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ABSTRACT

In the Expressive Information Processing field, some stud-
ies investigated the relation between music and emotions,
proving that is possible to correlate the listeners main ap-
praisal categories and the acoustic parameters which better
characterize expressive intentions, defining score-indepen-
dent models of expressiveness. Other researches take to
account that part of the emotional response to music re-
sults from the cognitive processing of musical structures
(key, modalities, rhythm), which are known to be expres-
sive in the context of the Western musical system. Almost
all these studies investigate emotional responses to music
by using verbal labels, that is potentially problematic since
it can encourage participants to simplify what they actually
experiencing. Recently, some authors proposed an exper-
imental method that makes no use of verbal labels. By
means of the multidimensional scaling method (MDS), a
two-dimensional space was found to provide a good fit of
the data, with arousal and emotional valence as the pri-
mary dimensions. In order to emphasize other latent di-
mensions, a perceptual experiment and a comprehensive
acoustic analysis was carried out by using a set of musical
pieces all in major mode. Results show that participants
tend to organize the stimuli according to three clusters, re-
lated to musical tempo and to timbral aspects such as the
spectral energy distribution.

1. INTRODUCTION

Information about music performance, structured as meta-
data, could further the development of new application such
as automatic expressive performance or active listening,
and offer a contribution to improve systems in the context
of content-based retrieval, entertainment, and music edu-
cation. Moreover, the study of music is not limited to the
artistic field. Indeed, the power of music to arouse in the
listener a rich set of sensations, such as images, feelings,
or emotions, can have many applications. In the informa-
tion technology field, a musical signal can contribute to
the multimodal/multisensory interaction, communicating
events and processes, providing the user with information
through sonification, or giving auditory warnings. In this
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sense, sound design requires great attention and a deep un-
derstanding of the influence of musical parameters on the
user’s experience.

The communication of expressive content by music can
be studied at three different levels, considering: (1) the ex-
pressive intentions of the performer, (2) the listeners per-
ceptual experience, and (3) the composers message.

(1) Most studies on the performance expressiveness aim
at understanding the systematic presence of deviations from
the musical notation as a communication means between
musician and listener (see, e.g. [1, 2]). Deviations intro-
duced by technical constraints (such as fingering) or by im-
perfect performer skill, are not normally considered part
of expression communication and thus are often filtered
out as noise. The analysis of these systematic deviations
has led to the formulation of several models (e.g., [3, 4,
5, 6]) which aim to describe where, how and why a per-
former modifies, sometimes unconsciously, the score nota-
tion. It should be noticed that, although deviations are only
the external surface of something deeper and often not di-
rectly accessible, they are quite easily measurable, and thus
widely used to develop computational models in scientific
research and generative models for musical applications.

(2) These studies investigated the relation between music
and emotions, showing a sort of isomorphism between mu-
sical expression and listeners affective responses. Percep-
tual studies proved how, generally speaking, it is possible
to correlate the listeners main appraisal categories and the
acoustic parameters which better characterize expressive
intentions ([7, 8] for reviews).

(3) This research takes in account that part of the emo-
tional response to music results from the cognitive process-
ing of musical structures (key, modalities, rhythm), which
are known to be expressive in the context of the Western
musical system. For example, musical features such as
modulation, grace notes, and harmonic progressions, are
often associated with emotional responses in the verbal re-
ports of participants [9]. Peretz, Gagnon, and Bouchard
[10] demonstrated that rhythm and modality (major vs. mi-
nor) contribute to happiness or sadness. These studies are
developed in [11, 12]. Generally, they analyze the elements
of the musical structure and the musical phrasing that are
critical for a correct interpretation of composers message.

Some studies investigated the relation between music and
emotions, proving that is possible to correlate the listen-
ers main appraisal categories and the acoustic parameters
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which better characterize expressive intentions, defining
score-independent models of expressiveness [8].

[13] address the question of whether expressive informa-
tion can be communicated (and recognized) by means of
features which are not strictly related to the score. Thus,
relevant musical attributes for differentiating expressions
(such as articulation) can be replaced by more physical fea-
tures (e.g. attack time). Professional performers of violin
and flute were asked to play musical performances in order
to convey different expressive intentions, described by the
adjectives that lie on the affective space (happy, sad, an-
gry and calm), and on the sensorial space (light, heavy,
soft and hard). With the aid of machine learning tech-
niques we found the audio features that are most relevant
for the recognition of different expressive intentions. Us-
ing these features as coordinates, we could place the ex-
pressions on a feature space and obtain an objective mea-
sure of physical similarity. In particular, we extracted and
selected a set of audio features from a set of expressive
performances played by professional musicians on violin
and flute. These features were tested and confirmed by the
leave-one-out cross validation, and they can be grouped
according to local audio features (using non overlapping
frames of 46ms length), and event features (using sliding
windows with 4s duration and 3.5s overlap).

A common characteristic of almost all these studies was
to investigate emotional responses to music by using verbal
labels. The use of verbal labels is potentially problematic
since it can encourage participants to simplify what they
actually experience [14] and the subjects responses may be
conditioned by the different semantic nuances of the same
word. Recently, Bigand [12] investigates the emotion con-
veyed by musical pieces, carrying out some perceptual ex-
periments without making use of verbal labels. Musically
trained and untrained listeners were asked to listen 27 dif-
ferent musical excerpts and to freely group those that con-
veyed similar subjective emotions. By means of the mul-
tidimensional scaling method (MDS), a two dimensional
space was found to provide a good fit of the data, with
arousal and emotional valence as the primary dimensions
(Fig. 1). In particular, the excerpts resulted grouped in four
clusters, characterized by i) high arousal and high valence
(HAHV), ii) low arousal and high valence (LAHV), iii)
high arousal and low valence (HALV) and iv) low arousal
and low valence (LALV).

Though in his paper Bigand refers to a hypothetical third
axis, this aspect is not discussed in detail. Since much of
the variance in the results of the Bigand’s experiment is
due to the mode (major or minor) of the musical pieces,
we planned an experiment to investigate other secondary
aspects of the relation between music and emotions. Mu-
sically trained and untrained listeners were asked to listen
the 23 different musical excerpts, all in major mode, and
to group those that conveyed similar subjective emotions
(see Sec. 2.1). The statistical analysis of the responses (see
Sec. 2.2), showed that the listeners organized the musical
stimuli in three clusters. In order to investigate the na-
ture of these associations (both the four Bigand’s clusters
and the three clusters of the new experiment), we carried

out a detailed acoustic analysis of the musical stimuli (see
Sec. 3). This analysis allowed us to relate the subjects’
answers with the music features and to identify relations
among the musical and the affective domains, in order to
emphasize the existence of secondary factors that charac-
terize the perception of emotion in music. To this end, we
have selected musical pieces only in a major mode, a pa-
rameter largely related to the axis of the affective valence.

Figure 1. The 27 excerpts of the experiment in Bigand
[12], mapped on a two-dimensional space. Dashed lines
represent the four affective clusters: high arousal and high
valence (HAHV); high arousal and low valence (HALV);
low arousal and high valence (LAHV); low arousal and low
valence (LALV). Figure adapted from [12].

2. PERCEPTUAL EXPERIMENT IN MAJOR
MODE

An experiment has been carried out in order to emphasize
the existence of secondary factors that characterize the per-
ception of emotion in music. In the previous section, it has
been noted that much of the variance in the results of the
Bigand’s experiment is due to the modality (major or mi-
nor) of the musical pieces. To reduce the effect of this
component, we decided to follow the same experimental
method, but applying it to musical pieces only in major
mode.

2.1 Materials and method

For the experiment, 23 musical excerpts have been chosen
as follows: 11 pieces are taken from Bigand in [12], select-
ing those in a major mode, that are numbered 1, 4, 5, 6, 11,
13, 14, 15, 20, 21, and 23; 12 other pieces were chosen by
the Western music repertoire, from XVII to XX century. In
particular, the added excerpts are all in a major mode and
have been chosen to be representative of various composi-
tional styles. They correspond either to the beginning of a
musical movement, or to the beginning of a musical theme
or idea. The duration of the excerpts is on average of 30s.

The procedure follows the one already used in [12]. The
experiment was conducted using an especially developed
software interface. Participants were presented with a vi-
sual pattern of 23 loudspeakers, representing the 23 ex-



cerpts in a random order. They were required first to lis-
ten to all of these excerpts and to focus their attention on
the emotional experience of the listening. They were then
asked to look for excerpts that induced a similar emotional
experience and to drag the corresponding icons in order to
group these excerpts. They were allowed to listen to the
excerpts as many times as they wished, and to regroup as
many excerpts as they wished. The experiment were per-
formed by a total of 40 participants. Of these, 20 did not
have any musical experience and are referred to as non-
musicians; 20 were music students for at least five years
and are referred to as musicians. The duration of the test
was about 30 minutes.

2.2 Results

Participants have formed an arbitrary numberN of groups.
Each groupGk contains the stimuli that the a subject thinks
similar (i.e., that induces a similar emotive experience).
The dissimilarity matrixA is defined by counting how many
times two excerpts i and j are not included in the same
group:

A[i, j] =

{
A[i, j] + 1
A[i, j]

ifi ∈ Gk ∧ j /∈ Gk

otherwise
(1)

∀i, j = 1, ..., 23 and ∀k = 1, ..., N .
The dissimilarity matrix was analyzed by means of a Multi-

Dimentional Scaling (MDS) method. The location of the
23 excerpts along the two principal dimensions is repre-
sented in Figure 2. The excerpts that are close in this space
are those evaluated to be more similar by the subjects. The
musical pieces coming from the Bigand’s experiment have
maintained their original numeration (with a ‘B’ before the
number); the other pieces, instead, have been labeled with-
out any letter. Moreover, the MDS solution was compared
with a cluster analysis performed on the dissimilarity ma-
trix. The three main clusters are marked in Figure 2 by
means of dotted lines.

In Bigand’s experiment, the selected excerpts were grouped
in two clusters (see Fig. 1): LAHV and HAHV. It can be
noted that the excerpts B1, B4, B5, B6, and B21 are still
grouped together in one cluster, named Low-Arousal (LA)
cluster. Differently, the other Bigand’s excerpts are divided
into two clusters, named High-Arousal clusters (HA1 and
HA2). In short, the first dimension of the MDS is related
with the arousal dimension of Figure 1, whereas the sec-
ond dimension does not seem connected to any of the axes
identified by Bigand in his study.

3. ACOUSTIC ANALYSIS OF PREVIOUS
EXPERIMENT

3.1 Feature extraction

In order to relate subjects’ answers with musical features,
we carried out a detailed acoustic analysis of the musical
stimuli both of Bigand’s and present experiment. A set of
acoustic features were calculated for each excerpt. The set
was chosen among those features that in previous listening
experiments [15] were found to be important for discrim-
inating different emotions and were also used to classify

Figure 2. MDS analysis on experiment data. Dashed lines
represent the outcome of the cluster analysis.

the style [16] and the expressive content in musical per-
formances [17] and [13]. We computed the features us-
ing non-overlapping frames (of 46-ms length), and then we
considered their mean value within sliding windows (with
4-s duration and 3.5-s overlap). The window size allows
to include a reasonable number of events, and it roughly
corresponds to the size of the echoic memory. In total,
we collected a set of 13 audio features. See Tab. 1 for a
formal description of the features. The features are: a) Ze-
roCross consists in counting the number of times the audio
signal changes sign. It can be considered as a simple in-
dicator of noisiness; b) RMS takes into account the global
energy of the signal, computed as the root average of the
square of the amplitude (root-mean-square); c) Centroid is
the first moment of the spectral magnitude. It is related
with the impression of ‘brightness” of a sound [18], be-
cause a high centroid value means that the sound energy is
concentrated at the higher frequencies; d) Brightness mea-
sures the amount of energy above the frequency of 1000
Hz. The result is expressed as a number between 0 and 1;
e) Spectral ratios (SRs) over different frequency bands of
the spectrum are other useful indications of the spectrum
shape. The spectrum is divided in three regions: below
534 Hz (SRl), from 534 to 1805 Hz (SRm), and above
1805 Hz (SRh); f) Rolloff is the frequency such that the
85% of the total energy is contained below that frequency.
It is related to the ”brightness” of the sound; g) Roughness
is calculated starting from the results of Plomp and Levelt
[19], that proposed an estimation of the dissonance degree
between two sinusoids, depending on the ratio of their fre-
quency. The total roughness for a complex sound can be
calculated by computing the peaks of the spectrum, and
taking the average of all the dissonance between all pos-
sible pairs of peaks [20]; h) SpectralFlux is the distance
between the spectrum of each successive frame; i) LowEn-
ergy is the percentage of frames showing less-than-average
energy. It is an assessment of the temporal distribution of
energy, in order to see if it remains constant throughout the
signal, or if some frames are more contrastive than others;



l) Tempo is the musical velocity of the performance. Since
many of the 27 excerpts have a complex polyphonic struc-
ture, it is not easy to have a good estimation of this feature
using an automatic routine. Then, the Tempo of each ex-
cerpt was estimated by means of the manual annotations of
an expert as the average of the piece; m) Mode is a basic as-
pect of the musical structure. In Western tonal music there
are two modes, named major and minor mode. Also in this
case, we used the annotations of an expert who analysed
the musical sheets.

Starting from the calculated features, we selected the sub-
set of features related both to the four clusters of the Bi-
gand’s experiment and the three clusters of the experiment
in major mode. The feature selection procedure consists
in finding the audio features that give the highest classi-
fication ratings. A wrapper approach based on sequen-
tial feature selection (SFS) [21] is applied with reference
to a linear classifier. The feature selection procedure was
applied twice. The first time we selected the set of fea-
tures that classify the 23 excerpts, with a minimum error
rate, following the classes specified by the four clusters
HAHV, LAHV, HALV, and LALV. The SFS process se-
lected the following four features, in order of selection:
Tempo, Mode, Centroid, and RMS. The minimum error rate
is 18%. Then, we selected the set of features that classify,
with a minimum error rate, the 23 excerpts following the
classes specified by clusters LA, HA1, and HA2. The SFS
process selected the following three features, in order of
selection: Tempo, Rolloff, Zerocross. The minimum error
rate is 23%.

3.2 Results

Tab. 2 shows the mean values of the four features selected
for the Bigand’s clusters, calculated for each excerpt of his
experiment. The excerpts belonging to the clusters with
high arousal (i.e. HAHV and HALV) are characterized,
with a few exceptions, by a high value of Tempo. In par-
ticular, the mean value among the excerpts of HALV is
127bpm, HAHV is 100bpm, LAHV is 63bpm, and LALV
is 47bpm (F = 11.2 on 3 and 23 df , p < 0.001), where
bpm stands for beats-per-minute. The excerpts belonging
to the clusters with low valence (i.e. HALV and LALV) are
characterized by a minor mode; all excerpts except number
25 and 26 that are atonal pieces. On the contrary, all the
excerpts but one of the HAHV cluster have a major mode
and the excerpt 24, taken from a Stravinsky’s composition,
has an uncertain tonality based on two superposed ma-
jor chords. The excerpts of the LAHV cluster are mostly
characterized by a major mode. A Chi-squared analysis
showed that modality is significatively related with the va-
lence factor (χ2 = 14.9, df = 2, p < 0.001). In regard
to the other two selected features, a high Centroid value
characterizes the clusters with high valence (the average
value is 1588Hz for HAHV, 1573Hz for LAHV, 1426Hz
for HALV, and 1348Hz for LALV), whereas a high RMS
value distinguishes the clusters with high arousal from the
others (the average value is 0.094 for HAHV, 0.080 for
LAHV, 0.098 for HALV, and 0.057 for LV LH). However,
for both these features, the differences are not statistically

cluster excerpt Tempo [bpm] Mode Centroid [Hz] RMS
HAHV 10 109 major 1643 0.075

11 53 major 2684 0.091
13 103 major 1737 0.080
14 102 major 1141 0.151
15 145 major 1473 0.067
22 103 major 1376 0.060
23 59 major 1047 0.053
24 123 undetermined 1603 0.174

LAHV 1 61 major 1694 0.086
2 77 minor 2322 0.067
4 53 major 1288 0.089
5 53 major 1075 0.108
6 50 major 1078 0.086

19 65 minor 2091 0.105
20 65 minor 1345 0.051
21 76 major 1691 0.045

HALV 12 157 minor 1097 0.061
16 142 minor 1074 0.220
17 149 minor 1844 0.045
18 144 minor 1760 0.174
25 151 undetermined 1725 0.056
26 88 undetermined 1487 0.054
27 58 minor 997 0.079

LALV 3 40 minor 1106 0.018
7 48 minor 1034 0.088
8 50 minor 1615 0.073
9 51 minor 1634 0.048

Table 2. Acoustic features related to the clusters resulting
from the Bigand’s experiment.

significative (F < 0.9 on 3 and 23 df , p > 0.05).

Tab. 3 shows the mean values of the three features se-
lected for the experiment in major tonality, calculated for
each excerpt. The excerpts belonging to the cluster with
low arousal (LA) are characterized, with a few exceptions,
by a low value of Tempo. On the contrary, the clusters with
high arousal (HA1 and HA2) are characterized by a high
value of Tempo. In particular, the mean value among the
excerpts is 59bpm for LA, 93bpm for HA1, and 97bpm,
for HA2. The ANOVA test shows that these differences are
statistically significant (F = 8.3 on 2 and 20 df , p < 0.01).
On the contrary, no significant difference exists between
the Tempo of HA1 and HA2 clusters. It means that Tempo
feature is related to the dimension 1 (LA versus HA1 and
HA2), but it is not related to the dimension 2 (HA1 versus
HA2).

As concern the Rolloff feature, significant difference ex-
ists among the mean values of the three clusters (F = 9.8
on 2 and 20 df , p < 0.01): 1923Hz for LA, 2225Hz for
HA1, and 3828Hz for HA2. Considering the clusters two
by two, the difference between LA and HA1 is not signif-
icant, while it is significant between HA1 and HA2. This
result means that the dimension 2 can be related to Rolloff
feature.

Finally, the mean values of Zerocros feature are 585 for
cluster LA, 732 for HA1, and 1150 for HA2 (F = 11.5 on
2 and 20 df , p < 0.01). Similar to Rolloff, the difference
is not significant between LA and HA1, while it is signif-
icant between HA1 and HA2. Tables 4 and 5 summarize
qualitatively the results of the two acoustic analyses.



RMS
√

1
n

∑N
n=1 x(f, n)

2, f = 1, ...,M

Zerocross
∑N−1

n=1 I {sign(x(f, n)) 6= sign(x(f, n+ 1))}, f = 1, ...,M

Centroid
∑N

k=1
F (f,k)X(f,k)∑N

k=1
X(f,k)

, f = 1, ...,M

Brightness

∑N

k=k1000+1
X(f,k)∑N

k=1
X(f,k)

, f = 1, ...,M

SRl
∑k534

k=1
X(f,k)∑N

k=1
X(f,k)

, f = 1, ...,M

SRm

∑k1805

k=k534+1
X(f,k)∑N

k=1
X(f,k)

, f = 1, ...,M

SRh

∑N

k=k1805+1
X(f,k)∑N

k=1
X(f,k)

, f = 1, ...,M

Rolloff f(k85), where k85 = min(k0) :

∑k0

k=1
X(f,k)∑N

k=1
X(f,k)

> 0.85, f = 1, ...,M

Spectralflux
√∑N

k=1 [X(f + 1, k)−X(f, k)]
2, f = 1, ...,M − 1

Lowenergy
∑M

f=1
I{rms(x(f))<rms(x)}

M

Table 1. List of the acoustic features. The signal x is blocked in M frames of N samples. Let be x(f, n) the signal
amplitude of the sample n at the frame f ; X(f, k) the spectrum magnitude of the bin k at the frame f and F (f, k) the
center frequency of that bin; kft the bin corresponding to the frequency ft; I{A} the indicator function equal to 1 if A is
true and 0 otherwise; sign(x) a function equal to 1 if x ≥ 1 and 0 otherwise; rms(x(f)) the RMS value over the frame f
and rms(x) the RMS value over the entire signal x.

cluster excerpt Tempo [bpm] Rolloff [Hz] Zerocross
LA B1 61 2372 521

3 52 1868 516
B4 53 1747 938
B5 53 1106 370
B6 50 1028 443

9 78 2289 576
10 54 2707 468
16 56 1069 449
18 60 2560 713

B21 76 2487 852
HA1 2 120 3210 784

8 98 3234 1044
B14 102 1799 655
B20 103 1582 735

22 76 1741 498
B23 59 1786 675

HA2 7 84 2714 817
B11 53 4972 1650

12 104 4367 1083
B13 103 3177 972
B15 145 2495 827

17 72 3229 1121
19 116 5841 1579

Table 3. Acoustic features related to the clusters resulting
from the experiment in key major.

4. CONCLUSIONS

An experiment has been carried out in order to empha-
size the existence of secondary factors that characterize the
perception of emotion in music. To this end, we have se-
lected musical pieces only in a major mode, a parameter
largely related to the axis of the affective valence. The
results show that participants tend to organize the stimuli
according to three clusters. The meaning of these clus-
ters has been investigated by means of an in-depth acous-

Cluster Mode Tempo
LALV - -
LAHV + -
HALV - +
HAHV + +

Table 4. Relation among clusters and selected features in
the Bigand’s experiment.

Cluster Tempo Rolloff Zerocross
LA - - -

HA1 + - -
HA2 + + +

Table 5. Relation among clusters and selected features in
the major mode experiment.

tic analysis, that revealed a significative correlation be-
tween some musical/acoustic features and the subject’s re-
sponses: Tempo, Rolloff (a feature related to the brightness
of the sound), and Zerocross (related to the noisiness of the
sound) are the parameters selected to be the most represen-
tative of the found clusters. The analysis of the acoustic
features on one hand confirms the results of previous re-
search [22][12], i.e. the main parameters that characterize
the affective responses to music are Tempo and Mode. On
the other hand, it gave rise to other aspects that affect the
emotional perception of music, such as timbral elements
related to the spectral energy distribution.

Interesting similarities are further recognizable with the
results of score-independent studies (see [8, 13]) which ex-
plored the relation between timbral parameters and musi-



cal expression, suggesting the existence of a common level
of representation for music expressiveness both in score-
dependent and score-independent contexts.
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