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A LIDA Cognitive Model Tutorial 
 

Stan Franklin, Tamas Madl, Steve Strain, Usef Faghihi, 
Daqi Dong, Sean Kugele, Javier Snaider, Pulin Agrawal, 

Sheng Chen  

 
Abstract 
Over a decade in the making and described in some seventy-five published papers, 
the LIDA cognitive model is comprehensive, complex, and hard to “wrap one’s head 
around”. Here we offer, in tutorial fashion, a current, relatively complete and 
somewhat detailed, description of the conceptual LIDA model, with pointers to more 
complete accounts of individual processes in the literature. These descriptions also 
include some features of the workings of the LIDA model that have not been 
published previously. 

The tutorial begins with several short sections designed to ease the reader into 
the LIDA model. These are followed by an account of the conceptual commitments of 
the LIDA model. We also include a brief introduction to the LIDA computational 
model via the LIDA Framework, with pointers to its own tutorial. This is followed by 
sketches of several of the LIDA based agents developed with the help of the 
Framework. The tutorial ends with a section on current research activity, which 
includes a table showing which aspects of the LIDA conceptual model have currently 
been implemented computationally.  

1 Introduction 
Cognitive models come in several varieties, conceptual, mathematical, and 
computational. Their function is to explain cognitive representations and processes, 
and to predict their outcomes. They spawn hypotheses that serve to guide 
experimentation. Most cognitive models attempt to model some single type of 
cognitive process, say perception, attention, memory, emotion, decision making, 
action selection, etc., or some narrow range within one of these. The much rarer 
systems-level model (cognitive architecture) attempts the full range of activities 
from incoming stimuli to outgoing actions, together with the full range cognitive 
processes in between. 

LIDA is a systems-level cognitive model. It is conceptual and partly 
computational. It attempts to model minds, be they human, animal or artificial 
(Franklin, 1995, p. 412), which we take to be control structures for autonomous 
agents (Franklin & Graesser, 1997). We think of minds as being implemented as 
virtual machines running on top of underlying devices such as brains or computers 
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(Sloman & Chrisley, 2003). In addition to providing explanations and producing 
hypotheses, we aspire that LIDA act as a cognitive prosthesis to aid in thinking 
about, and understanding, individual cognitive activities and their processes. It 
should do so by providing a useful cognitive ontology (Franklin & Ferkin, 2006).  

After providing a synopsis of the LIDA model (Section 2) and a brief account of 
its cognitive cycle (Section 3), we quickly summarize its conceptual commitments 
(Section 4).  LIDA’s modules and their interactions are then described in some detail 
(Section 5). These descriptions include details of the workings of the LIDA model 
that have not been published previously. We continue by describing several LIDA 
based software agents (Section 6) and the computational framework on which they 
are based (Section 7). We conclude with a discussion of current and future work. 
(Section 8). 

2 A brief synopsis of the LIDA cognitive model 

2.1 LIDA’s definition of mind 
“An autonomous agent is a system situated in and part of an environment, which 
senses that environment and acts on it over time in accordance with its own agenda, so 
as [it may affect] what it senses in the future.” (Franklin & Graesser, 1997) 

As a cognitive model, LIDA seeks to describe mental phenomena in terms of 
concepts with explanatory and predictive power. At the heart of the LIDA model is a 
technical definition of mind as a control structure for an autonomous agent. The 
primary function of an autonomous agent is to continually and iteratively answer 
the question, “What do I do next?” 

Such an agent may be biological or artificial; when we speak of minds as 
biological or artificial, we will do so exclusively in terms of these technical 
definitions of autonomous agent and of mind. Many of the concepts found in LIDA’s 
particular ontology of cognitive processes, found throughout this paper, may be 
usefully traced back to these definitions.  

2.2 LIDA’s cognitive cycle 
Every animal must frequently sample its environment, external or internal, and act 
appropriately in response. The LIDA model’s cognitive cycle, taken from the action-
perception cycle of the psychologists and neuroscientists (Cutsuridis, Hussain, & 
Taylor, 2011; Dijkstra, Schöner, & Gielen, 1994; Freeman, 2002; Fuster, 2004; 
Fuster, 2002; Neisser, 1976), enables just such frequent (~10 hz) sampling and 
responding (Madl, Baars, & Franklin, 2011). One can think of the cognitive cycle as a 
cognitive atom of which higher-level cognitive processes, deliberation, reasoning, 
problem solving, planning, imagining, etc., are comprised. Each cognitive cycle can 
be divided into three phases, a perception and understanding phase, an attention 
phase, and an action and learning phase. (See Figure 1) Using incoming sensory data, 
memories, etc., the first phase updates its understanding of the current situation. 
The attention phase then filters the content of this understanding for saliency, and 
broadcasts this conscious content globally in accordance with Global Workspace 
Theory (GWT)(Baars, 1988). Although cognitive cycles may overlap, partially 
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operating in parallel, conscious broadcasts occur in sequence. The third phase 
selects and executes an appropriate response, and also learns into a bevy of memory 
systems. 

 
Figure 1. The LIDA cognitive cycle phase diagram 

3 A quick trip through LIDA’s cognitive cycle 
 
Though an individual cognitive cycle is very brief in humans, ~200-500 ms (Madl, et 
al., 2011), it is quite complex, consisting of more than a dozen interacting modules 
(See Figure 2).  Though we describe the LIDA model, and its cognitive cycle, in terms 
of modules, we make no commitment to a modular structure of the underlying 
brain. Keep in mind that LIDA models minds, not brains (see Section 2.1). Though 
the modules are represented with sharp boundaries in the figure, they actually 
interact considerably, pointing back from one to another to access needed data 
elements. Also note that the LIDA model, unlike procedural computer programs, 
does not execute its computations serially. Its processes, excepting only 
consciousness and action selection (see Section 4.9), are completely asynchronous. 
Its various memory systems range from quite short term to very long term. Its 
processes fall into one of three categories: never conscious, pre-conscious (possibly 
to come to consciousness), or conscious (Franklin & Baars, 2010). 
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The LIDA cognitive cycle begins with sensory stimuli, both external and internal, 
coming to Sensory Memory where it is represented, and engages early feature 
detectors. The resulting content involves both the Current Situational Model, and 
Perceptual Associative Memory. The latter serves as recognition memory, producing 
a percept that is made available to the Current Situational Model. Using both the 
percept and the incoming content, together with remaining content which has not 
yet decayed away, the Current Situational Model continually updates itself by cueing 
Perceptual Associative Memory, Spatial Memory, Transient Episodic Memory and 
Declarative Memory, and using the returning local associations. Further updating is 
produced in the Workspace1 by Structure Building Codelets2 (Hofstadter & Mitchell, 
1995) that build preconscious thoughts (Franklin & Baars, 2010) using material 
from the Current Situational Model and the Conscious Contents Queue. All of this 
comprises the perception and understanding phase of the model. 

 
Figure 2. The LIDA cognitive cycle 

 

                                                        
1 This preconscious analog of working memory is not to be confused with the Global 
Workspace (described below), a consciousness mechanism based on Baars’ theory 
(1988). 
2 A codelet is a small piece of code that keeps watch waiting for conditions to be ripe 
for it to act in pursuit of its one specific task. 
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In the service of the attention phase of the cognitive cycle, each attention codelet 
continually surveys the Current Situational Model on the lookout for content that it 
would like to bring to consciousness. Upon finding such, it creates a coalition, which 
in the Global Workspace (Baars, 1988) engages in a competition for consciousness. 
The winning, the most salient, coalition has its content broadcast globally, whereby 
it becomes conscious in the functional sense3 (Franklin, 2003) (See Figure 2), 
completing the attention phase of the cognitive cycle.  
 
The third, the action and learning, phase of the LIDA cognitive cycle allows almost 
every LIDA module to select that part of the conscious contents of the cycle that is 
appropriate for it to learn, that is, fitting for its underlying data structure. 
Procedural Memory, the memory of what to do when, uses conscious contents to 
instantiate behaviors that might be suitable as responses to the incoming stimuli. 
The Action Selection module chooses one such behavior that is then submitted to 
Sensory Motor Memory for the creation or selection of an appropriate motor plan, 
which can then be executed. This completes the LIDA cognitive cycle. 

4 Conceptual commitments of the LIDA model 
 
Before discussing the individual LIDA modules in more detail, we will briefly 
describe the various conceptual commitments to which we attempt to adhere while 
designing the LIDA model (Franklin, Strain, McCall, & Baars, 2013).  

4.1 Systems-level cognitive modeling 
Cognitive scientists use conceptual, mathematical and computational models to 
explain and predict cognitive phenomena. For the most part, and for utilitarian 
reasons, these models are limited to some restricted function of cognition, such as 
memory, perception, attention, action selection, or some subset of one of these. 
Though these limited models have proved exceedingly useful, the problem of 
discovering the relationships between them is often a difficult one. As a result, 
researchers from various disciplines such as social psychology (Lewin, 1951), 
artificial intelligence (Newell, 1973), memory research (Hintzman, 2011), cognitive 
modeling (Langley, Laird, & Rogers, 2009), and neuroscience (Bullock, 1993) have 
argued for the necessity of systems-level cognitive modeling. 
 
LIDA is a systems-level model attempting to account for the perception of incoming 
stimuli, all of the concurrent and resulting internal processing, culminating with the 
selection and execution of an appropriate action. For its relationship to other, 
related disciplines, please see Section 4.12 below and Figure 3. 
 

                                                        
3 The LIDA model makes no claims regarding phenomenal consciousness. 
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Figure 3. The LIDA model's family tree (reprinted from (Franklin, Strain, Snaider, 

McCall, & Faghihi, 2012)) 

4.2 Embodied (Situated) Cognition 
Embodied cognition asserts that bodies as well as brains, the body mind relationship, 
affects all cognitive processing (de Vega, Glenberg, & Graesser, 2008). Situated 
cognition argues for the influence of the environment on cognitive processing. The 
LIDA model conforms to both these strictures by employing only perceptual 
symbols (Barsalou, 1999), and completely avoiding the use of amodal symbols. The 
labels that appear in our descriptions of the conceptual LIDA model4, and the 
diagrams thereof, are strictly for the use of the reader, and play no causative role in 
the model itself. 

Embodied and situated cognition closely intersect with the so-called enactive 
model of cognition (Varela, Thompson, & Rosch, 1991), a brainchild of the 
phenomenology of Husserl, Heidegger, and Merleau-Ponty. All three models are 
closely related to dynamical systems theory (Thelen & Smith, 1994; Van Gelder, 
1998), Freeman’s neurodynamics (Dreyfus, 2009; Freeman, 1999) and interactionism 
(Clark, 1999; Dewey, 1896; Gallagher, 2009; Oyama, 2000; Von Uexküll & 
Mackinnon, 1926). Important common features are the continual and mutual 
interaction between agent and environment, the active rather than passive role of 
the agent’s internal processes, and the lack of actual separation between perception 
and action. As will be discussed in more detail at specific points below (see Sections 
4.9, 4.12, and 4.13), we feel that the LIDA model is resonant with the core ideas of 
the embodied, situated, and enactive views (Franklin, Madl, D'Mello, & Snaider, 
2014; Franklin, et al., 2012). 

                                                        
4 We subdivide the LIDA model into conceptual and computational sub-models. The 
discussion in Section 3 primarily relates to the conceptual model; that in Section 7 
primarily to the computational model, and Section 5 to both. 
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4.3 Cognitive Cycles as Cognitive Atoms 
Using salient information from the contents of the conscious broadcast, together 
with never conscious processing, each cognitive cycle selects and executes an 
appropriate response. We refer to this single cycle process as consciously mediated 
action selection. Higher-level action selection (decision making), such as making 
breakfast, requiring a sequence of actions, can be implemented by multiple 
cognitive cycles. Some such decision making is deliberative, employing partially 
conscious processing. Other such higher-order partly conscious cognitive processing 
is implemented in the LIDA model by sequences of cognitive cycles. These include 
planning, imagining, reasoning, day dreaming, volitional memory retrieval, etc. 

4.4 Global Workspace Theory 
Psychologists and neuroscientists have given various definitions of attention, and 
have ascribed different functions to it. Posner (Posner & Fan, 2004) suggests three 
separate functions of attention with distinct underlying brain networks. These 
functions include 1) alerting: “maintaining an alert state”; 2) orienting: “focusing our 
senses on the information we want” (e.g., your focus on reading this document); and 
3) executive attention: “the ability to manage attention towards goals and planning”. 
In each of the three attention functions suggested by Posner, there must be an 
attentional mechanism to select and bring the most urgent, salient information to 
the consciousness. The selective part of LIDA’s attentional mechanism is very briefly 
described in the following.  

The attention phase of the LIDA cognitive cycle is taken directly from Global 
Workspace Theory (GWT) (Baars, 1988, 2002), where attention is defined as the 
process of bringing content to consciousness. That definition is adopted for the LIDA 
model. Hypothesizing a parallel distributed nervous system composed of a bevy of 
specialized processes, GWT has coalitions of these processors competing for 
consciousness, with the contents of the winning coalition broadcast globally. These 
most salient conscious contents, collectively referred to as the conscious or global 
broadcast, are used for learning and for action selection. Our LIDA cognitive model 
can be viewed as a specification and fleshing out of GWT (Franklin, et al., 2013; 
Franklin, et al., 2012), along with a number of other psychological and 
neuropsychological theories (Baddeley & Hitch, 1974; Barsalou, 1999; Conway, 
2001; Ericsson & Kintsch, 1995). 

4.5 Learning via Consciousness 
Taken from GWT, the LIDA model supports the Conscious Learning Hypothesis: 
significant learning takes place via the interaction of consciousness with the various 
memory systems (Baars & Franklin, 2003; Franklin, Baars, Ramamurthy, & Ventura, 
2005). Following each conscious broadcast, every memory module in LIDA updates 
itself incorporating appropriate material from the conscious broadcast. Thus 
consciousness is both necessary and sufficient for significant learning in unimpaired 
humans. Substantiated claims for subliminal learning so far have turned out to be 
due to unconscious priming (Boltea & Goschke, 2008; Eimer & Schlagecken, 2003) 
which is too limited in both scope and duration to be considered significant 
learning. Also note that in all cases of implicit learning (Cleeremans, Destrebecqz, & 
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Boyer, 1998; Jimenez, 2003) and latent learning (Campanella & Rovee‐Collier, 
2005; Chamizo & Mackintosh, 1989; Franks et al., 2007) learning subjects must be 
conscious when learning takes place. 
  

4.6 Comprehensive Decay of Representations and Memory 
Each LIDA module is composed of processes operating on structured 
representations of internal or external entities. The fundamental data type of these 
representations is the digraph, consisting of nodes and links5. More complex 
structures are built from these. Each represented entity has one or more numerical 
variables attached to it, for example a base-level activation measuring its past 
usefulness, or a current activation tracking its relevance to the current situation. All 
of these numerical variables decay, with many of their various decay rate functions 
sigmoid. An entity decays away (is removed from the system–forgotten6) when its 
appropriate variable, for example its base-level activation, falls below a threshold.  
On the other hand, because of sigmoidal decay rate functions, some entities decay so 
slowly that they never seem to decay away. 

LIDA’s conceptual commitment to decay accords with one of the four general 
requirements for a self-organizing system: Such a system must be dissipative (see 
Section 4.12, which describes LIDA’s conceptual commitment to cognition as a self-
organizing dynamical system). Decaying away is also necessary to make profligacy 
in learning computationally tractable. 

4.7 Profligacy in Learning  
As described in Section 4.5, learning in LIDA takes place in every memory system 
(see the red arrows in Figure 2) with each conscious broadcast. As we have seen in 
Section 3, such broadcasts occur with each cognitive cycle, that is, very frequently 
(at ~10hz in humans (Madl, et al., 2011)). Thus learning in LIDA is profligate, 
happening in every possible system at every possible opportunity. LIDA learns in 
both an instructionist manner in which new entities are represented, and in a 
selectionist manner in which the base-level activation (or other appropriate 
variable) is reinforced. New entities are generated whenever possible, and are 
reinforced (tested) whenever they come to consciousness again. Such entities 
remain in the system so long as their reinforcement outstrips their decay. Hence 
learning in LIDA is a generate and test algorithm (Kaelbling, 1994). One can also 
view learning in LIDA as Darwinian, with a new population being generated with 
each cognitive cycle, and its fitness tested in the same cycle. (In Section 5.3 we’ll see 

                                                        
5 The newly initiated Vector LIDA project (Snaider & Franklin, 2014b) will have high 
dimensional vectors as the fundamental data type. It will still use nodes and links, 
which will be represented as vectors (Snaider & Franklin, 2014a). 
6 Representations relevant in the current situation can decay away within tens of 
seconds, and will be removed from the Workspace, but can still persist in long-term 
memory (declarative, transient episodic, or spatial). On a longer time scale, it can 
decay away altogether, being removed from all memory systems. 
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another way in which the LIDA model is Darwinian.) Note also that long-term 
memories should more accurately be called potential long-term memories, since 
many may decay away quite quickly. 

4.8 Feelings are Motivators and Modulators of Learning 
In humans feelings include appetitive drives such as thirst and hunger, temperature 
preferences such as too hot or too cold, various sensing of pain, feeling tired, feeling 
depressed, etc. LIDA models such feelings as motivators and as modulators of 
learning (Franklin & Ramamurthy, 2006). As motivators, feelings enable action 
selection that is both sophisticated and flexible. LIDA treats emotions as feelings 
with cognitive content (de Spinoza, 1883; Johnston, 1999; Panksepp, 2005). These 
include anger, joy, sadness, fear, guilt, regret, envy, shame, resentment etc.  

Representations of emotions in LIDA, and their association of an emotion with 
aspects of the current situation, are consistent with appraisal theory (Scherer, 2001) 
– see Figure 4. Briefly, a specific type of Structure Building Codelet (see Section 
5.3.2), called an Appraisal Codelet, can propose and link an emotion PAM node to an 
existing node structure, based on its relevance, implications, the agent’s coping 
potential, among other factors. The connection to appraisal theory is explained in 
more detail in (Franklin, et al., 2014). 

 

 
Figure 4. Connection between components of LIDA (illustrated in blue / bold font) 

and of affordance theory, based on (Marsella, Gratch, & others, 2010) (illustrated in 
black / light font). Reprinted from (Franklin, et al., 2014). 

As motivators for action selection feelings, including emotions, allow rapid 
evaluation of situations, including whether one is helpful or harmful with respect to 
the agent’s goals (see Sections 5.7 and 6). As modulators of learning, feelings (affect) 
is a major determiner of learning rate, producing an inverted U effect (Yerkes & 
Dodson, 1908). Feelings are represented as nodes in Perceptual Associative Memory 
(see Figure 2), and occur and play a central role in the determination of activation 
values throughout the model.  
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4.9 Asynchrony7 
The cascading cognitive cycles are serial in regard to the conscious broadcast as 
required for the seriality and coherence of consciousness. Recently Baars has 
proposed a dynamic Global Workspace (Baars, Franklin, & Ramsøy, 2013) under 
which a winning coalition emerges (ignites) from some place in the cortico-thalamic 
core, producing a global broadcast of conscious contents via a ~100ms broadcast to 
receiving neural networks widely distributed over the brain (Gaillard et al., 2009). 
The other serial process in the LIDA cognitive cycle is the selection of a single 
behavior by the Action Selection module (see Figure 2) for execution. All other 
processes of modules in the LIDA model respond to their local conditions in a 
completely independent and asynchronous manner. Thus multiple processes run 
simultaneously, making the model highly parallel. In fact, it can be thought of as a 
multi-agent system (Doran, Norman, Franklin, & Jennings, 1997; McCauley & 
Franklin, 2002; Watson, Mills, & Buckley, 2011). Conceptually, there is no system 
clock, and rather than being implemented in the architecture, LIDA’s overlapping 
cognitive cycles emerge from the asynchronous operation of multiple independent 
processes acting in parallel in response to local conditions. 

Asynchrony in the LIDA model accommodates the possibility of algorithmic 
behavior more complex than that of a data pipeline in the information processing 
paradigm. Such a pipeline is closed along its length from input to output, and thus 
will always produce the same output for a given input; its flow is sequentially 
dependent, meaning that distal processes must wait for proximal processes to finish 
before they can begin; it is inactive in the absence of input; the activity of its internal 
processes cannot alter its shape or points of connection at either of or between its 
ends; and the relationship between input and output can be updated only at a 
periods commensurate with the time required for information to flow through the 
entire pipeline . These constraints, while available if desired, can be removed in the 
LIDA model, particularly in the Workspace, the content of which may be modified by 
the various memories and by processes known as structure building codelets (See 
Section 5). Thus, LIDA’s asynchrony allows for the possibility of process features 
emphasized in embodied cognition (Section 4.2) and self-organizing dynamics 
(Section 4.12). 

4.10 Transient Episodic Memory 
We humans are often confronted by, and must remember, events that are repetitive 
with many significant features remaining almost constant, for example, where we 
park a car in a parking garage on a daily basis. The major features of the parking 

                                                        
7 There are numerous technical senses of the term “asynchrony” (e.g. see 
https://en.wikipedia.org/wiki/Asynchrony). We use the term in the sense of 
asynchronous input-output in computer science; in other words, asynchronous 
processes are not in general required to wait on input from other processes to 
continue their own operations. In particular, this use is distinct from that of 
neuroscience, where it refers to a lack of temporal correlation between neural 
activity patterns. 
 

https://en.wikipedia.org/wiki/Asynchrony
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garage will reinforce themselves each day, while the individual parking spot will 
interfere from one day to the next. Thus long-term episodic memory cannot be 
expected to handle such a situation. For this reason, the LIDA model postulates a 
Transient Episodic Memory (see Figure 2) whose traces decay within a few hours or 
a day (Conway, 2001; Franklin, et al., 2005). Thus we can often remember what we 
had for lunch yesterday, but not on the same day of the week two weeks ago. 
Though Transient Episodic Memory has been mostly ignored by memory 
researchers, we think it quite necessary for human episodic memory functioning. 

4.11 Consolidation 
The LIDA model also postulates that all episodic memories are learned into 
Transient Episodic Memory, and that those that have not yet decayed away are 
consolidated into Declarative Memory (see Figure 2) at some offline time (Franklin, 
et al., 2005). There is much evidence for such consolidation (Born & Wagner, 2006; 
Daoyun & Wilson, 2006; Haist, Gore, & Mao, 2001; McGaugh, 2000; Nadel, Hupbach, 
Gomez, & Newman-Smith, 2012; Remondes & Schuman, 2004; Stickgold & Walker, 
2005; Walker, Brakefield, Hobson, & Stickgold, 2003). 

4.12 Nonlinear Dynamics Bridge to Neuroscience 
As mentioned several times already, LIDA is intended to model minds, not brains 
(see Section 1 and Figure 3). However it is critical that any systems-level cognitive 
model such as LIDA (see Section 4.1) be consistent with known neuroscientific 
evidence, so as to account for the relationship between minds and brains, since 
biological brains are the only known examples of sophisticated minds.  We concur 
with Fuster that the gap between LIDA’s cognitive representations and the 
underlying neurodynamics can be bridged by non-linear dynamics that exhibit self-
organization. We support Fuster’s proposal that cognitive entities are represented 
neurally by cognits (2006). The activity of the brains perceptual oscillators is 
integrated with that of its higher-order neural oscillators (Barham, 1996; Freeman, 
2003) allowing the application of various memory systems, of deliberation, and of 
goals to the current state of the brain and its environment. The globally broadcast 
subset of such integrated oscillatory activity (Baars, et al., 2013) enables action 
selection and the several forms of learning, thus activating oscillators that effect 
action execution (see Figure 2). In addition, the phase-coupling of oscillators effect 
timing relationships that are characteristic of the neurophysiological structure of 
cognition (See Section 4.13; and Strain, Franklin, Heck, & Baars, in preparation). 

A key feature of non-linear systems is their resistance to reductionist 
approaches. (Strogatz, 2014) How then can a model that reduces cognitive 
processes into small codelets, such as LIDA, capture the essential behavior of a self-
organizing system? No currently implemented LIDA agent (see Section 7) exhibits 
self-organization of its processes, although several that might are currently under 
development (Section 9). Thus we find it necessary to justify our model by 
explaining how it can support such complex dynamics and the attendant dynamical 
phenomena. We claim that LIDA can, in principle, accommodate such dynamics 
according to criteria enumerated by Kelso (1995); in other words, a sufficiently 
sophisticated LIDA agent would self-organize its cognitive processes in the way 
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described by van Gelder (1998). In Kelso’s view (1995), a system with the following 
properties is likely to exhibit spontaneous self-organization: 

1. A large number of components interacting weakly and nonlinearly; 
2. Dissipative, far-from-equilibrium thermodynamics; 
3. Reciprocal influence and coordination between patterns of activity and the 

components that form the patterns; and 
4. At least three mutually interacting levels, namely a component level, a 

collective level at which patterns (aka attractors) may emerge, and a context 
or task level that acts as a boundary condition on the other levels (Kelso 
1995). 

Regarding 1), a LIDA agent fully implemented with the Model’s cognitive 
functions will have a great number of mutually interacting codelets operating in its 
Workspace (Section 5.3); 2), The Workspace will be a system with a continuous 
influx of informational energy (and thus far-from-equilibrium), open system, 
reciprocally interacting with various memory modules (Section 5.2), with activity 
that will decay over time unless cognitively reinforced in some way (thus 
dissipative; see also Section 4.6); 3), It will also feed, via the action of attention 
codelets (Section 5.4), the Global Workspace (GW) (Section 5.5), the broadcast of 
which will modulate (and potentially, through learning mechanisms, modify) all 
preconscious modules;8 and 4), the Workspace possesses processes that operate on 
three scales (in order of increasing timescale): the codelet timescale, the GW 
broadcast timescale, and the timescale defined by the agent’s currently active goal-
related, task-related, and environmental constraints (the agent’s “sense of time”). 

A more concrete connection of LIDA’s processes to non-linear dynamics, based 
on Dynamic Field Theory (Erlhagen & Schoner, 2002; Schöner, 2008), has been 
outlined in (Franklin, et al., 2014). Briefly, representations in each of the modules in 
LIDA’s cognitive cycle can be implemented using neural populations which 
represent dimensions characterizing their features, and which are governed both by 
input activations and the activations of neighboring neurons. While beyond the 
scope of the LIDA Model’s purpose to model of mind as a control system for an 
autonomous agent, this would allow a mathematical formulation of the dynamics of 
these representations, as well as making a connection to empirical neuroscience 
(Franklin, et al., 2014). 

4.13 Theta Gamma Coupling and the Cognitive Cycle 
LIDA models minds rather than brains. Why then does LIDA care about brains? In 
brief, LIDA shares with certain other theories the view that brain and mind are 
different aspects of the same dynamical system. As a model of mind, what does LIDA 
have to say about brains? In summary, LIDA’s requirement for brains follows: The 
dynamical organization of brain activity must align with the temporal structure of 
the corresponding cognitive processes. Neural dynamic patterns at multiple 
temporal levels have been shown to have cognitive significance, and so the 
processes of LIDA must have a parallel temporal structure. In previous work we 

                                                        
8 The GW broadcast will also modulate the executive modules (Section 5.6-5.7), but 
this effect of the broadcast is not immediately pertinent to the present discussion. 
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have shown how LIDA’s macroscopic structure, the cognitive cycle, relates to neural 
activity on the scale of 100s of milliseconds (Madl, et al., 2011), Below we will 
explain and discuss theta-gamma coupling, a neural phenomenon that correlates 
well with LIDA’s cognitive processes at the mesoscopic9 scale of 10s of milliseconds. 

LIDA subscribes to the embodied view of cognition (see Section 4.2), which 
views mind and brain as different aspects of the same whole. LIDA’s most direct 
connection to neural theory is via dynamic Global Workspace Theory (dGWT) 
(Baars, et al., 2013) (see Section 4.9). dGWT constructs out of recent neuroscientific 
evidence a general specification for the neural implementation of a cyclically 
recurring global broadcast. Although both dGWT and LIDA address the relationship 
between mind and brain, dGWT neurally grounds a psychological theory (GWT; see 
Section 4.4), while LIDA seeks a general theory of cognition based on GWT (and 
consequently, on dGWT as well). 

On this view, a brain rhythm phenomenon known as theta-gamma coupling 
offers an interpretation that elaborates the connection between Freeman’s 
neurodynamics and LIDA’s cognitive cycle. Theta-gamma coupling is a type of cross-
frequency coupling (CFC), a measurable brain state in which activity with a neural 
signature in the low frequency range becomes correlated with high frequency 
activity. In particular, phase-amplitude coupling refers to a CFC structure in which an 
amplitude burst of fast frequency activity occurs at a particular phase of a slow 
wave.  

An illustrative metaphor is eating a meal at a certain time of day. The solar cycle 
can be said to be the slow wave and the time of day its phase, with the behavior 
modeled as a fast frequency wave that peaks during the meal and goes to zero in 
between. The wave representing the eating activity can then be said to be phase-
amplitude coupled to the solar cycle. 

CFC is measured by spectral analysis of raw EEG signals (eg Voytek, D'Esposito, 
Crone, & Knight, 2013). CFC, especially the subtype known as theta-gamma 
coupling10, empirically differentiates task successes from non-successes within a 
broad range of cognitive functions, including declarative memory, working memory, 
attention, perceptual organization, spatial memory, and perceptual organization 
                                                        
9 These terms of scale and their meanings are from Freeman’s neurodynamical 
theory (2003). Note that in brains they connote a typical spatial scale as well as a 
temporal one; however, LIDA makes no claims regarding the spatial organization of 
cognitively relevant brain activity, since cognitive processes in the abstract are 
organized independently of physical space. Thus we limit our concern to the 
temporal structure of neural activity. 

10 Due to lack of clear standards for identifying various frequency bands (see 
Steriade, 2006 for a review), we choose to adopt a usage of the very common “theta-
gamma coupling” as being more or less equivalent—for our purposes—to the more 
general “cross-frequency coupling.” In other words, with said term we refer not to 
specific frequency bands (which are defined differently in different decades, cortical 
regions, species, and labs) but to the temporal association between a slow wave and 
a fast wave, which we believe to be the electrical signature of the kind of cognitive 
processing hypothesized by Freemanian neurodynamics, dGWT, and LIDA. 
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(Canolty & Knight, 2010; Doesburg, Green, McDonald, & Ward, 2009; Osipova et al., 
2006; Sauseng, Griesmayr, Freunberger, & Klimesch, 2010). 

A cognitive cycle in LIDA is hypothesized to last on the order of 200-500 ms 
(Madl et al. 2011). However, in keeping the asynchrony discussed in Section 4.9 
above, a cognitive cycle starts before the previous one finishes. In fact, the cycle is 
not a true cycle in the classical sense of mathematics or physics; rather, it is a 
recurrent pattern that is roughly defined by the average time that would be 
necessary for a nervous impulse to traverse a path through cortex from receptor to 
effector. This approximate length for a cognitive cycle correlates with the period of a 
typical theta (or delta or even alpha) wave. Dynamic GWT proposes that the 
corticothalamic system implements the global broadcast by means of distributed 
activity organized using theta-gamma coupling. Extending this hypothesis, we 
suggest that a broadcast’s cognitive content is represented by synchronous gamma 
activity within a theta-gamma couplet.11  

Similarly, since each broadcast originates as a coalition built by attention 
codelets (Section 3), we view these coalitions as theta-gamma couplets as well. 
Coalitions that fail to win the competition for consciousness in the Global 
Workspace will nonetheless continue their activity within a neural assembly and 
produce electrical activity that is not organized in synchrony with that of the 
broadcast. Thus, a theta-gamma couplet would represent a coalition containing a 
bundle of cognitive content (gamma activity) organized within an activity pattern 
(theta activity) commensurate with the bandwidth of the broadcast (roughly 
defined by the average length of a cognitive cycle). Winning the broadcast would 
give the coalition/couplet access to a “megaphone” that can be transmitted across 
the cortex according to Pascal Fries’ communication-through-coherence mechanism 
(Bastos, Vezoli, & Fries, 2015; Fries, 2005; Landau & Fries, 2012) 

5 LIDA’s individual modules and their interactions 
This section describes LIDA’s modules and processes conceptually, both processes 
internal to a single module, and processes between modules. (Computational 
information about them will be found in Section 7 below.) Referring to Figure 2, 
each module is described in its own subsection, beginning with Sensory Memory in 
the upper left and proceeding in a roughly clockwise direction around the figure. Do 
keep in mind that LIDA is a massively parallel system with the processes of each 

                                                        
11  The role of synchronization as a conceptual binding mechanism for gamma 
activity has been hypothesized by numerous neuroscientists (Buzsaki, 2006; Gray, 
König, Engel, & Singer, 1989; Holz, Glennon, Prendergast, & Sauseng, 2010; Jensen 

& Colgin, 2007; Osipova, et al., 2006; Tallon-Baudry, 2009). The work of many 
others has implicated the role of theta in organizing synchronized gamma activity 
(e.g. (Canolty et al., 2006; Clayton, Yeung, & Kadosh, 2015; Doesburg, et al., 2009; 

Doesburg, Green, McDonald, & Ward, 2012; Jensen & Colgin, 2007; Lisman & 
(2005), 2005; Lisman & Buzsaki, 2008; Lisman & Jensen, 2013; Nakatani, Raffone, & 
van Leeuwen, 2014; Voytek et al., 2015)). 
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module operating independently and asynchronously in response to current local 
conditions (see Section 4.9). Exceptions to this rule are the Global Workspace, 
where conscious broadcasts must occur serially, and Action Selection, where a 
single behavior must be chosen during each cognitive cycle. Since the LIDA model is 
relatively young, some modules are more developed than others, both conceptually 
and computationally. In particular, the modules at either end, Sensory Memory and 
Motor Plan Execution must depend heavily on the sensors and actuators of a 
particular agent, and so can be less fully described. 

Many of the modules described in the subsections below are memory systems of 
one sort or another that store information from the past for potential use in the 
present. In the LIDA model memory systems are taken from those of humans 
(Anderson & Bower, 1973; Baddeley & Hitch, 1974; Broadbent, Squire, & Clark, 
2004; Conway, 2001; Ericsson & Kintsch, 1995; Mayes & Roberts, 2002; Quillian, 
1966; Rugg & Yonelinas, 2003; Schacter & Tulving, 1994; Tulving, 1983; Tulving & 
Markowitsch, 1998). One way of cutting up the memory pie, but by no means the 
only one, is illustrated in Figure 5. The diagram starts with the shortest term 
memory systems on the left, increasing to the longest term on the right. Otherwise 
what distinguishes one system from another is a difference in the structure of the 
information remembered, their typical data structure. These differences will be 
specified in the subsections below. 

 

 
Figure 5. Memory Systems in LIDA 
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5.1 Sensory Memory 
Incoming stimuli from each of the agent’s various sensors are represented, and 
remembered briefly (some tens of milliseconds in humans), in LIDA’s Sensory 
Memory. Early feature detectors, mostly in each sensory modality, process these 
representations. The resulting sensory information is passed simultaneously to both 
Perceptual Associative Memory and to the Current Situational Model in the 
preconscious Workspace. 

The concrete implementation of Sensory Memory is still an open question, and 
several lines of research are being pursued. On one hand, deep learning approaches 
show promising visual recognition performance, comparing favorably to humans on 
some datasets (He, Zhang, Ren, & Sun, 2015), have been argued to learn brain-like 
representations (Khaligh-Razavi & Kriegeskorte, 2014), and have been used to 
interface LIDA to a realistic robotic simulator (Madl, Franklin, Chen, Montaldi, & 
Trappl, to appear). Another kind of Sensory Memory is being implemented as a set 
of Hierarchical Temporal Memory’s (HTM) Cortical Learning Algorithms (CLA) 
regions (Hawkins, Ahmad, & Dubinsky, 2011). A CLA region is claimed to be a 
spatial and temporal pattern recognizer by Hawkins et al. It is modeled after the 
cortical regions in brain. Like cortical regions, CLA regions can be assembled into 
hierarchies (Felleman & Van Essen, 1991), for the performance of more complex 
pattern recognition. Such pattern recognition elements can be employed as feature 
detectors of LIDA’s Sensory Memory. The Sensory Memory can be equipped with a 
set of these CLA regions. Each region would be specific to a certain kind of feature or 
pattern in the input, for example, shape of object, color of the object, characteristic 
sound of the object, and so forth. This can be done by selecting an appropriate set of 
sensors whose output will be fed to a CLA region for a particular kind of feature 
detection. A hierarchy of CLA regions can be used if the feature is very complex 
(Agrawal & Franklin, 2014).  

5.2 Perceptual, Spatial and Episodic Memory systems 
In the following subsections longer-term memory systems are described that feed 
into the preconscious Workspace and its Current Situational Model (see Figure 2). 

5.2.1 Perceptual Associative Memory 
Derived from the Slipnet in the CopyCat architecture (Hofstadter & Mitchell, 1995), 
LIDA’s Perceptual Associative Memory (PAM) is the model’s long-term (but see 
Section 4.7) recognition memory.  Previously known entities are recognized and 
become part of the percept (see below).  

PAM currently represents incoming sensory information using node and links, 
with nodes representing feature detectors, objects, feelings, actions, events, 
categories, concepts, etc., and the links representing relations between them, for 
example feature-of, category membership, inhibition, causation, thematic roles 
(Fillmore, 1968), etc. Each node has a base-level activation, a current activation (see 
Sections 4.6 and 4.7); some in addition have base-level incentive salience (McCall, 
2014). Current activation passes along links each in an appropriate manner. 

A node with no incoming link is considered to be on the frontier of PAM. The 
conceptual depth of a node in PAM is the minimal length of a chain of links 
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beginning with a frontier node, and ending with the given node. The decay rate of 
the base-level activation of a PAM node decreases with its conceptual depth. 

The distinctive, but by no means the only, higher-level data structure of PAM is 
the event (Chandler, 1991, 1993; Hohman, Peynircioƒülu, & Beason-Held, 2012; 
Zacks, Kurby, Eisenberg, & Haroutunian, 2011; Zacks, Speer, Swallow, Braver, & 
Reynolds, 2007). In LIDA the event data structure consists of an event node together 
incoming thematic role links from thematic role nodes (Fillmore, 1968; McCall, 
Franklin, & Friedlander, 2010). Figure 6 illustrates an event with agent, action, and 
object thematic roles. Other thematic roles include beneficiary, source, destination, 
location, and instrument (Sowa, 1991, 2014). Though the illustration has labels, 
they are only for the convenience of the reader. In PAM links are typed but not 
labeled. Nodes in some modules are sometimes typed, but never labeled. Meanings 
arise in a grounded fashion from the network connections (Barsalou, 2008; Fuster, 
2006) (see Section 4.2). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Event data structure example 
 
In addition to coming from Sensory Memory, structures in PAM can be activated 

by cues from the Current Situational Model. Data structures in PAM whose total 
activation (some function of base-level and current activation) is over threshold 
have copies instantiated into the Current Situational Model as part of the percept.  

Each conscious broadcast offers PAM an opportunity to learn new entities, and 
to reinforce the base-level variables of various entities (see Section 4.7). Entities 
also decay regularly (see Section 4.6). 

5.2.2 Spatial Memory 
Perceiving, representing and storing its own position and the positions of important 
objects in its environment are vital abilities for any embodied agent. Spatial Memory 
refers to the part of the memory systems that encodes, stores and recalls spatial 
information about the environment and the agent’s orientation. In LIDA, spatial 
representations (Figure 7) are first built in the Workspace. In addition to the 
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identity of recognized entities, represented as PAM nodes, their relative positions to 
the agent can also be obtained perceptually (e.g. calculating depth-information from 
stereo disparity). These relative positions are represented as ‘Egocentric Spatial 
Vectors’ between the self representation and object representation, which are 
special kinds of PAM links containing position information. In addition, there is an 
allocentric spatial grid – a grid of PAM ‘place nodes’ representing specific locations 
in the environment – constructed and maintained by spatial structure building 
codelets (see Section 5.3.2). In addition to updating and maintaining egocentric 
links, these codelets also connect perceived objects to their corresponding place 
node, and update these connections during movement. There are clear neural 
correlates in brains corresponding to these two types of spatial information, among 
others in the hippocampal-entorhinal complex for allocentric and the precuneus for 
egocentric representations – see (Madl, Franklin, Chen, & Trappl, 2013).  

Specific egocentric representations are transient and temporary, and do not 
need to be stored long-term. However, allocentric representations, if and when they 
become conscious, are stored in Spatial Memory, one of LIDA’s long-term memory 
systems based on Sparse Distributed Memory. This long-term storage is not yet 
implemented computationally (work is underway to map grids of place nodes and 
associated objects to a concise graph representation, which can be efficiently 
encoded in Extended Sparse Distributed Memory (Snaider & Franklin, 2011)). 
Conversely, long-term Spatial Memories are also cued whenever relevant objects 
appear in the Workspace, helping to recall previously encountered allocentric maps. 

Apart from storage and representation, the inference of accurate spatial 
positions from noisy data also presents significant challenges. Both the agent’s own 
position, and that of significant objects around it, are uncertain and have to be 
inferred from inexact measurements. In robotics, probabilistic approaches have 
become very popular and successful to tackle this problem. We have found evidence 
in prior work that the assumption of statistically near-optimal use of information 
can partially explain the firing of hippocampal place cells (which represent 
allocentric spatial information) (Madl, Franklin, Chen, Montaldi, & Trappl, 2014), 
which is in line with the ‘Bayesian brain’ hypothesis (Knill & Pouget, 2004), and 
makes the probabilistic approach plausible for cognitive models of spatial memory 
as well. For this reason, path integration (self-movement) information, and distance 
information, are integrated in a Bayesian fashion when estimating positions (Madl, 
et al., to appear). 

5.2.3 Transient Episodic Memory 
Episodic memory is memory for events (episodes), often expressed as the what, the 
where, and the when (Tulving, 1983; Tulving, 2002). It is typically thought of as 
long-term, possibly lasting a lifetime. As pointed out, argued for and described in 
Section 4.10, the LIDA model includes a shorter-term version, Transient Episodic 
Memory (Conway, 2001; Franklin, et al., 2005) whose unreinforced memories last a 
few hours or a day in humans. It will not be described further here.  

New events can be learned with each conscious broadcast, and old ones 
reinforced (see Section 4.7). Events may also decay away (see Section 4.6). During 
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some offline time the as yet undecayed memories in Transient Episodic Memory are 
consolidated into Declarative Memory (see Section 4.11). 
 

 
 

Figure 7. Recognized percepts (from Sensory Memory & Perceptual Associative 
Memory) are used to construct temporary egocentric (self-centered) and allocentric 

(world-centered) spatial representations in the Workspace, which in turn can be 
stored in, or can cue previous representations from, long-term Spatial Memory 
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5.2.4 Declarative Memory 
Long term episodic memories of events, some capable of lasting a lifetime in 
humans, are stored in LIDA’s Declarative Memory system. Rather than being learned 
from conscious broadcasts, as are other memories in LIDA, here they come to 
Declarative Memory from Transient Episodic Memory via offline consolidation (see 
Section 4.11). At this consolidation time, REM sleep in humans, whatever memories 
that have not decayed away in Transient Episodic Memory are consolidated into 
Declarative Memory. This consolidation includes the creation of memory traces for 
new events, and the reinforcing of traces of past events that have newly made their 
way to Transient Episodic Memory with sufficient affect to not have decayed away. 
How can this later situation occur? Suppose Event A arrives in the Current 
Situational Model (see Section 5.3.1) from Declarative Memory via local association 
(see Figure 2.) with sufficient affect to come to consciousness during a subsequent 
cognitive cycle. Then Event A will be learned into Transient Episodic Memory. If it 
does not soon decay away, it may be consolidated, in this case reinforced, in 
Declarative Memory. 

In addition to the memory of full events with what, where and when, referred to 
as Autobiographical Memory (see Figure 5), Declarative Memory also contains 
traces that have lost their where and when to interference, while retaining their 
what in the form of facts, rules, etc. These are referred to as Semantic Memory (see 
Figure 5). 

5.3 Preconscious Workspace 
Unlike the long-term memory PAM (but like Baddeley’s working memory (Baddeley 
& Hitch, 1974)), LIDA’s Workspace (see Figure 2) is short-term, with latency 
measured in tens of seconds.  Like PAM (but unlike Baddeley’s working memory 
which requires consciousness (Baddeley, 1992)), LIDA’s Workspace is preconscious 
in that its representations (data structures) are not conscious, but any of them can 
come to consciousness during a conscious broadcast (Franklin & Baars, 2010). In 
the following subsections we describe the Workspace’s two modules, the Current 
Situational Model and the Conscious Contents Queue, and the Structure Building 
Codelets that process them. 

5.3.1 Current Situational Model 
Repeatedly taking in internal and external sensory information both directly from 
sensory memory, and from percepts from PAM (see Figure 2), LIDA’s Current 
Situational Model (CSM) continually updates itself so as to keep track of the LIDA 
agent’s current situation. Input from PAM comes in the form of node and link 
structures, while Sensory Memory input may have to be translated into such node 
and link structures by structure building codelets (see Section 5.3.2).  

Structures arriving in the CSM automatically cue each of the attached long-term 
memory systems, PAM, Spatial Memory, Transient Episodic Memory, and 
Declarative Memory, resulting in local associations from each of them as 
appropriate (see Figure 2). Each of these local associations is itself an incoming 
structure, and so cues the long-term memory systems again sometimes producing 
new local associations. Thus new structures are continually added to the CSM. 
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Simultaneously, structures decay away at varying rates in ranges of tens of seconds. 
At any given time the content of the CSM can be quite extensive and complex. 

Content of the CSM can be real, representing what is really occurring in the 
agent’s internal and external environment, or virtual, including memories, desires, 
plans, imaginings, etc. Thus structures in the CSM, whether originating there 
through the efforts of structure building codelets (see Section 5.3.2), or having been 
instantiated from structures in PAM, must carry some designation as real or some 
form of virtual. We sometimes speak of a real scene and a virtual scene in the CSM 
(see Figure 8). 

We humans can construct at least visual and auditory virtual images in our 
minds. These are produced from known entities from PAM, and must bring with 
them, in addition to their node/link structure, representations that can be used to 
produce these virtual images. These representations are illustrated in Figure 8 by 
rectangles hanging from nodes. 

LIDA’s CSM can also contain more complex structures such as plans, itineraries 
story plots, melodies, etc. (see Figure 8) Structure building codelets and attention 
codelets can find their concerns as substructures of one of these complex structures. 
 

 
 

Figure 8. The Perceptual Scene and Complex Structures in the Current Situational 
Model. 

5.3.2 Structure Building Codelets 
In addition to arriving as percepts and local associations, various structures in the 
CSM can be created by structure building codelets. Structure building codelets are 
special purpose processes that support an agent’s ability to recognize relationships 
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between concepts and objects; for example, similarity, causality, etc. Structure 
building codelets continually monitor the CSM (and the Conscious Contents Queue) 
looking for content of interest. If this content is found, then the codelet will perform 
an action that will result in modifications to the CSM. Possible actions include 
creating new associations (links), creating new content (such as category nodes), or 
removing previous associations and content.  For example, a structure building 
codelet that specializes in categorization might add an is-a-member-of link between 
an object node and a category node, while another with a different specialization 
might add an affordance link (Gibson, 1979) from an object node to an action node. 
Yet another may produce an option (see Section 6.2). Some structure building 
codelets required for spatial navigation are described in (Madl, et al., to appear). 

Structure building codelets must also assign a current activation to each new 
structure it creates. This activation is a function of the current activations of its 
various raw materials (i.e., the preexisting structures of interest in the CSM), how 
well the raw materials match the concerns of the structure building codelet, and the 
base-level activation of the structure building codelet itself. The base-level 
activation of a structure building codelet is determined by how successful it has 
been in building structures that are consciously broadcast. As mentioned previously, 
the conscious broadcast is received by all LIDA modules (including the structure 
building codelets). When a structure building codelet recognizes content it built in 
the conscious broadcast, it will receive a small increase to its base-level activation. 
As a result, structure building codelets that consistently create “useful” structures 
will have higher base-level activations; structure building codelets that fail to create 
useful structures will slowly lose base-level activation, and may eventually be 
discarded.  

Note that structure building codelets are profligate, just as learning is (see 
Section 4.7). That is, a structure building codelet will produce a structure of the type 
it is concerned with whenever it finds the appropriate raw materials in the CSM or 
the Conscious Contents Queue (described below). Thus many more structures are 
built than can possibly come to consciousness and, hence, be learned into some 
memory. The ones that are unlearned simply decay away in the few tens of seconds 
granted to CSM entities. Thus we can once again (see Section 4.7) think of the LIDA 
model as being Darwinian in nature, with only the fittest structures surviving 
(Rosenbaum, 2014). 

The concept of the structure building codelet was inspired by the Copycat 
Project (Hofstadter & Mitchell, 1995) and follows in the tradition of Minsky’s “The 
Society of Mind” (Minsky, 1985), which contends that intelligence emerges not from 
a single, monolithic and complex process, but through the interactions of a “society” 
of smaller processes. 

5.3.3 Conscious Contents Queue 
The Conscious Contents Queue (CCQ) (Snaider, McCall, & Franklin, 2010) is a very 
short-term memory system (we hypothesize it to last about three seconds in 
humans) that stores the past few tens of conscious contents (see Section 5.5).  A 
newly broadcast conscious content is added to the end of the queue, pushing off the 
conscious content at the front of the queue. The Conscious Contents Queue is 
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misnamed in that it is not actually a queue, since structure building codelets can 
help themselves to data from any point within, and not just from what pops off the 
front (see Figure 9). For example, a causation building codelet finding Event 1 newly 
in the CSM and an appropriate Event 2 recently in the CCQ, might create a causal 
link from Event 2 to Event 1 (Snaider, et al., 2010). Apart from causal links, this 
Queue can also be used to estimate the duration of events (by counting how many 
previous conscious broadcasts, stored in the Queue, contain an event), and is central 
to time perception (Madl, Franklin, Snaider, & Faghihi, 2015). However, probably 
the most important function of the CCQ is the grounding of time related concepts. In 
the same way that PAM nodes for sensory concepts, such as “red”, are grounded in 
sensory memory, time concepts, such as “one second”, are grounded in the CCQ. 
 

 
 

Figure 9. The Conscious Contents Queue 

5.4 Attention Codelets 
As we have seen in Section 5.3.1 at any time the contents of the CSM can be both 
complex and quite extensive. There can be an awful lot going on in a LIDA-based 
agent’s world at any given time, too much for the agent to deal with at once. In phase 
two of the cognitive cycle as described in Section 2 and Figure 1, attention acts as a 
saliency filter, choosing the most salient (important, urgent, insistent, novel, 
unexpected, loud, bright, moving, etc.) structures to compete to become contents of 
the global broadcast. (See Section 4.4) This attention saliency filter is implemented 
by LIDA’s Attention Codelets. Like the structure building codelets, each attention 
codelet keeps continual watch over the CSM looking for some structure that meets 
that codelet’s particular concern for saliency.  

Upon finding a suitable structure in the CSM, the codelet incorporates it into a 
coalition, which is then moved to the Global Workspace to compete for 
consciousness. The term “coalition” was chosen (Baars, 1988) since an attention 
codelet can include more than one structure in a coalition, and can also combine 
forces with other attention codelets to create a joint coalition. 

The codelet(s) must also assign an activation to the new coalition, on the basis 
of which it will compete for consciousness. The amount of this activation depends 
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on four factors (Madl & Franklin, 2012): the activation of the structures 
incorporated into the coalition, the base-level activation of the attention codelet, 
how well the structures match the particular concerns of the codelet, and a fourth 
that needs more explanation. When a winning coalition (see Section 5.5) has a 
particular strong activation, it drives the whole Attention Codelets module into a 
refractory period from which it gradually recovers. The earlier in this period, the 
less activation any attention codelet will assign to a new coalition. The base-level 
activation of the attention codelet factor insures that very salient structures, such as 
sudden motion in the visual periphery, an unexpected loud noise, etc. are 
incorporated into coalitions with high activation.  

An attention codelet that successfully forms a winning coalition receives the 
resulting conscious broadcast, and reinforces its base-level activation. In theory, 
new attention codelets are formed from old ones using material in a conscious 
broadcast. As yet we have not developed this form of attentional learning. 

There are at least four kinds of attention codelets. The default attention codelet 
observes the Current Situational Model in the Workspace, trying to bring the most 
activated structure to the Global Workspace. Thus it can be concerned with a broad 
spectrum of content, but its maximum activation is low. Specific attention codelets 
are codelets with specific concerns that have been learned. Each tries to bring 
particular Workspace content to the Global Workspace. Expectation codelets, mostly 
created during action selection, try to bring the result (or non-result) of the agent’s 
recently executed action to consciousness. Intention codelets are attention codelets 
that bring to consciousness any coalition that can help the agent reach its current 
goal. When the agent makes a volitional decision (see Section 6.2), an intention 
codelet is generated.  

5.5 Global Workspace 
Attention codelets move their coalitions into the Global Workspace (see Section 5.4) 
where they compete to have their structures become the contents of the global 
broadcast (see Section 3), that is, they are broadcast to almost the entire LIDA 
model (see the orange arrows in Figure 2). The competition is a particularly simple 
one; the coalition with the highest activation wins. But the competition cannot be 
held continuously, so the question is when to hold it? The Global Workspace is one 
of two LIDA modules that do not operate completely asynchronously (see Section 
4.7). But it does not operate on a clock either. Rather we have experimented with 
four different triggers, each of which can start the competition (Kaur, 2011).  

The first trigger is a simple threshold on activation. When any coalition arrives 
with an activation over threshold, a competition is begun, with that strongly 
activated coalition becoming the winner. This trigger insures that structures with 
extraordinarily high salience have a high probability of coming to consciousness, 
and thus becoming the content of a global (conscious) broadcast (see Sections 3 and 
4.4).  

The second trigger occurs when the sum of the activations of the coalitions in 
the Global Workspace exceeds a collective threshold. This trigger is useful in those 
situations where a lot of activity of moderate saliency is occurring, but nothing of 
exceptional saliency. 
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A third trigger ensues when no new coalition arrives in the Global Workspace 
for a specified period of time. This trigger would apply to a very stable situation 
with little going on.  

The fourth, and default, trigger happens when there has been no conscious 
broadcast for a specified period of time. Even say during meditation in humans 
when purposefully nothing of any saliency is occurring, consciousness does not 
cease. Rather something of relatively little saliency is broadcast. 

Though the LIDA model includes the Global Workspace as a separate module, 
one must not infer that there is a corresponding place in brains where such a 
competition takes place. Rather recent work (Baars, et al., 2013) suggests that the 
competition for consciousness can occur throughout the cortico-thalamic core (see 
Section 4.9). 

5.6 Procedural Memory 
In the LIDA model Procedural Memory is the memory of what to do under a certain 
circumstance to achieve some goal. Following Drescher (1991, 1998), the basic data 
structure of Procedural Memory is the scheme12, consisting of a context, an action, a 
result, and a base-level activation intended to measure the likelihood of the action, 
taken in the scheme’s context, achieving the scheme’s result. Both the context and 
the result are structures composed of nodes and links. An action in a scheme, 
represented by a node, can be a simple action such as reach, point to, pick up, turn to 
the right, etc., or a sequence, or even a stream with and/or branches, of such actions.  

On receipt of a conscious broadcast, any scheme whose context overlaps 
significantly with the content of the broadcast instantiates a copy of itself, called a 
behavior, with its variables specified according to the conscious content. If the 
action of the scheme is a stream, we refer to the instantiated scheme as a behavior 
stream. The activation assigned to the instantiated behavior depends on the 
activation of the conscious content, on the base-level activation of the scheme, on 
the degree of coincidence of the conscious contents with the context of the scheme, 
and on the closeness of the scheme’s result to any of the agent’s goals (see Section 
6.2). The instantiated behavior or behavior stream is then passed on to LIDA’s 
Action Selection module. 

If a behavior is selected and executed, and that event subsequently comes to 
consciousness, selectionist learning is triggered and the base-level activation of the 
scheme that generated the behavior is reinforced. If such a behavior comes from a 
behavior stream, the scheme that generated the behavior stream is reinforced. 
Instructionist learning takes place when the conscious content suggests that a new 
scheme be constructed from an old one, typically by adding or deleting structure 
from either a context or a result. The new scheme is assigned a base-level activation 
depending on that of the old, and on the activation of the conscious content. The old 
scheme remains in Procedural Memory as is. 

                                                        
12 Drescher called it a schema. We altered that to scheme so as not to conflict with 
the different usage of ‘schema’ by psychologists. 
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5.7 Action Selection 
LIDA’s Action Selection mechanism, an enhanced form of Maes’ behavior net (Maes, 
1989), allows sophisticated, flexible action selection. Nodes in the network are 
instantiated behaviors that have come from Procedural Memory either singly or as 
part of a behavior stream. When a coalition is brought to consciousness, schemes in 
Procedural Memory will look at the contents to see if they match either the context 
or the desired result(s). Matching schemes will be self-recruited and instantiated as 
behaviors in Action Selection, where they compete for execution. A special 
deliberative scheme will always compete to start the volitional action selection 
process (see Section 6.2 below). 

The successor (forward), predecessor (backward) and conflictor links in the 
Action Selection network are defined in terms of the contexts (preconditions) and 
results (add and delete lists) of the behaviors (nodes) in the network. Activation 
along a successor link strengthens its sink behavior, if the source result satisfies a 
sink precondition. Activation along a predecessor link strengthens its sink behavior 
if a source precondition is satisfied by a sink result. Along a conflictor link, 
activation from a source behavior inhibits the sink behavior since it can undo one of 
the source’s context conditions. Several conditions can factor into which behavior is 
chosen. The selected behavior must match the appropriate context 
(preconditions)—for example, if an agent throws a ball with the expectation that it 
would be caught, there should be another agent present that is capable of catching 
the ball. Then, it must have at least the current threshold level of activation (see 
below). Selection may also be influenced by leftover behaviors from previous cycles 
that have not decayed away. A selected behavior whose action is external is passed 
to Sensory Motor Memory for execution, or in the case of an internal action, such as 
volitional action selection (see Section 6.2), is sent back to the Current Situational 
Model to take an internal action, such as to set up a competition for conscious 
decision-making.  

Since behaviors filter into Action Selection asynchronously, a trigger system 
must determine when an action is chosen. There are three possible triggers similar 
to those of the Global Workspace (see Section 5.5): 1) If a behavior is above a certain 
threshold level. Any action of moderate interest to the agent should satisfy this 
requirement. 2) If the total activation of all the behaviors in the Action Selection 
network is above a certain threshold level. This can occur if there are many actions an 
agent can choose from, but nothing of great interest. 3) If no behavior has been 
executed within a certain amount of time. For example, during volitional action 
selection, multiple contests can be held without executing any behavior. In this case, 
the threshold levels of the actions should be gradually lowered to facilitate the 
deliberating process. 

When a behavior is finally chosen, an expectation codelet is sent to the 
Attention Codelets to observe the Current Situational Model for the results of the 
action performed. This codelet should record both expected and unexpected 
outcomes, enabling the agent to build new schemes with additional context or result 
items should a coalition built by the expectation codelet come to consciousness. If 
the action produced the desired result, the scheme that produced the chosen 
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behavior will receive an increase in base-level activation, and all schemes that could 
have been chosen with the same expected result will also be given a slight boost. 
However, if the action produced an undesirable result, the scheme will receive a 
decrease in base-level activation. A desirable result is defined as one with total 
associated feelings of positive valence, while an undesirable result is defined as one 
with total associated feelings of negative valence. Thus, the agent should continue to 
modify schemes so as to increase the probability of desirable results. Schemes with 
overwhelmingly undesirable results should eventually not be recorded in 
Procedural Memory, but might remain in Semantic Memory (facts) or Episodic 
Memory (events); however, it is normal for a scheme to have a mix of positive and 
negative results. 

5.8 Sensory Motor Memory and Motor Plan Execution 
Action execution in LIDA refers to a LIDA agent transforming a selected goal-
directed action, the selected behavior, into low-level executable actions, motor 
commands, and executing them. 

When an agent has selected an action, it understands what it will do before the 
execution begins; but normally this understanding is not executable, because the 
needed detailed environmental information is not yet available. Milner & Goodale 
have proposed a hypothesis in their work on the two visual systems (Goodale & 
Milner, 1992; Milner & Goodale, 2008), the ventral and dorsal streams, providing 
“vision for perception” and “vision for action” respectively13. Regarding action 
execution, they suggest that the dorsal stream “is critical for the detailed 
specification and online control of the constituent movements that form the action” 
(Milner & Goodale, 2008, p. 775).  

In LIDA, action execution is modeled by the Sensory Motor System (SMS) (Dong 
& Franklin, 2015b), using two LIDA modules: Sensory Motor Memory and Motor 
Plan Execution (see Figure 2). Two other LIDA modules, Action Selection and 
Sensory Memory, provide input information to the SMS. Action Selection forwards a 
selected behavior, while the Sensory Memory sends data through a dorsal stream 
channel providing the most current detailed environmental information. The SMS 
sends out motor commands to the agent’s actuators for appropriate movement. 
Within the SMS, two data structure types have been implemented—the Motor Plan 
Template (MPT), and the Motor Plan (MP)—and three types of processes have been 
modeled: online control, specification, and MPT selection. 

A MP is designed based on the subsumption architecture (Brooks, 1991), a type 
of reactive motor control mechanism. In the subsumption architecture, 1) the 
sensory data is directly linked to the selection of motor commands that drive the 
actuators; 2) it decomposes a robot’s control architecture into a set of task-
achieving behaviors; and 3) it does not maintain internal models of the world. The 
MP generates motor commands as the output of the SMS to the environment (using 
actuators), while environmental data from the dorsal stream channel from Sensory 

                                                        
13 In the LIDA model, the concept of ventral and dorsal streams for the transmission 
of visual information has been extended to multimodal transmission. 
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Memory directly influence the generation process. These cyclically occurring 
processes are called the online control process of the SMS. 

A motor command (MC) is applied to an agent’s actuator. Every MC has two 
components: a motor name, and a command value. The motor name indicates which 
motor of an actuator the MC specifically controls, while the command value of a MC 
encodes the extent of the command applied to the motor. 

A set of MCs is prepared inside a Motor Plan (MP), and bound with fixed 
command values. In order to specify a MC’s command value before the execution 
begins, a Motor Plan Template (MPT) and a specification process are created in the 
SMS. A MPT is an abstract motor plan that resides in Sensory Motor Memory. It has a 
set of motor commands that are not yet bound with the command values, whereas 
after a specification process, the motor commands are bound with specific values 
using the sensory data sent from Sensory Memory, instantiating the MPT into a 
concrete MP. 

As the SMS’s initial process, a MPT selection acts to select and initiate a MPT for 
an incoming selected behavior before the MPT is specified into a concrete motor 
plan. The MPT selection chooses one MPT from others associated with the selected 
behavior; it connects action selection to action execution. 

Recently we have addressed the learning process in action execution (Dong & 
Franklin, 2015a). We implemented a model of sensorimotor learning in LIDA using 
the concept of reinforcement learning. This learning helps an agent generate 
effective motor commands in a certain context using past experiences. Following 
Global Workspace Theory, the learning is cued by the agent’s conscious content, the 
most salient portion of the agent’s understanding of the current situation (See 
Figure 2). 

6 Modes of action selection 
Every autonomous agent (Franklin & Graesser, 1997), be it human, animal or 
artificial, must iteratively and frequently answer the fundamental question “what do 
I do next.” Thus, according to LIDA’s definition in Section 2, action selection is a 
(the?) fundamental activity of autonomous agents. LIDA-based agents make such 
selections using one of four modes: consciously mediated action selection, volitional 
decision making, alarms, and automatized action selection. The first two of these 
modes correspond to Kahnemann’s System 1 and System 2 (Faghihi, Estey, McCall, & 
Franklin, 2015; Kahneman, 2011). Sloman has proposed three levels of cognitive 
processes, the reactive, deliberative, and metacognitive (1999). Our consciously 
mediated action selection occurs as a reactive process à la Sloman, while volitional 
decision making is a deliberative process. Metacognitive decision making is 
envisioned as being implemented via deliberative processing in LIDA, but has yet to 
be implemented. Each of our modes will be described in turn in the following 
subsections. 

6.1 Consciously Mediated Action Selection 
During each of LIDA’s cognitive cycles (see Section 3), that is in humans five to ten 
times a second, there’s the opportunity for an action to be selected (Madl, et al., 

https://en.wiktionary.org/wiki/%C3%A0_la
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2011) and it’s execution begun (Dong & Franklin, 2015b). Occurring every cycle or 
two, these actions are selected making extensive use of the contents of 
consciousness, but the selection process itself is never conscious (Franklin & Baars, 
2010). We refer to this so common and frequent mode of action selection as being 
consciously mediated. For example, a thirsty agent reaching for a glass of water on 
the table may well have performed consciously mediated action selection, having 
been consciously aware of the thirst and of the location of the glass of water. Almost 
all of our speech in every day life is consciously mediated. 

6.2 Volitional Decision Making 
In contrast to consciously mediated action selection, some action selection occurs 
via processing that is itself partly conscious (deliberative). Following Global 
Workspace Theory (Baars, 1988) the LIDA model hypothesizes that such volitional 
decision making is accomplished using William James’ ideomotor theory (Franklin, 
2000; James, 1890). Such volitional decision making typically takes place over many, 
many cognitive cycles.  

The major players (processes) in the LIDA version of ideomotor theory are a 
timekeeper, a proposer, an objector, and a supporter. The process begins with an 
option coming to consciousness (say the agent is thirsty, and the option is “let’s have 
a beer.”) This conscious option may instantiate several schemes (see Section 5.6) for 
accomplishing it (having a beer). It will also recruit and instantiate a deliberation 
scheme capable of implementing ideomotor theory. Perhaps one of the schemes 
effecting the option wins out; perhaps not. In the latter case, perhaps the 
deliberation scheme wins. Then a timer corresponding to the option will start in the 
Current Situational Model.  

If no objection comes to consciousness, and the timer runs out, the option is 
converted to a goal, and will typically come to consciousness. There it will recruit 
and instantiate schemes to bring about the goal, and send these behaviors to Action 
Selection. If before the timer runs out an objection comes to consciousness (“its too 
early for a beer”), then the timer is turned off. If a supporter comes to consciousness 
(“oh, it’s not that early”), then the timer is turned back on. Another objector can 
arise, or not. Or perhaps, instead, another proposer enters the fray (“let’s drink 
water”). Another timer, timing the new proposal is turned on, and the process 
continues. 

Notice that this process occurs over multiple cognitive cycles using consciously 
mediated action selection in such a way as the conscious contents are part of the 
decision making process. Note also that deliberative decision making makes direct 
use of consciously mediated action selection, rather than being separate “systems” a 
la Kahneman (Faghihi, et al., 2015; Kahneman, 2011). 

6.3 Alarms 
Many drivers have experienced another car suddenly swerving in front of them, and 
experiencing having already pressed the brake and turned the wheel while 
becoming conscious of the other car. Following Sloman (1998; 2001), such 
unconsciously selected actions are referred to in the LIDA model as alarms. In an 
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alarm situation, one selects, and executes action(s) to deal with a dangerous 
situation prior to becoming conscious of the situation.  

If an event is recognized by Perceptual Associative Memory (PAM) as an alarm, 
with perhaps a stop in the Current Situational Model to gather more details of the 
situation that came through Sensory Memory, it will proceed directly to Procedural 
Memory, skipping the consciousness broadcast. Then a scheme associated with that 
alarm will recruit itself, and trigger an action selection contest immediately due to 
the high activation of the original alarm. This type of action selection is an 
immediate, learned reaction that bypasses the conscious broadcast, and thus saves 
time.  

Learning alarms, that is, learning to bypass attention, is a form of attentional 
learning (Chun & Jiang, 1999; Häkkinen, 2010; Liddell et al., 2005; Mateo, 2010; 
Miller & Fu, 2007; Ogawa & Yagi, 2002).  Once we have learned that a situation is 
dangerous, it can influence our decision-making, reaction time and intensity, and 
attentional process (LeDoux, 2000; Rolls, 2000; Sloman, 1998; Squire & Kandel, 
2000)  

6.4 Automatized Action Selection 
When walking down an empty sidewalk, a person looks ahead, sees that the way is 
clear, and then for the next few steps can attend to something else while each step 
calls the next directly. In the LIDA model we refer to this process as automatized 
action selection (Franklin, 2003), and think of it as a trivial application of 
pandemonium theory (Jackson, 1987). As yet this mode of action selection in LIDA is 
purely conceptual, having not been implemented. 

7 LIDA-based Agents 
The subsections below are devoted to descriptions of the various LIDA-based agents 
that have been implemented to date by members of the Cognitive Computing 
Research Group at the University of Memphis. One of these is a software agent with 
a real world task, while the others are all simulations of behavioral or neuroscience 
studies. A few other such have been contributed by researchers outside of our group 
(Becker, Fabro, Oliveira, & Reis, 2015; Hernes, 2014). Many of these LIDA-based 
agents were implemented using the LIDA Framework described in Section 8. 

7.1 IDA 
A software agent IDA (Intelligent Distribution Agent) (Franklin, Kelemen, & 
McCauley, 1998), the forerunner of the LIDA model developed for the US Navy 
(McCauley & Franklin, 2002), is presented here for historical reasons. IDA respects 
most of the conceptual commitments described in Section 4. Its architecture 
incorporates most of the modules found in LIDA’s cognitive cycle (see Figure 2).  

“Distribution” is the Navy’s term for the process of assigning new billets (jobs) 
to a sailor at the end of his or her tour of duty. This process is carried out by Navy 
personnel called detailers, who communicate with the sailors in their community 
(under their jurisdiction) via either telephone or email. IDA was developed to 
automate the task of the detailer, communicating and negotiating with sailors using 
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email in unformatted English. IDA must also query existing Navy databases for 
personnel records, requisition lists (needed job), etc. In choosing jobs to offer a 
sailor, IDA must consider the current needs of the Navy, the Navy’s personnel 
policies, and the sailor’s preferences. IDA was tested and accepted by the Navy, and 
a commercial software firm was employed to adapt IDA to the Web. 

IDA’s environment is the Internet. It senses and outputs only text (ascii 
characters). Its architecture is based on a slightly simplified version of the LIDA 
cognitive cycle. IDA is functionally conscious (Franklin, 2003). Completely hand 
crafted, IDA employs no learning. 

7.2 Timing agent and Allport agent 
The LIDA Timing agent and Allport agent were developed to test three aspects of 
LIDA’s cognitive cycle, by means of comparison with human data: its duration, and 
its discrete conscious broadcasting mechanism (Madl, et al., 2011), and its ability to 
attend to images in a rapid serial presentation paradigm (Madl & Franklin, 2012).  

The first agent operated in a very simple environment, consisting only of a light 
(which could be red or green) and a button. The agent had the simple task of 
pressing the button as soon as it became conscious of the light turning green – 
similarly to standard reaction time tests. The durations of each phase of the 
cognitive cycle were adjusted according to neuroscientific evidence, to 80-100ms 
for visual perception, an additional 100-200ms for the understanding/attending 
phase, and 60-110ms for the action selection phase. Average cognitive cycle length 
in this simulation was 283ms. The agent did not account for temporal expectation 
(human subjects engaging motor circuits before pressing the button – being ‘on the 
brink of pressing it’ – and just waiting for the green light can accelerate reaction 
times). Please note that more complex tasks require multiple cognitive cycles, which 
can overlap, allowing much faster sampling of the environment (up to ~10Hz).  

The LIDA Allport agent was developed to verify whether LIDA, despite of its 
discrete consciousness mechanism, can still account for empirical findings which 
seem to favor a continuous mechanism of conscious perception. Specifically, Allport 
(1968) has developed a paradigm where subjects are seated in front of a screen 
which displays a single horizontal line in one of 12 possible positions, moving 
(changing position) upwards. They are asked to adjust the speed of this line until 
they arrive at the threshold of being able to consciously perceive movement, in two 
tasks. In both tasks, they first start with a slow line and increase its speed, arriving 
at time τ1 of no perceived change, and subsequently start with a rapid line and 
slowly decrease its speed until the brink of seeing movement again at time τ1 (the 
‘speed’ of the line is measured by the time τ it spends in one position before jumping 
to the next). The first task allows lines to traverse the entire screen, and the second 
task simply leaves the lower half of the screen blank for exactly the duration that a 
line would take to traverse that half. Allport argued that if consciousness were to be 
discrete, two different cycle times τ1 and τ2 would necessarily arise in the second 
task. Using an analogy from a cinema, if consciousness consisted of discrete ‘frames’, 
like a 20th century film, movement cannot be perceived if it only falls within the 
duration of a frame and doesn’t extend beyond it. In the second task, this can 
happen at two times τ, when the line traverses the upper half of the screen within a 
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‘frame duration’, and when it traverses the entire screen within a ‘frame duration’. 
Thus, discrete consciousness should lead to different τ1 and τ2. However, Allport 
found statistically indistinguishable times, and concluded that consciousness must 
thus be continuous. Using the LIDA Allport agent, we could show that a discrete 
consciousness mechanism, too, can produce the same result – almost equal τ1 and τ2 
– provided that old contents of consciousness persist for a time in new broadcasts 
(‘frames’), until they decay away (Madl, et al., 2011) 

7.3 Attentional blink agent 
The LIDA Attentional blink agent (Madl & Franklin, 2012) reproduced a known 
phenomenon of human attention during a rapid serial visual presentation paradigm. 
In this paradigm, subjects are asked to attend to, and report, two ‘targets’ belonging 
to a specific class of stimuli within a rapidly changing sequence of ‘distractor’ stimuli 
(e.g. two letters or ‘targets’ within a stream of digits or ‘distractors’). Subjects easily 
identify and report both targets if they are half a second or more apart. Somewhat 
counterintuitively, they also find it easy to report targets coming right after one 
another, even if the delay between them is as short as 100ms, but have trouble 
perceiving and reporting the second target if there is a distractor in between the 
targets. As an example, denoting targets with T and distractors with D, subjects will 
usually correctly report both targets in TTDDDD and TDDDDT, but will almost 
always fail to report the second target in TDTDDD. The inability to perceive and 
report the second target shortly after the first has been dubbed ‘attentional blink’ in 
the literature. The Attentional Blink agent aimed to reproduce this paradigm, based 
on LIDA’s attention and consciousness mechanisms, and on the hypothesis that 
there is an attentional resource which gets temporarily depleted when looking out 
for and attending to the target (corresponding to the locus coeruleus-
norepinephrine system, and operating on a matching timescale as that of this 
system in the brain). This assumption of a limited attentional resource which takes 
some time (about 400ms) to recharge allowed this agent to accurately reproduce 
human performance in this paradigm (Madl & Franklin, 2012). 
This agent has the advantage of being more general than most other computational 
cognitive models of the attentional blink, being part of a systems-level cognitive 
architecture, as opposed to focusing on this single phenomenon (with the exception 
of the Threaded Cognition model, which is based on the ACT-R cognitive 
architecture (Taatgen, Juvina, Schipper, Borst, & Martens, 2009)). A further 
difference from other models includes the competition for consciousness between 
targets and distractors (thus, both of their saliencies influence the outcome). Finally, 
since LIDA’s GWT-based consciousness mechanism is consistent with oscillatory 
synchrony-based accounts (see Section 4.13), it is also consistent with the 
implicated importance of oscillatory activity in the attentional blink (Janson & 
Kranczioch, 2011). 

7.4 Attentional learning agent 
Attentional learning is learning to what to attend (Estes, 1993; Gelman, 1969; 
Kruschke, 2010; Vidnyánszky & Sohn, 2003; Yoshida & Smith, 2003). In the 
following we will give a conceptual explanation of attentional learning in LIDA, 
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followed by a brief description of a LIDA-based agent capable of attentional 
learning. 

Attention in the LIDA model is primarily implemented by attention codelets that 
are stored in Attentional Memory (ATM) (Figure 5) (labeled Attentional Codelets in 
Figure 2). As described in Section 4.7 above, two kinds of attentional learning may 
occur each time a conscious broadcast comes to ATM. In selectionist   learning, the 
attention codelet that wins the competition to bring a coalition to consciousness has 
its base-level activation strengthened. In instructionalist learning, according to the 
context of the agent’s current task a new attention codelet is created from the 
winner with a more specific content of concern. According to the principle of 
profligacy (see Section 4.7), each conscious broadcast can lead to selectionist and/or 
instructionalist learning in each mode. Thus, learning occurs with the least 
provocation, but learned entities decay away unless they are later reinforced.  

We will first consider instructionalist attentional learning. During LIDA’s cognitive 
cycles (see Figure 2), percepts from Perceptual Associative Memory and local 
associations from Spatial Memory, Transient Episodic Memory, and Declarative 
Memory continually enter the preconscious Workspace’s Current Situational Model. 
Such content can be acted upon by structure building codelets, and by attention 
codelets, which detect events or other structures salient to them. The default 
attention codelet responsible for creating coalitions of content happening for the 
first time is a primitive, built-in attention codelet, which competes among other 
attention codelets to bring the most activated content to consciousness. When a 
coalition created by this attention codelet wins the competition for consciousness. 
ATM’s attentional learning mechanism then creates a new specific attention codelet. 
This new codelet’s concern is set to be the most highly activated part of the winning 
coalition. The new specific attention codelet will have an initial base-level activation 
based on the default attention codelet’s base-level activation and the coalition’s 
current activation. In this way, an attention codelet is created in ATM for each 
broadcast of conscious content for which there is not already a dedicated attention 
codelet.  

In some LIDA-based agents, we humans for example, the agent comes with 
primitive, built-in default attention codelets, such as described in the previous 
paragraph, for each of a number of types of salience, say among motion, brightness, 
loudness, unexpectedness, novelty, importance, urgency, insistency, etc. 
Instructional learning produces new attention codelets built from these default 
codelets as described above, allowing the agent to learn to what to attend in each of 
these types of saliency. 

Selectionist learning occurs for an existing attention codelet when its coalition 
wins the competition for consciousness. That is, the base-level activation of the 
attention codelet in the winning coalition gets reinforced.  

Expectation codelets (see Section 5.4) have their base-level activation adjusted 
whenever their coalition wins the competition for consciousness. Satisfied 
expectations result in increases, unsatisfied in decreases. If no similar attention 
codelet exists already then this expectation codelet is learned as a new attention 
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codelet.   
To simulate a human experiment, a LIDA agent was created (Faghihi, McCall, & 

Franklin, 2012) according to a human experiment realized by Van Bockstaele’s (Van 
Bockstaele, Verschuere, De Houwer, & Crombez, 2010). The agent’s task was to 
respond to an on-screen target that appeared either on the same side as a cue 
presented previously, or on the opposite side of the cue. The cues and targets were 
presented using two white rectangles on the computer screen. One white rectangle 
was on the left, and the other on the right. The cue consisted in one of the white 
rectangles being briefly recolored to either green or pink, at random. The target was 
a black rectangle randomly presented inside one of the white rectangles, and 
displayed until the subject responded by pressing a key to indicate whether the 
target was located left or right (For more information the readers are referred to 
(Faghihi, et al., 2012)).  

For example: 
 Situation 1, CONGRUENT trial:   

a) Both white rectangles are presented for 1000ms. 
b) The cue appears in the place of the LEFT white rectangle for 200ms. 
b) 20 ms break (both white rectangles empty).  
c) The target appears in the LEFT white rectangle. 

Situation 2, INCONGRUENT trial:  
a) Both white rectangles are presented for 1000ms. 
b) The cue appears in the place of the LEFT white rectangle for 200ms. 
b) 20 ms break (both white rectangles empty).  
c) The target appears in the RIGHT white rectangle. 

For this experiment, the attention agent would respond “left” if the target 
appeared on the left or “right” if the if the target appeared on the right. 

The LIDA agent’s reactions for congruent trials were 360ms on average, whereas 
the average reaction time for incongruent trials was 380ms. This performance was 
similar to that found in human participants in Van Bockstaele et al. (2010). The 
experimenters concluded that the 20ms difference in reaction time was due to the 
fact that the cues attract attention, and thus targets appearing on the same side as 
the cue elicit a faster reaction time than targets appearing on the side opposite from 
the cue. 

In this experiment, both instructionalist and selectionist learning occurred for 
each conscious broadcast. Whenever the default attention codelet was responsible 
for creating the winning coalition, a new attention codelet was acquired (in an 
instructionalist manner) with its content of concern equal to that of the broadcast.  
If a non-default attention codelet is responsible for a winning coalition, its base-level 
activation is reinforced. The default attention codelet’s base-level activation was 
already saturated. 

7.5 Medical Agent X (MAX) 
Medical Agent X (MAX) is an agent under development to replicate cognitive 
functions relevant to medical diagnosis (Strain & Franklin, 2011; Strain, Kugele, & 
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Franklin, 2014). The initial implementation of MAX will focus on the diagnostic 
reasoning process known as differential diagnosis, in which a ranked list of possible 
causes for a patient’s condition is generated, and a line of investigation is developed 
to rule in or rule out the identified possibilities. Another important problem is the 
extraction of clinical information from natural language medical records. These two 
processes are related, since diagnostic investigation typically requires significant 
research into the prior medical record. 

Much of our earlier work on LIDA has focused on cognitive processes that occur 
within a single cognitive cycle; MAX’s reasoning will require multiple cognitive 
cycles. MAX must “sense” and “perceive” clinical information in various forms, apply 
medical knowledge to generate relevant hypotheses, and select actions to evaluate, 
compare, and refine those hypotheses. If initial work, involving hand-coded medical 
knowledge, is successful, future work would include the development of learning 
mechanisms for MAX. 

While the other agents in the LIDA bestiary--with the lone exception of LIDA’s 
precursor, IDA, described above-- replicate human psychological phenomena for 
comparison with experimental studies, MAX seeks to test LIDA’s conceptual model 
by applying it to a real-world problem with current human performance as the 
benchmark. We have termed this the engineering fork, as opposed to the science fork, 
of the LIDA methodology. MAX’s goal is to replicate human diagnostic reasoning in a 
computational model as a technological application of LIDA’s cognitive theories. 

8 LIDA Framework 
The LIDA Framework is a software framework written in the Java programming 
language that simplifies the process of developing LIDA agents.  The framework 
implements much of the low-level functionality that is needed by most, if not all, 
LIDA agents including initialization, asynchronous and concurrent task 
management, and object creation.  The framework also provides default 
implementations for many of the LIDA modules (see Table 1 below for a list).  As a 
result, simple LIDA agents can often be created with a modest level of effort by 
leveraging “out of the box” functionality.  

The framework contains a set of configuration files that specify global and 
module-specific parameters.  By externalizing an agent’s parameters in the 
framework’s configuration files, developers can modify an agent’s behavior without 
modifying its code.  This has a number of advantages including improved 
maintainability and code reuse.  It can also be useful for experimentation and 
parameter optimization. Included in the configurable parameters are the fully-
qualified names of classes that implement the LIDA modules.  These classes are 
instantiated by the framework during initialization using the Java Reflection API.  
Developers that require functionality not available in the default classes can replace 
the default class names in the configuration files with the names of their own classes.  
In this way, developers are empowered with the ability to easily extend or override 
default module behavior with custom modules and module initializers. 

The framework also implements a multithreading engine, the task scheduler, 
that executes the operations required by the different modules. We called the basic 
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operations “tasks”. For example, attention and structure building codelets are 
implemented as tasks. Each task has a relative duration (compared with the 
duration of other tasks), and the task scheduler is responsible for these durations. 
This mechanism makes it possible to implement most simulations of behavioral or 
neuroscience experiments such as those described in the Section 7. 

Historically, the LIDA Framework has used a data structure called the 
NodeStructure to represent much of an agent’s transient and long-term knowledge.  
The NodeStructure is based on a graph-theoretical approach to knowledge 
representation in which entities are represented as nodes and associations are 
represented as links.  NodeStructures are appealing because they are easily 
visualized (for node structures of moderate size) and associations between entities 
are trivial to create.  Unfortunately, they suffer from several disadvantages.  

Comparing NodeStructures can be computationally expensive.  This presents a 
significant challenge because calculating the similarity between NodeStructures is a 
fundamental and ubiquitous operation.  NodeStructures also do not work well with 
many of the state of the art learning strategies such as deep neural networks, which 
generally produce high-dimensional vectors as outputs.  These and other limitations 
of NodeStructures have inspired the design of alternate framework 
implementations that utilize different common data structures.  The vector 
framework (Snaider & Franklin, 2014b), which is based on MCR vectors (Snaider & 
Franklin, 2014a) is one promising alternative that is currently being developed.  An 
abstract framework is also being developed that uses data structure agnostic LIDA 
module interfaces and core classes in order to maximize developer flexibility at the 
expense of limited opportunities for default module implementations.   

Java remains one of the most popular general purpose programming languages 
because of its portability, support for object-oriented design, built-in memory 
management and concurrency support, and the proliferation of high-quality Java 
software libraries.  By implementing the LIDA Framework in Java, we hope to make 
our framework, and hence our model, accessible to a large audience.  The current 
version of the LIDA framework is available for download from the CCRG website.  A 
detailed introduction to the LIDA Framework is available in (Snaider, McCall, & 
Franklin, 2011). 

9 Current work and future directions 
Work on the LIDA conceptual model and on its computational implementation 
continues.  On the conceptual side, exploration of some of the so many and varied 
roles of structure building codelets (see Section 5.3.2) is of particular interest. Effort 
is continuing to specify the role of early perception, the relationship between 
Sensory Memory (see Section 5.1) and Perceptual Associative Memory (see Section 
5.2.1). Further extensions of Sensory Motor Memory and Motor Plan Execution (see 
Section 5.8) so as to accommodate the effects of priming are proving necessary.  
Continued work on Medical Agent X (see Section 7.5) is beginning to lead us to think 
about aspects of deliberative (multi-cyclic) problem solving (see Section 6.2). 

The computational instantiation of conceptual LIDA is still underway.  In 
addition to progress leading to the implementation of Medical Agent X, there is also 
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work on a LIDA based agent simulating a human priming experiment (Schmidt, 
2002).  

Table 1 contains a list of LIDA’s major modules and mechanisms (cf. Figure 2 
above). It also indicates their implementation status in the LIDA framework and in 
LIDA agents (some mechanisms exist in individual specialized agents but have not 
yet been transferred to the much more general computational framework), as well 
as references to papers describing them. 
 
Planned future work on LIDA is computational in nature. The conceptual view of 
structures in LIDA is graph theoretical, based on nodes and links (see Section 5.2.1). 
Plans are afoot for a LIDA Framework (see Section 8) with structures based instead 
on vector representations (Snaider & Franklin, 2014b).  A second plan involves the 
design and implementation of a LIDA based simulated robot in an artificial 
environment (Koenig & Howard, 2004) that will go through a developmental period 
in which it will learn to recognize entities and activities in its environment, and to 
respond appropriately to events. 
 

Mechanism / Module LIDA 
Frame
-work 

LIDA 
agent(s) 

References 

Sensory Memory P P (Agrawal & Franklin, 2014; 
Franklin, et al., 2014; 
McCall, Snaider, & Franklin, 
2010) 

Perceptual Associative 
Memory 

P P (Franklin, et al., 2014; 
McCall, Franklin, et al., 
2010) Structure Building Codelets P P (Franklin & Baars, 2010) 

Conscious Contents Queue F F (Snaider, McCall, & Franklin, 
2012) 
 Workspace F F (Franklin & Baars, 2010) 

Spatial Memory N P (Madl, et al., to appear; 
Madl, et al., 2013) 

Transient Episodic Memory F F (Franklin, et al., 2005) 

Declarative Memory F F (Franklin, et al., 2005) 

Attention Codelets P P (Faghihi, et al., 2012; Madl 
& Franklin, 2012) 

Global Workspace F F (Baars, et al., 2013; 
Franklin, et al., 2013; 
Franklin, et al., 2012) 

Procedural Memory F F (Franklin, et al., 2005) 
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14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Action Selection F F (Negatu, D’Mello, & 
Franklin, 2007; Negatu & 
Franklin, 2002), Sections 
5.7, 6 

Sensory Motor Memory P P (Dong, 2014; Dong & 
Franklin, 2015b) 

Motor Plan Execution P P (Dong, 2014; Dong & 
Franklin, 2015b) 

“Embodiment”, interface to 
robot 

N P (Madl, et al., to appear). 

Emotions, Appraisal N N (Franklin, et al., 2014; 
Franklin & Ramamurthy, 
2006) 

Learning P P (Faghihi, et al., 2012; 
Franklin, et al., 2005; 
Franklin & Ramamurthy, 
2006) 

Alarms N N (Sloman, 1998; Sloman, 
2001) 

Volitional Decision Making N N (Franklin, 2000; Kondadadi 
& Franklin, 2001) 

Moral decision making N P (Madl & Franklin, 2015; 
Wallach, Franklin, & Allen, 
2010) 

Table 1. LIDA’s modules and mechanisms and their implementation status (F – fully 
implemented, P – partially implemented, N – not yet implemented). 
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