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ABSTRACT

We present a method of audio interpolation suitable for the
restoration of missing and/or corrupted audio samples. Our
method assumes that the missing/corrupted samples can be
easily identified and are subsequently treated as missing
data. We then model the audio signal as a linear combi-
nation of elementary waveforms (referred to as atoms) and
estimate the values of the missing samples by solving a
penalized linear regression problem. A first work in this
direction was recently presented using the moniker ‘audio
inpainting’ (in deference to similar work in the image pro-
cessing community). We extend this avenue of research
by incorporating additional continuity constraints into the
problem, which leads to improved estimates of the miss-
ing data. Furthermore, we show how our method leads to a
natural framework for morphing/transitioning between two
sounds. Finally, we present several examples that illustrate
the effectiveness of our interpolation strategy and the qual-
ity of morphing that can be attained.

1. INTRODUCTION

It is not uncommon for audio signals to suffer some form of
degradation during the various stages of recording, trans-
mission, and playback. For example, a scratched com-
pact disc or dropped network packet can lead to chunks
of missing samples. Likewise, impulsive clicks, clipping,
and noise are common forms of audio degradation. In this
work we focus specifically on localized types of distor-
tion. In other words, we assume that the distorted samples
are surrounded by undistorted ones (which occurs in many
practical situations). Furthermore, we assume that the dis-
torted samples can be easily identified, either manually, or
through some other process (e.g., by detecting regions of
silence, clipping, and so on). The task at hand is then one
of interpolation, i.e., we aim to estimate the missing sam-
ples at known locations using the surrounding data.

There are several works in the literature aimed at audio
interpolation [1–5]. In Janssen et al. the sound was mod-
elled as an autoregressive (AR) process and the unknown
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parameters are estimated from the known data [1]. The
missing/corrupted samples can then be interpolated using
the AR model.

The work presented in Adler et al. [5] was inspired by re-
lated research in the image processing community on ‘in-
painting’ (a process whereby missing pixels are interpo-
lated from the surrounding ones [6]). We may also view
the inpainting problem as a regression problem when the
signal is modeled as a linear combination of elementary
functions (atoms).

In the following sections we describe an extension of the
audio inpainting work in [5] using recent results in struc-
tured sparse modelling of audio [7]. We compare our ap-
proach to those presented in [5] and [1] and show that in
both cases we achieve superior reconstruction of the miss-
ing samples (in terms of minimizing the estimation error).
We also demonstrate how the proposed method leads to a
natural framework for morphing/transitioning between two
sounds.

The remaining sections are laid out as follows. We first
present our model and then outline a sketch of the interpo-
lation problem. We then propose an estimation algorithm
based on penalized linear regression with continuity con-
straints. Finally, we present several examples illustrative
of our interpolation and morphing results.

2. THE ADDITIVE MODEL

We adopt the following additive sound model

y(t) =
∑
m

∑
n

xm,nφm,n(t) (1)

In other words, the audio signal y(t) is modelled as a linear
combination of elementary waveforms φm,n(t) referred to
as atoms. The double indices (m,n) typically have a time-
frequency interpretation (and their extent depends on the
signal length and bandwidth). For example, we use Gabor
atoms

φm,n(t) = h(t− am) exp(j2πbnt) (2)

which are generated by translating and modulating a smooth
and compact window function h(t). In this model the pa-
rameters a and b are the time and frequency sampling in-
tervals, m and n are integer indices, j =

√
−1 is the

imaginary unit, and t is time. Gabor atoms are a natural
choice for modelling audio since they have a compact time-
frequency footprint (and thus represent distinct elements
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of the time-frequency plane). The synthesis coefficients
xm,n in this model can be calculated using the short-time
Fourier transform (STFT). However, when the set of atoms
is redundant (e.g., when the Gabor atoms are oversam-
pled in time and/or frequency) there is, strictly speaking,
no unique way to determine the synthesis coefficients. In
fact, in recent years considerable effort has been invested
into examining alternative methods for estimating the syn-
thesis coefficients. In particular, sparse representations are
increasingly seen in the literature (see [8] for a review).
There are many advantages to sparse models, chiefly data
reduction and increased salience of the model parameters
(i.e., there is a clearer correspondance between the atoms
and the sound signal). Furthermore, many natural signals
are inherently sparse which has spurred on much of the
growth in this area. For example, in the field of compres-
sive sensing it has been shown that sparse signals can be
reconstructed using a small number of measurements [9].
We show in the following sections how sparsity can be
used in a similar way to regularize the interpolation pro-
cedure.

3. PROBLEM FORMULATION

3.1 Interpolation

In discrete-time the sample values are known at a distinct
set of locations and thus the model in Eq. (1) can be re-
written as

y = Φx (3)

where y is a vector containing the audio samples, the columns
of the dictionary Φ are Gabor atoms, and x is a vector of
synthesis coefficients. When the signal is degraded/distorted
we lose information about y. When interpolating audio
samples we assume that only some of the samples from y
are reliable and that the others should be treated as missing
data (to be re-estimated). We can model this scenario as

z = My (4)

where z is the observed signal and M is a diagonal (bi-
nary) mask matrix that indicates which samples from y are
reliable and which should be treated as missing data. Re-
placing y in Eq. (4) with the model from Eq. (3) leads to

z = (MΦ)x = Ψx (5)

where we use Ψ to represent the degraded dictionary. If we
can accurately estimate x from Ψ and z, then we may re-
construct the missing samples via linear regression, i.e., us-
ing the linear model in Eq. (3). This summarizes the inter-
polation setup, however, we have not yet considered how
to estimate x. We withhold this discussion until Sec. 4.

3.2 Morphing/Transitioning

We can use the same setup described in the previous sec-
tion to morph/transition between different sounds. For ex-
ample, we can generate a new sound by concatenating a
source sound, silence, and a target sound together. We
may then treat the samples between the source and target

as missing data (by generating an appropriate mask ma-
trix). In this case performing the interpolation procedure
will create a morph or transition between the two sounds.

We note that this type of morphing is based on waveform
interpolation as opposed to feature (or descriptor) inter-
polation [10]. Descriptor interpolation (e.g., interpolating
between partials [11]) is more common in the literature,
however, recent examples of waveform interpolation can
be found as well. For example in Olivero et al. [12] the
authors examined how to find a time-frequency multiplier
capable of transforming one sound into another.

Many morphing techniques aim to create several hybrid
sounds lying somewhere between the source and target [13].
Our approach, on the other hand, is a simple technique
for smoothly transitioning between two sounds and, in this
sense, bears more similarity to a cross-fade. However, our
morphing results are quite audibly different from cross-
fading in many cases (as we demonstrate in the results
section). In essence we propose to use (or maybe more
accurately abuse) the interpolation procedure in order to
produce large chunks of new samples based on the sur-
rounding data.

4. ESTIMATION PROCEDURE

4.1 Penalized linear regression

As we noted in Sec. 2, when the Gabor atoms are over-
sampled in time and/or frequency (which is typically the
case), there is no unique way to determine the synthesis
coefficients. Furthermore, even if the Gabor atoms were
critically sampled, the degraded dictionary would still be
rank deficient due to the multiplication by M (which dis-
cards data). This means that the system of equations in
Eq. (5) is underdetermined and there is no unique way to
determine x. In this case, we can regularize the problem
by introducing an objective function that penalizes certain
types of solutions. In other words, we seek a solution that
is consistent with our a priori knowledge of what a “good”
solution should look like by penalizing solutions that devi-
ate from this expectation. For example, we could attempt
to solve

min ‖x‖22 subject to ‖z−Ψx‖22 ≤ ε (6)

where the second term expresses our desire for a solution
that is consistent with the observed data and the first term
penalizes large coefficients (in this case the goal is to find a
minimum energy representation). When ε = 0 the solution
to this set of equations corresponds to the pseudo-inverse.
Unfortunately, the pseudo-inverse tends to result in solu-
tions which contain many small non-zero coefficients (and
this tends to complicate the interpretation and use of the
additive model) [14].

Another approach to counteract the ill-posedness of the
interpolation problem is to penalize non-sparse solutions.
There are many reasons for preferring sparse solutions as
highlighted at the end of Sec. 2. We may leverage the fact
that musical signals tend to be relatively sparse when rep-
resented using Gabor atoms and the additive model. For
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example, it is well-known that sparse signals can be recon-
structed using a limited set of measurements (this is the
basis of compressive sensing) [9].

In Adler et al. [5] sparse approximation was suggested
as a tool to regularize the audio interpolation process. In
particular, the orthogonal matching pursuit (OMP) algo-
rithm was used to estimate the additive model coefficients
in Eq. (5).

An alternative way to find sparse representations is to re-
place the 2-norm in Eq. (6) with the 1-norm which leads
to the basis pursuit denoising (BPDN) optimization prob-
lem [15]:

min ‖x‖1 subject to ‖z−Ψx‖22 ≤ ε (7)

The 1-norm is attractive seeing as it is convex (so conver-
gence to a local minimizer is guaranteed) and because it
often induces sparse solutions [16].

In [7] it was shown that additional structure exists be-
tween the non-zero coefficients in sparse atomic models
of audio. Specifically, it was shown that time-frequency
representations of audio tend to exhibit a high degree of
continuity between temporally adjacent atoms. This result
is due to the fact that musical sounds tend to be somewhat
stable (e.g., the decay time of a resonant mode tends to
be longer than the length of individual atoms, and there-
fore multiple adjacent atoms tend to be activated simulta-
neously). In the following section we describe how recent
results on structured-sparse modelling of audio can be ap-
plied to the interpolation problem. We begin by reviewing
the proposed optimization problem and then discuss algo-
rithms for its solution (a more detailed treatment of this
formulation can be found in [7]).

4.2 Structured-sparse estimation

We would like to modify the BPDN optimization problem
in order to exploit joint relationships between the represen-
tation coefficients. To this end we propose the following
generalization of the BPDN problem (termed G-BPDN)
for structured-sparse estimation:

min ‖f(x)‖1 subject to ‖z−Ψx‖22 ≤ ε (8)

Ideally, the function f should sparsify x. This in turn al-
lows us to use a BPDN-like formulation with coefficient
vectors that are sparse after some transformation. This for-
mulation is similar to the co-sparse analysis formulation
from [17], however, we do not restrict f to be a linear op-
erator. For the task of audio interpolation we propose using
then following G-BPDN objective function:

‖f(x)‖1 = ‖L|x|‖1 (9)

where |x| = [|x1|, |x2|, . . . , |xn|]T is a vector containing
the magnitudes of x and

L =

[
γ̃D
γI

]
(10)

In our case the analysis operator D is a matrix designed
to calculate the amplitude difference between temporally

adjacent pairs of coefficients and γ̃ = 1 − γ. The param-
eter γ ∈ [0, 1] can be used to emphasize either sparsity or
amplitude continuity, however, in this work we simply fix
γ = 0.5 (in which case it drops out of the optimization
problem).

In this form, the G-BPDN optimization problem can be
used to emphasize sparsity of the time-frequency coeffi-
cients as well as the sparsity of their time derivative (which
should produce solutions with greater temporal continu-
ity). It should be noted that the proposed optimization
problem is quite similar to both the fused-lasso [18] and
total-variation denoising [19] which are well-known in the
statistics and image processing literature, respectively.

We propose solving this problem via smoothed projected
gradient descent as outlined in [7]. We note that other tech-
niques, such as the alternating direction method of multi-
pliers (ADMM), could be used as well [20]. Projected gra-
dient descent is a two-step procedure: a gradient descent
step is taken and the result is projected onto the set of fea-
sible solutions [21, 22]. The steps of this algorithm are
outlined in Alg. 1.

Algorithm 1 Projected Gradient G-BPDN

1: init: x(0) = ΦHz, n = 0
2: repeat
3: u(n) = x(n) − µ · diag(S∞(x/e))LTS∞(L|x|/e)
4: λ(n) = max

(
0, ε−1/2‖z−Ψu(n)‖2 − 1

)
5: x(n+1) = u(n) + λ(n)

1+λ(n) Ψ
H(z−Ψu(n))

6: n = n+ 1
7: until stopping condition

In Alg. 1, line 3 corresponds to the gradient descent
step and line 5 corresponds to a projection onto the fea-
sible set 1 . The operator S∞ denotes projection onto the
inf-norm ball and e is a smoothing parameter (as outlined
in [7]). In general we stop this algorithm when the change
in the objective function from one iteration to the next is
small (e.g., less than 10−6), however, a maximum number
of iterations may be enforced as well.

5. RESULTS

5.1 Interpolation results

In this section we provide results that demonstrate the ef-
ficacy of our structured-sparse estimation approach. We
focus specifically on an experiment outlined in Adler et
al. [5] so that we may directly compare our results against
a recent (and similar) approach. The test data consist of
10, five seconds music signals sampled at 16kHz which
are available from [5]. Each of these audio excerpts was
corrupted periodically (every 100ms) by setting an interval
of samples to zero. The size of the missing interval dura-
tion was varied from a fraction of a millisecond up to 10ms
in order to gauge how the performance would change with
respect to the amount of missing data. A mask matrix was
manually created to identify the missing samples. In the

1 Provided Ψ is a Parseval tight frame as outlined in [7].
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following experiments we used a tight frame Gabor dic-
tionary created using Hann windows of length 64ms with
75% time overlap 2 . Furthermore, we set the parameter
ε = 10−10 in order to force our model to represent the
known samples with virtually no error 3 .
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Figure 1. Results of interpolation for missing intervals of
various durations. Results averaged over 10 test signals.

The interpolation performance was evaluated by measur-
ing the signal-to-noise ratio (SNR) between the true signal
and the residual error:

SNR = 10 log10
‖y‖22

‖y −Φx̂‖22
(11)

where x̂ is the vector of estimated model coefficients.
Fig. 1 illustrates the SNR vs. missing interval duration

averaged over all 10 test signals for both sparse and struc-
tured sparse interpolation (e.g., the solutions to Eq. (7) and
Eq. (8), respectively). This graph also shows the results
obtained using code from [5] (labelled as OMP) and the
AR model from [1] (labelled as Janssen). The G-BPDN
interpolation obtains the highest SNR in all cases. The
benefit of G-BPDN (over the purely sparse estimation) is
also more readily apparent as the missing interval duration
grows. This illustrates that solutions with greater temporal
continuity are indeed beneficial for bridging larger gaps of
missing samples. The AR model from Janssen [1] also per-
forms well for large gaps and even outperforms the purely
sparse solution in this case. This is presumably because
the AR model contains a memory of the previous samples
(and therefore better models the temporal structure of the
signal).

Fig. 2 illustrates the interpolated waveforms for a missing
interval of 10ms (for a single test sound). It is evident that
the G-BPDN solution is slightly closer to the true wave-

2 In this work the set of dictionary atoms span the space of the input
signal. Block/frame-based processing was not used.

3 We note that the value of ε we use is smaller than the one used in
[5]. It is difficult to say whether or not this effects the results since the
algorithms used are completely different. The value of ε used in this work
was optimized to obtain the best result for the algorithm we considered
(and we assume the authors in [5] would have done the same as well).

form than the other estimates. However, one can not auto-
matically conclude that an improvement will be perceived
when listening to the interpolated sounds. Indeed, when
listening to sounds interpolated with BPDN and G-BPDN
the results are very similar. This may, however, be a con-
sequence of the fact that the auditory system is capable of
filling in short gaps in missing sounds, which is a well-
known fact (see for example, [23]). We have included
several examples of interpolated sounds on the companion
website [24].
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Figure 2. Waveform plot showing the interpolated results
for a single test signal over a missing interval of 10ms.

From a computational point-of-view BPDN and G-BPDN
have approximately the same complexity (each is domi-
nated by two matrix vector products with the dictionary
at each iteration). The overall complexity will depend on
the number of iterations required for convergence which is
difficult to predict a priori. A possible advantage of our
approach is that after each iteration the coefficients x will
satisfy ‖z−Ψx‖22 ≤ ε. In other words, the representation
error is always bounded. An analysis of the computational
complexity of OMP can be found in [25]. Quite informally
we note that BPDN and G-BPDN both ran much faster (be-
tween 5-10× faster for a full run) than OMP on the same
computer (all algorithms were implemented in Matlab and
run on the same data).

5.2 Morphing results

As mentioned in Sec. 3.2 we can use the interpolation frame-
work in order to transition between a source and target
sound. To recap: we simply include a gap of missing
samples between the two sounds which is subsequently
treated as missing data to be interpolated. In general, the
amount of data we want to estimate is much greater when
transitioning between two sounds (in comparison to typi-
cal restoration tasks). The atoms in the Gabor dictionary
should, at minimum, span the interval we wish to interpo-
late. As a rule of thumb we have found that atoms any-
where from 2 to 4× the gap length produce good results.
As this leads to very long atoms in practice, it is wise to
ensure that the number of known samples is at least this
large as well.
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When estimating the additive model coefficients using
Eq. (8) we have some flexibility with regard to the param-
eter ε, which controls the degree of approximation error
that we are willing to tolerate (with respect to the known
samples). As we increase the value of ε the set of feasible
solutions grows, which in turn means that solutions with
a greater degree of temporal continuity may be found (al-
though these solutions will no longer perfectly match the
known data). This flexibility can be beneficial when transi-
tioning between two sounds since we often want the tran-
sition to be as smooth as possible. We have also found that
novel sounds/timbres can be created with large values of ε
(these can be heard online as discussed below).

0 1 2 3 4

−0.4

−0.2

0

0.2

0.4

0.6

t im e ( s )

n
o
r
m
.
fr
e
q

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

Figure 3. A one second transition between a saxophone
passage and a female vocal excerpt (the sampling rate was
16kHz). Top: known data (light gray), interpolated data
(dark gray). Bottom: spectrogram.

Fig. 3 shows a one second transition between a saxo-
phone passage and a female vocal excerpt. For this ex-
ample a Gabor dictionary with 2s long atoms was used and
ε was set to 10−10. The spectrogram seems to indicate an
extension and averaging of the partials from each sound
in the transition region. The audible impression for this
particular transition is that the start/end of each sound has
been extended into the transition region by adding reverb
and preverb (i.e., reverb that precedes the sound).

We cannot quantitatively assess the morphing results (since
no ground truth data exists for such a task). In order to
qualitatively test the morphing results we have experimented
with a wide variety of sources/targets including relatively

stable sounds (e.g., clarinet, trumpet, tuba) and sound tex-
tures (drums, noise, abstract sounds). We also tested sev-
eral missing interval durations from very short durations
(250 ms) to extremely long durations (3 s). We have posted
several audio examples on the companion website [24].

We make the following qualitative observations regarding
these sounds. Firstly, for stable smooth sounds the morph-
ing is quite similar to a simple cross-fade, although our
transition appears to be slightly smoother. However, for
more complicated sounds the results are quite audibly dif-
ferent from a simple cross-fade (the timbre during the tran-
sition appears to be more of a hybrid than a simple sum of
the two signals). As mentioned above the effect sometimes
sounds as though the source and target have been extended
into the transition region by adding reverb and preverb. In-
deed, since the atoms used are very long, their tails extend
into the transition region, which helps to create this effect.

In our examples the cross-faded sounds are somewhat
shorter than the interpolated sounds. This is because we
must overlap the source and target sounds when we make
a cross-fade. This could certainly be remedied by using
more data for the cross-fade, however it brings to light a
benefit of our interpolation approach: since we generate
entirely new data for the transition, we can create longer
transitions using less source material. This might be valu-
able in certain situations where the amount of available
data is limited (for example, transitioning between tiny
slices of sound which is common in some genres, e.g., ‘mi-
crohouse’).

We also note that tuning the value for ε allows us to create
a wide variety of different sounds (some of which sound
more ‘wet’ and others which sound more ‘dry’). The abil-
ity to tune ε is a major advantage of our technique since it
leads to many interesting transition effects.

6. CONCLUSION

We have presented a method of audio interpolation that can
be used to restore missing or corrupted audio data. We
began by modelling the sound as a linear combination of
time-frequency atoms. Then, based on the observation that
many musical signals are simultaneously sparse and struc-
tured (in terms of temporal continuity between the additive
model coefficients), we proposed a structured-sparse op-
timization problem for estimating the model parameters.
This model was subsequently used to synthesize an esti-
mate of the missing samples. We compared our strategy to
several state-of-the-art interpolation schemes and showed
that, on average, our approach leads to an improvement
in terms of the SNR. We also highlighted how this pro-
cess can be used to morph/transition between sounds and
provided several audio examples representative of the kind
of results which may be achieved. Future work will ex-
amine additional types of structure/constraints that can be
leveraged to improve the interpolation procedure. Finally,
it would be interesting to consider a non-local approach
to interpolation, especially for signals that are highly non-
stationary. For example, one could try to integrating the
ideas in [26] within the sparse approximation framework.
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