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ABSTRACT

Software to design multimedia scenarios is usually based
either on a fixed timeline or on cue lists, but both models
are unrelated temporally. On the contrary, the formalism of
interactive scores can describe multimedia scenarios with
flexible and fixed temporal relations among the objects of
the scenario, but cannot express neither temporal relations
for micro controls nor signal processing. We extend inter-
active scores with such relations and with sound process-
ing. We show some applications and we describe how they
can be implemented in Pure Data. Our implementation has
low average relative jitter even under high CPU load.

1. INTRODUCTION

Multimedia scenarios –such as interactive theater perfor-
mances, interactive museum exhibitions and Electroacous-
tic music– are usually designed and controlled by com-
puter programs. It is crucial that the software to execute
such scenarios preserve the macroform and the microform.
The macroform comprises the structure of the scenario (e.g.,
the tempo and the duration of the scenes, movements, parts
and measures). The microform comprises the operations
with samples (e.g., micro delays, articulation, and sound
envelope). In this paper we deal with the macroform of
multimedia content, but only with the microform of sound.

1.1 Problems

There are four problems with most existing multimedia
scenario software: (1) time models are unrelated tempo-
rally, (2) they provide no hierarchy, (3) the different time
scales are unrelated, and (4) schedulers are not appropriate
for real-time. In what follows we explain each of them.

The first problem is that software to design multimedia
scenarios is usually based either on a fixed timeline with
a very precise script, such as Pro Tools 1 , or a more flexi-
ble script using cue lists, such as the theater cue manager
Qlab 2 . Another software to design such scenarios is Able-
ton Live 3 . Live is often used in Electroacoustic music

1 http://www.avid.com/US/resources/digi-orientation
2 http://figure53.com/qlab/
3 http://www.ableton.com/
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and performing arts because it allows to use both the fixed
timeline and the cue lists, but the two time models are un-
related temporally. In fact, most software provide only one
time model or they are unrelated temporally.

The second problem is that most software do not provide
a hierarchy to represent the temporal objects of the sce-
nario. As an example, using a hierarchy, it is possible to
control the start or end of an object by controlling those
from its parent. In interactive music, Vickery argues that
a hierarchy is useful to control higher-order parameters of
the piece; for instance, to control the volume dynamics,
instead of the volume of each note [1].

The third problem is that the different time scales are of-
ten unrelated and cannot be controlled in the same tool.
Discrete user gestures (e.g., clicking the mouse), control
events (e.g., control messages) and sound processing have
different sampling frequencies and computing models. As
an example, the audio processing language Csound 4 has
three types of variables with different sampling rates: in-
strument variables, control variables and audio variables.

As a consequence of having the time scales unrelated, it is
difficult to associate, for instance, a human gesture to both
control events and signal processing parameters in Csound.
To control signal processing and control events by human
gestures, Max/ MSP and Pure Data (Pd) [2] are often used,
but they do not provide an environment to design scenarios.

The fourth problem is that the most soft real-time sched-
ulers, for instance those from Pd and Max, control both sig-
nals and control messages together and they do not support
parallelism, thus they often fail to deliver control messages
at the required time; for instance, when they work under
high CPU load, which is common when they process video,
3D graphics and sound. We argue that in soft real-time, the
usefulness of a result degrades after its deadline, thereby
degrading the system’s quality of service; whereas in hard
real-time missing a deadline is a total system failure (e.g.,
flight control systems). We focus on soft real-time.

To solve the problem of scheduling and to write high-
performance digital signal processors (DSPs) for Max and
Pd, users often write C++ plugins to model loops and in-
dependent threads. C++ plugins solve part of the problem,
but the control messages –for the input and output of these
plugins– are handled by Max or Pd’s schedulers.

Another solution for the scheduler problem –often used
during live performance– is to open two or more instances
of Max or Pd simultaneously, running different programs
on each one. Nonetheless, synchronization is usually done

4 http://www.csounds.com/
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either manually during performance or by using Open Sound
Control (OSC), which adds more complexity and latency.

1.2 Practical and conceptual implications

The description of a multimedia scenario requires a consis-
tent relationship between the representation of the scenario
in the composition environment and the execution. Artistic
creation requires a composition of events at different time
scales. As an example, it is easy to describe that a video
begins when the second string of a guitar arpeggio starts,
but how can we achieve it in practice if the beginning of
the notes of the arpeggio is controlled by the user?

The problem emerges at runtime. The example given
above is very simple, but under high CPU load, a system
interruption at the point of playing the arpeggio and the
video can often lead to desynchronization. Usually, these
eventualities are not considered by developers, as the qual-
ity of systems is evaluated according to an average perfor-
mance. Nonetheless, during performance, it is desired that
the system works well even under high CPU load.

The synchronization between the arpeggio and the video
must be achieved in every execution. If it does not work for
a performance, concert or show, the system performance is
not satisfactory. Usually, artists prefer that an event is can-
celed if the event is not going to be properly synchronized
with the other media. Users want a system that ensures that
the events are either launched as they were defined in the
score or they are not produced.

It is difficult to ensure determinism in the execution of
multimedia processes (e.g., sound, video and 3D images).
Some operating system like RT Linux 5 or RedHawk 6 in-
clude priority queues for processes to respect hard real-
time constraints; however, in common operating systems,
the user does not have this type of control.

This paper proposes a system to declare temporal con-
straints among multimedia processes that aims to ensure
all temporal relations between events in the macroform and
the microform of the scenario; however, our solution re-
mains under the realm of soft real-time.

1.3 Interactive scores

There is a formalism to link both the fixed timeline and
the cue list model. The formalism of interactive scores
was proposed at the beginning of the century to describe
scenarios with flexible and fixed temporal relations among
temporal objects [3]. Examples of temporal objects are
sounds, videos and light controls. The designer can specify
that a video is played strictly before a light show, as an
example of flexible temporal relations. The designer can
also specify that a drum loop starts three seconds after the
video, or between 10 and 15 seconds after, as an example
of fixed temporal relations.

Interactive scores also include a hierarchy of temporal ob-
jects: An object contained inside another object must start
after the execution of its father and must end before its fa-
ther ends. In addition, by using fixed temporal relations

5 http://www.windriver.com/index.html
6 http://real-time.ccur.com/concurrent redhawk linux.aspx

on the first level of the hierarchy, it is possible to express
absolute execution times for the events of the scenario.

A mathematical structural definition, an abstract seman-
tics, formal properties of the scenarios, and an operational
semantics of interactive scores was presented in [4].

The formalism of interactive scores has also encouraged
the development of software. An implementation of inter-
active scores is Virage, which has been used for performing
arts [5]. Another one is Iscore [6], used for composition of
Electroacoustic music. Unfortunately, neither Virage nor
iScore provide a satisfactory solution to control sound pro-
cessing in real-time.

Virage can control different devices by the means of the
OSC protocol and it can be used to model, for instance,
curves that change the value of a DSP parameter for sound
synthesis. Nonetheless, the values of these curves are sent
at the control-event frequency and, therefore, its users can-
not express temporal relations at the sound processing level;
for instance, that one sound starts 500 µs after another.

1.4 Contributions

In this paper, we propose an extension to the interactive
scores formalism to define DSPs for sound synthesis. This
paper deals with the macrostructure of multimedia, but only
microstructure of sound, and does not consider the struc-
ture of image, video or other media.

To define the microform of sound, we define a new type
of temporal relations meant for high precision; for instance,
to express micro delays. We also introduce dataflow rela-
tions; for instance, how the audio recorded by a temporal
object is transferred to another object to filter it, add a mi-
cro delay, and then, send it to another temporal object to
be diffused. The designer may define two views of the
scenario: one for temporal relations and another one for
dataflow (e.g., Fig. 10); otherwise, relations may overlap.

We also propose an encoding of the scenario into two
models that interact during performance. (1) A model based
on the Non-deterministic Timed Concurrent Constraint
(ntcc) calculus [7] for concurrency, user interactions and
temporal relations, and (2) a model based upon Faust [8]
for sound processing and micro controls. The great ad-
vantage of having a formal model is that we could prove
properties (e.g., playability) and predict the behavior of the
system. In fact, the interoperability of ntcc and Faust has
already been sketched in previous works [9, 10].

The novelty of our approach is using the constraints sent
from ntcc to control Faust. We tested our applications
in Pd, although they could also be compiled for Max or as
a standalone program since both Faust and ntcc can be
translated into C++ and Max. In fact, the final goal of our
research is to develop a standalone program.

In what follows we briefly describe ntcc, Faust, and
how they interact together.

1.5 Non-deterministic Timed Concurrent Constraint

In ntcc, a system is modeled in terms of processes adding
to a common store partial information on the value of vari-
ables. Concurrent processes synchronize by blocking until
a piece of information can be deduced from the store.



Ntcc includes the notion of discrete time as a sequence
of time units. Each time unit starts with a (possibly empty)
store supplied by the environment. Processes scheduled for
that time unit are then run until quiescence. The resulting
store is the output at that time unit. Residual processes
might also result. These are scheduled for the next (or
any future) time unit and computation starts all over again.
Ntcc has been used in many musical applications [11].
The semantics of ntcc processes are given in [7].

A model for interactive scores based upon ntcc is pro-
posed in [4]. In this model, the store contains all the con-
straints from the temporal relations and the information of
the events launched by the user. Temporal object processes
synchronize themselves with the store.
Ntcc models can be simulated in a real-time setting us-

ing Ntccrt [12]. Ntccrt is based on Gecode [13]: state-of-
the-art in constraint propagation. Ntccrt programs can be
compiled into standalone programs, or plugins for Pd or
Max. Users can use Pd to communicate any object with
the Ntccrt plugin. In fact, Ntccrt can control all the avail-
able objects for audio processing defined in Pd, although
our goal is to use Faust for such tasks.

1.6 Functional Audio STream (Faust)

Faust is a functional programming language for sound pro-
cessing. In Faust, DSP algorithms are functions operating
on signals. Faust programs are compiled into efficient C++
code that can be used in multiple programming languages
and environments [14]. Graphical user interface (GUI) ob-
jects in Faust can be defined in the same way as other sig-
nals. We can control buttons, check boxes and integer in-
puts –originally designed for users– from Ntccrt (Fig. 1).

buton

Label
mouse 
down

mouse 
up

0

1
user

Ntccrt

Figure 1. The signal delivered by the button reflects the
user actions (or the Ntccrt output): one when the button is
pressed; zero otherwise.

Although Faust programs can be compiled into efficient
C++ programs, Faust programs are limited because all sig-
nals must have the same sampling rate. For that reason,
Faust was recently extended for multirate [15]. With such
an extension, Faust would be capable to handle signals at
different frequencies. This is useful, for instance, for sce-
narios with different media such as audio and video. Un-
fortunately, this extension is not yet implemented, thus we
only focus on sound processing.

Another extension of Faust is the Pd-Faust interface [14].
This interface is useful for DSPs that cannot be efficiently
implemented in Pd because of a restriction of Pd: the 1-
block minimum delay for feedback loops. An example of
such a DSP is the Karplus-Strong algorithm [8]. Further-
more, Pd-Faust can also be used for other DSPs.

Finally, there is another reason to choose Faust: its exten-
sion for automatic parallelization and vectorization [16].
This extension has been proved to be very efficient; for in-
stance, for the Karplus-Strong which we will use in several
examples in this paper. Orlarey et al. found that using au-
tomatic parallelization, a program that simulates simulta-
neously 32 strings based on Karplus-Strong is twice faster
using automatic parallelization [16].

1.7 Faust and ntcc interoperability

Ntcc can send constraints to Faust, but currently Faust can-
not send information to ntcc because it requires subsam-
pling. The constraints sent from ntcc cannot be partial in-
formation, such as pitch > 3 or gain < 1 because such in-
formation cannot be processed by Faust. Constraints must
be equalities of the form variable = constant. Using
Pure Data, we can communicate those values from ntcc to
Faust by the means of number fields.

As an example, we present a possible interoperoperation
between Faust and ntcc in Figure 2. On the one hand, ntcc
can receive a user input each discrete time unit. If the value
of the input is 1, ntcc communicates to Faust that the gain
is 10; otherwise, if the user gives no input, ntcc communi-
cates Faust that the gain is 1/10. On the other hand, Faust
takes an audio signal an multiplies by the gain value given
by ntcc. In addition, Faust multiplies the signal by 2 if the
current value of the audio input is less than 3.

Note that ntcc cannot take decisions based on the val-
ues of the audio signal because ntcc is not mean to handle
audio signals, and Faust cannot take decision based on ab-
sence of information or partial information.

audio 
input (a)

audio 
output
f(a,c)

gain (c)

44.1 kHz 44.1 kHz

10Hz

user 
input (s)

10Hz
!when s = 1 do next tell (c = 10)

� !unless s = 1 next tell (c = 1/10)
� tell (c = 10)

f(a, c) =

�
2c � a , a < 3

c � a , a ⇥ 3

Figure 2. Example of ntcc and Faust interoperability.

1.8 Structure of the Paper

It is out of the scope of this paper to define formal seman-
tics of interactive scores. Semantics of interactive scores
were defined in [4]. It also out of the scope of this pa-
per to fully describe the semantics of interactive scores
and Faust interoperability. Such a semantics is to be de-
fined in the interactivity in the writing of time and inter-
actions (INEDIT) project supported by the french research
agency (ANR). The purpose of this project is to explore
the interoperability of interactive scores, Faust, and other



french computer music software. The project will start in
fall 2012. This paper offers preliminary and encouraging
results for INEDIT.

In what follows, we present the extension of interactive
scores in Section 2; some applications developed with our
framework in Section 3; quantitative results of the execu-
tion of the application in Section 4; and conclusions, re-
sults and future work in Section 5.

2. INTERACTIVE SCORES WITH MICRO AND
MACRO CONTROLS

Scenarios in interactive scores are represented by temporal
objects, temporal relations for micro and macro controls,
interactive objects and dataflow relations.

2.1 Temporal Objects

Temporal objects can be triggered by interactive objects
(usually launched by the user) and several temporal objects
can be active simultaneously. The duration of a temporal
object is given by an interval of natural numbers (which
may include ∞). A temporal object may contain other
temporal objects: this hierarchy allows us to control the
start or end of a temporal object by controlling the start or
end of its parent.

Objects that do not have children, may have a sound syn-
thesis process. A process is a Faust program that is active
during the execution of the object. These processes include
at least two input signals: to control its start and end. Dur-
ing the execution of a score, only one instance of a tempo-
ral object can be active simultaneously because scores are
linear and loops are not considered in this extension.

2.2 Temporal Relations

Temporal relations provide a partial order for the execution
of the temporal objects; for instance, to express precedence
between two objects. In interactive scores, it is also possi-
ble to specify a variety of relations among temporal objects
such as global constraints and conditional branching.

In this paper, we take into account scenarios limited to hi-
erarchical relations represented as a directed tree, point-to-
point temporal relations without disjunction nor inequal-
ity ( 6=), and quantitative temporal relations [17]. The first
ntccmodel proposed in [18] is based on Allen’s relations;
fortunately, point-to-point relations can express all Allen’s
relations without disjunction [19]. We proposed a ntcc
model with point-to-point relations in [4]. In this paper,
we extend such a model to control Faust from ntcc.

In the model in [4], the relations between the start or end
of two temporal objects are labeled with an interval of inte-
gers that represents the possible duration between the two
points. Using∞ in such intervals, it is possible to represent
the relations <,>,≤,≥ and = with their usual interpreta-
tion over natural numbers.

In this paper, we also include high-precision temporal
relations. This new type of temporal relations between
sound objects are meant to have higher precision and they
are controlled by Faust. Temporal relations for sound-
processing micro controls are labeled by an integer n, where

n represents, for instance, a number of samples or mi-
croseconds. Nonetheless, we can also use this relations to
represent durations of seconds. We represent graphically
such relations with dashed arrows.

2.3 Dataflow Relations

A dataflow relation between objects a and b means that the
audio outputs of a are connected to the audio inputs of b.
If a has more outputs than b inputs, they are merged; if a
has less outputs than b, they are split. The control inputs of
a Faust subprocess are connected automatically depending
on the dataflow, and the micro and macro controls.

As an example, the reader may see the dataflow view
of a scenario in Figure 3. In such a scenario, a sound
is recorded by the acquisition object, then the stream is
passed to a delay object, and then is passed to a filter that
adds gain. Finally, the stream is passed to an object that
sends two copies of the stream to the output. In what fol-
low, we describe another example.

Microphone Acquisition (y)

Delay (x)

Filter (z)

Two diffusions (u)

Play Sound (v)

Output (o)
Time

Figure 3. Dataflow view of a scenario. Thick arrows rep-
resent the flow of data through time.

2.4 Example: An Arpeggio with Three Strings

Karplus-Strong is an algorithm to generate metallic plucked-
string sounds. It can be described in a few lines of Faust.
In the Faust program presented by Orlarey et al. in [8], a
button triggers the sound. We connect such button to a con-
trol signal sent from the Ntccrt plugin to the Faust plugin at
the beginning of the temporal object. We also add another
button to stop the sound of the string. In Pure Data (Pd),
such buttons can be represented by bang or toggle objects
that send messages to the plugin. In addition, we can use
number fields as input for Faust. We use Pd for simplicity,
but Pd is not required to integrate Ntccrt with Faust.

Figure 4 is a scenario that models an arpeggio of three
strings using Karplus-Strong. The dataflow is simple: each
audio outputs is merged into a single output. There are two
types of temporal relations: some labeled with intervals in
the order of seconds that will be handled by the Ntccrt plu-
gin, and the high precision ones, in the order of samples,
that will be handled by the Faust plugin.

The temporal constraints of the scenario are obtained from
the duration of each temporal object, the hierarchy and
from the temporal relations. For each temporal object, we
add to the constraints: (1) “the start time of the object plus
its duration is equal to the end time of the object” and (2)
“the object starts after its father and ends before its father”.
For each temporal relation, we add the constraint “the time
of the first point plus the duration in the relation is the time



Karplus (k1)

Karplus (k2)

Karplus (k3)a

b100smp

[2s, 4s]

[0s, 0s]

[0s, 0s]

∆k1 = [10s, 10s]

∆k2 = [5s, 10s]

∆k3 = [4s, 4s]

ThreeStrings(f)

Figure 4. An example of a scenario. The durations in
the temporal relations are labeled with seconds (s) and in
the high precision temporal relations with samples (smp).
Interactive objects are a and b.

of the second point”. The temporal constraints of the score
are explained in detail in [4].

Figure 5 is the constraint graph of the scenario in Figure
4. The ntcc model is parametric on the constraint graph,
which can be obtained from the abstract semantics of the
score, introduced in [4]. High precision relations are rep-
resented as zero durations in the constraint graph because
they are controlled by Faust and not by Ntccrt, even if the
duration in the relations were given in seconds.

a

b
[2s, 4s]

∆k1 = [10s, 10s]

∆k2 = [5s, 10s]

∆k3 = [4s, 4s]

Figure 5. The temporal constraints of the scenario in Fig-
ure 4. The durations in the temporal relations are labeled
with seconds (s) and the high precision temporal relations
are considered as zero delays.

Figure 6 is the block diagram for the Faust program in
charge of sound processing. Block diagram semantics are
explained in detail in [8]. The inputs are controlled by the
Ntccrt plugin. For simplicity, to avoid upsampling, control
signals (e.g., ek1, sk1 and ek2) are replaced by Faust GUI
buttons (Fig. 1). Interactive objects are represented by
messages labeled by 1: If a message arrives, the interactive
object must be launched. The audio output of each Karplus
block is added together into a single output. Figure 7 is the
Pure Data patch representing the scenario.

3. APPLICATIONS

We present some multimedia scenarios modeled in the ex-
tended formalism of interactive scores.

3.1 The Macro Structure of an Arpeggio Sequence

In Figure 8, we duplicate an arpeggio three times. The
macroform is respected: The duration of each arpeggio is
10 seconds, but the start date and the durations of some
notes can be controlled by the user with the freedom de-
scribed in Figure 4. This problems shows how to solve the
problem of having both time models (the cue list and the
fixed timeline models) temporally related. In our frame-
work, we can model the macroform of the arpeggio (e.g.,

Karplus (k1)

Karplus (k2)

Karplus (k3)

@100

threeStrings(f)

output

sk1

ek1

ek2

ek3

sk3

Figure 6. Block diagram representing the Faust process in
charge of signal processing and the micro controls of the
sound processors of the scenario. Signal processor @100
adds a delay of 100 samples to the signal sk1 (the start of
the first string).

Figure 7. Pure Data patch representing the scenario in Fig-
ure 4. The Ntccrt plugin has only five outputs because the
start of the second Karplus-Strong object (k2) is controlled
directly from Faust. The internal clock of Ntccrt is con-
trolled by a Pd metronome object with a period of 20 ms.

the duration of the notes and the global duration) and we
can also model the microform (e.g., the microdelays han-
dled by Faust and the delays among the notes that can be
controlled by user interactions).

∆ = 10 ∆ = 10 ∆ = 10

Figure 8. Three repetitions of a temporal object contain-
ing an arpeggio of three strings (described in Figure 4).
The double-headed arrow represents an inequality (≤) and
a white-headed arrow represents an equality relation (=).

3.2 An Arpeggio without “Clicks”

There is a problem with the example in Figure 4: Inter-
rupting abruptly the execution of the Karplus-Strong DSP
causes perceptible “clicks”. A solution to this problem is to
gradually decrease the volume (or increase the attenuation
parameter) before stopping the DSP. The value of 0.5 sec-
onds is arbitrary, but it is fixed in the scenario, allowing us
to know precisely the macroform of the scenario (e.g., its
total duration). Therefore, instead of increasing the atten-
uation parameter indefinitely, we represent the attenuation
with a temporal object, thus we can predict its duration and
the global duration of the arpeggio.



a

b

100smp

[2s, 4s]

[0s, 0s]

[0s, 0s]

∆k1 = [10s, 10s]
Anti-Click ThreeStrings (f)Karplus' (k1')

Karplus AC[9.5s, 9.5s] [0.5s, 0.5s]

Karplus' (k2')
Karplus AC [0.5s, 0.5s]

∆k2 = [5s, 10s]

[4.5s, 9.5s]

Karplus' (k3')
Karplus AC [0.5s, 0.5s]

∆k3 = [4s, 4s]

[3.5s, 3.5s]

Figure 9. A modification of the scenario, presented in Fig-
ure 4, to remove “clicks”. The Karplus objects simulate
plucked-strings and the AC objects change the attenuation
parameter of the strings gradually. The macroform of the
scenario in Figure 4 is preserved intact.

3.3 Changing the Sound Source Perception

Small delays between the start of two temporal objects are
usually not perceptible; however, in some cases –such as
the example in Figure 10–, a small delay of 500 µs 7 be-
tween a sound played on the left channel and the same
sound played on the right channel can change the way on
which we perceive the sound source 8 .

Karplus (k1)

L Output (o1)

[0s, 0s]

∆k1 = [10s, 10s]

∆o1 = [10s, 10s]

R Output (o2) ∆o2 = [10s, 10s]

Karplus (k1)

L Output (o1)

∆k1 = [10s, 10s]

∆o1 = [10s, 10s]

R Output (o2) ∆o2 = [10s, 10s]

500µs

Time

Time

Figure 10. A scenario with a micro interval. First out-
put is the left channel and second output is the right chan-
nel. First view is temporal relations and the second view is
dataflow relations. It is better to represent separately both
views of the score; otherwise, arrows will overlap.

4. RESULTS

We implemented the arpeggio of Figure 4. We tested three
implementations of the Karplus-Strong in Pure Data (Pd):
one from Colin Barry 9 that uses an instruction to define
blocks of one sample (object block˜ 1), one from Johannes
Kreidler 10 that uses one-sample delays (object z˜ 1), and
one from Albert Gräf using a Faust plugin generated with

7 This delay is equivalent to 22 samples at 44.1 kHz sampling rate.
8 http://buschmeier.org/bh/study/soundperception/
9 www.loomer.co.uk

10 www.pd-tutorial.com

Pd-Faust 11 . The interactive objects are launched automat-
ically (at the latest possible time).

For each test, we played each arpeggio four times with a
CPU load of 3% and four times with a load of 85%. We
repeated each test ten times. The tests were performed in a
3.06 GHz Intel Core i3 processor on an iMac with a RAM
memory of 4 Gb 1333 MHz DDR3, under Mac OS 10.6.8,
using Pure Data extended 0.42 and Faust 0.9. To increase
the CPU load, we ran several video processing operations
from the graphics environment for multimedia (GEM) plu-
gin for Pd. The CPU load values are approximatively and
they were obtained using Mac OS X’s activity monitor.

We calculated the average relative jitter of the micro- tem-
poral structure of the scenario: the average time difference
between the expected starting time of each string, with re-
spect to the first string of the arpeggio, and the time ob-
tained during execution. The average relative jitter using
Faust is 500 µs with both a CPU load of 3% and 85%; on
the contrary, the implementation from Colin Barry has a
jitter of 7991 ms with a CPU load of 85% and the imple-
mentation from Johannes Kreidler has a jitter of 9231 ms
with a CPU load of 85%. These values are very big and
make the listening of the arpeggio incomprehensible. The
average relative jitter was calculated using Matlab.

The Pd implementations of Karplus-Strong have also a
limitation for high frequencies: They work well until 2000
Hz and Faust works well until 3000 Hz. Although this last
result is the authors perception, we believe that the upper
fundamental frequency limit may be due to the “chunk-
sized” buffer delay in the feedback loop in Pd.

Another advantage of Faust is that the control signals in
Faust can be delayed at sample level, whereas it is not pos-
sible to add sample delays to messages in Pd. In Pd, we
need to delay the audio output instead of the control sig-
nals to produce such result. Finally, using Faust, sound
processors could be automatically parallelized, improving
its performance in many cases [16].

5. CONCLUSIONS

In this paper we extend the formalism of interactive scores
with sound processing and micro controls for sound pro-
cessors. We present an encoding of the scenario into a
ntcc model –executed using the real-time capable inter-
preter Ntccrt– and a Faust program. Both programs inter-
act during the performance of the scenario. We show how
some interesting applications can be easily modeled in the
formalism and how they can be executed in Pure Data (Pd).

Using Faust and Ntccrt, we achieved an efficient and real-
time capable performance of a scenario –even under high
CPU-load. Nonetheless, our final goal is to integrate Ntccrt
and Faust in a standalone program. We argue that the solu-
tion we propose solves three of the problems we posed in
the introduction.

First, time models are related temporally, for instance,
we can specify that an object is executed strictly in the
third second of execution, and we can can also express that
another object is executed between two and five seconds

11 http://docs.pure-lang.googlecode.com/hg/faust2pd.html



after the end of the previous object. Although in the ex-
ecution the micro controls are managed by Faust and the
macro controls by ntcc, it is also possible to express, for
instance, that an object starts 500 microseconds after an-
other, and it will end one second before another object.

Second, hierarchy is available in our model and it allows
to constrain the execution times of the objects contained in
another object.

Third, the system is appropriate, even under high CPU-
load, to interact with a human in real-time, as shown in the
quantitative results.

Unfortunately, different time scales are available in our
tool, but they are temporally unrelated, as in many tools;
for instance, is not possible to relate the frequency of the
clock that controls ntcc discrete time units to the signal
processing sampling rate.

Note that the score in Figure 4 is difficult to model in
the existing tools presented in the introduction. Qlab and
Live do not allow to model delays of 100 samples. Max
and Csound allow to express delays of 100 samples, but it
is very hard to synchronize processes whose durations are
integer intervals such as duration ∈ [5, 10].

The solution to these problems is relevant for the mul-
timedia interaction domain because, in addition to sound
processing, the computer may execute at the same time
complex video and image operations. For that reason, we
did the evaluation of our system under high CPU-load, ob-
tained by executing several video processing operations
concurrently.

5.1 Future Work

We believe that any Faust program could be translated into
ntcc based on the results obtained by Rueda et al. in [9].
Rueda et al. translated the Karplus-Strong Faust program
into ntcc. Although it is clear that the execution of a Ntc-
crt simulation cannot be done at sound processing sam-
pling frequency, such translation could be used to verify
properties of correctness of a scenario where ntcc and
Faust interact (e.g., playability) as proposed in [9, 10].

We also propose to extend the implementation to handle
audio files efficiently. Libaudiostream 12 is an audio li-
brary, developed at the french research institute Grame 13 ,
to manipulate audio resources through the concept of streams
using Faust programs.

Including Libaudiostream in our framework, it will be
possible to design a scenario where a temporal object loads
a sound file into memory, Faust filter it, and then, Faust
plays the sound at the appropriate time. Precision is guar-
anteed because the time to load the file and process it is
foreknown in the scenario. Currently, we have to rely on
third-party programs, such as Pd, to do handle audio files,
and to communicate the control signals from Ntccrt to Faust.
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