The answers on the last three questions suggest that the 

problem of synthesizing sounds from timbral attributes is 

relevant to musicians and that our approach could be 

viable. 

7. CONCLUSION 

Parameters of a sound synthesizer can be successfully 

controlled from timbral attributes using an expert system 

based on fuzzy logic. For different types of synthesizers, 

fuzzy models can be defined by audio experts and later 

used without adaptation. Using an example based on a 

subtractive synthesizer, we have shown that the system 

471

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



satisfies expectations of target users. The main problem 

of this approach is the lack of unified and strict relations 

between the chosen timbral attributes and the general 

perception of the sound. For that reason, future research 

could examine other sets of timbral attributes and im-

prove the system so that it can generate several options 

for a given description. 

The results of this research are generally encouraging 

with regards to our intention to develop a visual pro-

gramming environment for music and sound processing 

based on attribute flow. 

8. REFERENCES 

[1] K.N. Whitley, “Visual programming languages and 

the empirical evidence for and against,” Journal of 

Visual Languages and Computing, vol. 8, no. 1, pp. 

109–142, 1997. 

[2] O. Clarisse and S.-K. Chang, “VICON: A Visual 

Icon Manager” in Visual Languages. Plenum Press, 

1986. 

[3] B. Shneiderman, “Direct Manipulation: A Step 

Beyond Programming Languages,” IEEE Computer, 

vol. 16, no. 8, pp. 57–69, 1983. 

[4] D.C. Smith, Pygmalion: A Computer Program to 

Model and Stimulate Creative Thought. Birkhaüser-

Verlag, 1977. 

[5] T. Wishart, On Sonic Art. Taylor & Francis Group, 

1996. 

[6] E. Miranda, “An Artificial Intelligence Approach to 

Sound Design,” Computer Music Journal, vol. 19, 

no. 2, pp 59–75, 1995. 

[7] A. Gounaropoulos and C. Johnson, “Synthesising 

Timbres and Timbre Changes from Adjectives/ 

Adverbs” in Applications of Evolutionary Com-

puting. Springer-Verlag, 2006. 

[8] C. Scaletti, “Composing sound objects in Kyma,” 

Perspectives of New Music, pp. 42–69, 1989. 

[9] E.J. Golin and S.P. Reiss, “The Specification of 

Visual Language Syntax,” Journal of Visual 

Languages and Computing, vol. 1, no. 2, pp. 141–

157, 1990. 

[10] C. Frasson and M. Erradi, “Principles of an icons-

based language,” in Proc. of the 1986 ACM 

SIGMOD int. conf. on Management of data, New 

York, 1986, pp. 144–152. 

[11] G. Engels and R. Heckel, "From trees to graphs: 

defining the semantics of diagram languages with 

graph transformation" in ICALP Satellite 

Workshops, Geneva, 2000, pp. 373–382. 

[12] The Audacity Team. (2012). Audacity: Free Audio 

Editor and Recorder [Online]. Available: 

http://audacity.sourceforge.net/ 

[13] L.A. Zadeh, “Fuzzy sets,” Information and Control 

8, pp. 338–353, 1965. 

[14] B. Kosko, Fuzzy Thinking. The new science of fuzzy 

logic. Hyperion, 1993. 

[15] G.J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: 

Theory and Applications. Prentice Hall PTR, 1995. 

[16] M. Miličević, “Aesthetics of Designing an Adaptive 

Fuzzy System for the Evaluation of the Computer 

Music” in Proc. of the Int. Computer Music Conf., 

Beijing, 1999, pp. 538–541. 

[17] T. Weyde, “Grouping, Similarity and the 

Recognition of Rhythmic Structure” in Proc. of the 

Int. Computer Music Conf., Havana, 2001. 

[18] N. Orio and C. De Piro, “Controlled Refractions: A 

Two Levels Coding of Musical Gestures for 

Interactive Live Performances” in Proc. of Int. 

Computer Music Conf., Ann Arbor, 1998. 

[19] A. Friberg, “A Fuzzy Analyzer of Emotional 

Expression in Music Performance and Body 

Motion” in Proc. of the Music and Music Science, 

Stockholm, 2004. 

[20] R. Cádiz, “A Fuzzy-Logic Mapper for Audiovisual 

Media,” Computer Music Journal, vol. 30, no. 1, pp. 

67–82, 2006. 

[21] E. Miranda and A.J. Maia, “Granular Synthesis of 

Sounds Through Markov Chains” in Proc. of the Int. 

Computer Music Conf., Barcelona, 2005. 

[22] B. Hamandicharef and E. Ifeachor, “Intelligent and 

Perceptual-Based Approach to Musical Instruments 

Sound Design”, Expert Systems and Applications, 

vol. 39, no. 7, pp. 6476–6484, 2012. 

[23] R. Cádiz and G. Kendall, “Fuzzy Logic Control Tool 

Kit: Real-Time Fuzzy Control for Max/MSP and 

Pd” in Proc. of the Int. Computer Music Conf., New 

Orleans, 2006. 

[24] P. Cingolani and J. Alcalá Fernández, "jFuzzyLogic: 

A Robust and Flexible Fuzzy-Logic Inference 

System Language Implementation" in Proc. of the 

2012 IEEE Int. Conf. on Fuzzy Systems, Brisbane, 

2012, pp 1–8. 

[25] Oracle. (2011). Java Native Interface [Online]. 

Available: 

http://docs.oracle.com/javase/6/docs/technotes/guide

s/jni/ 

[26] M. Vittek, P. Borovansky, and P.-E. Moreau, "A 

Simple Generic Library for C, in Reuse of Off-the-

Shelf Components” in Proc. of the 9th Int. Conf. on 

Software Reuse, Turin, 2006, pp. 423–426. 

472

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden




