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ABSTRACT

We present an approach for the automatic extraction of trans-
parent classification models of musical genres based on har-
mony. To allow for human-readable classification models
we adopt a first-order logic representation of harmony and
musical genres: pieces of music are represented as lists of
chords and musical genres are seen as context-free definite
clause grammars using subsequences of these chord lists.
To induce the context-free definite clause grammars charac-
terising the genres we use a first-order logic decision tree
induction algorithm, Tilde. We test this technique on 856
Band in a Box files representing academic, jazz and popular
music. We perform 2-class and 3-class classification tasks
on this dataset and obtain good classification results: around
66% accuracy for the 3-class problem and between 72% and
86% accuracy for the 2-class problems. A preliminary anal-
ysis of the most common rules extracted from the decision
tree models built during these experiments reveals a list of
interesting and/or well-known jazz, academic and popular
music harmony patterns.

1 INTRODUCTION

Users tend to be sceptical about automatic recommender
systems that are not transparent. Providing some insight
into the reasoning to the user has proven to improve both the
user’s trust and his involvement in the system [3, 11]. Thus,
for a better user acceptance, automatic music classification
systems (which can be used as part of a music recommender
system) should provide an explanation to the user on how a
piece of music is classified by the system.

Recent studies [1, 9] have shown that a logic-based repre-
sentation of the musical events together with a logical infer-
ence such as Inductive Logic Programming (ILP) [5] allow
for a human-readable characterisation of music. In this arti-
cle we extend these works by building human readable and
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transparent music classification models – namely first-order
logic decision tree models (an extension of the classical de-
cision trees using ILP) – performing both classification and
characterisation. We focus on classification into musical
genres using as descriptor the harmony of each song.

The paper is organised as follows: In Section 2 we review
some existing studies using harmony for automatic classifi-
cation. In Section 3 we introduce the harmonic content de-
scription employed in this study. In Section 4 we present
the details of our learning task, including the data, the in-
ductive logic decision tree algorithm and the results (clas-
sification performances and characterisation rules obtained)
before concluding in Section 5.

2 PREVIOUS RELATED WORK

Although some harmonic (or chord) sequences are famous
for being used by a composer or in a given genre, little at-
tention has been paid in the automatic genre recognition lit-
erature to how harmony can help in this task. For exam-
ple, in [12] the authors use a chroma feature representation
describing the harmonic content of the music. A compari-
son of the histograms reveals some patterns which contain
some genre specific information. Recognition rates around
70% are reported for a five class classification. However this
study focuses on low-level harmony features.

In [10], a rule-based system is used to classify sequences
of chords belonging to three categories: Enya, Beatles and
Chinese folk songs. A vocabulary of 60 different chords
was used, including triads and seventh chords. Classifica-
tion accuracy ranged from 70% to 84% using two-way clas-
sification, and the best results were obtained when trying to
distinguish Chinese folk music from the other two styles,
which is a reasonable result as both western styles should
be closer in terms of harmony.

Paiement et al. [7] also used chord progressions to build
probabilistic models. In that work, a set of 52 jazz stan-
dards was used, encoded as sequences of 4-note chords.
The authors compared the generalization capabilities of a
probabilistic tree model against a Hidden Markov Model
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(HMM), both capturing stochastic properties of harmony in
jazz, and the results suggested that chord structures are a
suitable source of information to represent musical genres.

More recently, Lee [4] has proposed genre-specific Hid-
den Markov Models that learn chord progression character-
istics for each genre. Although the ultimate goal of this work
is using the genre models to improve the chord recognition
rate, he also presented some results on the genre classifica-
tion task. For that task a reduced set of chords (major, minor,
and diminished) was used.

Finally, Perez-Sancho et al. [8] have investigated if 2,
3 and 4-grams of chords can be used for automatic genre
classification on both symbolic and audio data. They report
better classification results when using a richer vocabulary
(seventh chords) and longer n-grams.

3 HARMONIC CONTENT DESCRIPTION AND
REPRESENTATION

We extend these previous studies in which chord sequences
are of fixed length by using context-free definite-clause gram-
mars to represent chord sequences of arbitrary length.

3.1 Harmonic content

The music pieces used in this study have been kindly pro-
vided by the Pattern Recognition and Artificial Intelligence
Group of the University of Alicante. There, experts have
collected, annotated and double-checked files encoded in
the format of the PG Music software Band in a Box (aka
BIAB) 1 and then converted into MMA 2 format. These
files can be seen as simplified scores only containing the
chords which are labelled in a jazz/pop/rock shorthand fash-
ion (e.g. using G7 for G dominant seventh chord, D for D
major, etc.). In these transcriptions from the University of
Alicante, chords are limited to major or minor triads and 7th
chords (dominant seventh, major seventh or minor seventh).
But there is no unique way to transcribe chords and notice
that different levels of detail in chord representation might
lead to the induction of different classification rules. Fur-
thermore only the chord changes are annotated in the pro-
vided files. Although meter positions of chords are impor-
tant since we do not have access to this information we leave
this for future work.

3.2 Using context-free definite-clause grammars as rep-
resentation scheme

Context-free definite-clause grammars proved to be useful
in the logic-based extraction of biological patterns in a par-
ticular class of amino acids sequences, the neuropeptide pre-
cursor proteins (NPPs) [6]. NPPs share common character-

1 http://www.pgmusic.com/products bb.htm
2 http://www.mellowood.ca/mma/

istics with musical pieces (represented as chord sequences):
these sequences are highly variable in length, they tend to
show almost no overall sequence similarity and the class
(NPPs or non-NPPs in the case of amino acids sequences,
musical genres in the case of songs) to which a given se-
quence belongs is not always clear (some NPPs have not yet
been discovered and experts can disagree on the genre of a
given song). Both because of these similarities in the data
and because context-free definite-clause grammars can be
induced using Inductive Logic Programming, we choose to
adopt this representation scheme.

In the definite clause grammar (DCG) formalism a se-
quence over a finite alphabet of letters is represented as a
list of letters. Here the chords (e.g. G7, Db, BM7, F#m7,
etc.) are the letters of our alphabet. A DCG is described us-
ing predicates. For each predicate p/2 (or p/3) of the form
p(X,Y) (or p(c,X,Y)), X (the input) is a list representing
the sequence to analyse and Y (the output) is the remaining
part of the list X when its prefix matching the predicate p (or
property c of the predicate p) is removed.

%We assume the tonality is C Major
perfect cadence(A,B):-
gap(A,C), degree(5,C,D), degree(1,D,E), gap(E,B).

%definition of the gap predicate
gap(A,A).
gap([ |A],B) :- gap(A,B).

%definition of the rootNote predicate
rootNote(‘C’,[c|T],T).
rootNote(‘C’,[cm|T],T).
. . .

%definition of the degree predicate
degree(5,A,B) :- rootNote(‘G’,A,B).
degree(1,A,B) :- rootNote(‘C’,A,B).

Table 1. Simple definite clause grammar describing a per-
fect cadence in C major.

To illustrate this, an example of a simple chord sequence
context-free definite-clause grammar encoding the concept
of perfect cadence (in C major) is given in Table 1. In
this example, the target concept is perfect cadence/2.
To describe it three background predicates, rootNote/3,
degree/3 and gap/2, are used. rootNote(n,A,B)
means that the first chord of list A has for root note n. B
is the remaining list when the first chord of A is removed.
degree(d,A,B) means that the first chord of list A has
for degree d. The last lines of the Table 1 state that root note
G corresponds to the 5th degree (dominant) in C major and
C corresponds to the 1st degree (tonic). In Prolog the under-
score ( ) can match anything, so the gap/2 predicate (also

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 310



from [6]) matches any chord sequence of any length, allow-
ing to skip uninteresting subsequences (not characterised by
the grammar rules) and to handle large sequences for which
otherwise we would need very large grammars. Finally, the
first lines of Table 1 define a perfect cadence as a chord on
the fifth degree directly followed by a chord on the first de-
gree (using the degree/3 predicate), sequence that can
happen anywhere in the list of chords that define the song
(due to the gap/2 predicate).

rootNote(‘C’,[c|T],T). rootNote(‘C’,[cm|T],T). . . .
rootNote(‘Cs’,[cs|T],T). rootNote(‘Cs’,[csm|T],T). . . .
. . . . . . . . .

interval(perf uni,A,B) :- rootNote(‘C’,A,B), rootNote(‘C’,B,C).
interval(perf uni,A,B) :- rootNote(‘Cs’,A,B), rootNote(‘Cs’,B,C).
. . .
interval(min sec,A,B) :- rootNote(‘C’,A,B), rootNote(‘Db’,B,C).
. . .
interval(dim oct,A,B) :- rootNote(‘C’,A,B), rootNote(‘Cb’,B,C).
. . .

gap(A,A).
gap([ |A],B) :- gap(A,B).

Table 2. Background knowledge predicates used in the first-
order logic decision tree induction algorithm to describe
genres. For each chord in a chord sequence its root note is
identified using the rootNote/3 predicate. The intervals
between the root notes (measured upwards) are “computed”
using the interval/3 predicate.

For the genre classification tasks our target predicate is
genre/3 and the patterns we extract are based on the in-
tervals between root notes of the chords. Root interval pro-
gressions capture some degree information but do not de-
pend on the tonality. Thus when using root intervals no pre-
processing of the data or key extraction is necessary. The
background predicates used to describe our grammar (given
as background knowledge to our learning system) are given
in Table 2. Notice that contrary to the example in Table 1
in which one rule was enough to describe a perfect cadence,
we look for a set of rules to describe each genre, each rule
describing one characteristic chord sequence of this genre.

4 LEARNING CLASSIFICATION RULES FOR
MUSICAL GENRES

4.1 Training data

The data set contains three genres: popular, jazz, and aca-
demic music. Popular music data consists of pop, blues, and
celtic (mainly Irish jigs and reels) music; jazz consists of a
pre-bop class grouping swing, early, and Broadway tunes,

bop standards, and bossanovas; and academic music con-
sists of baroque, classical and romantic music. All the cat-
egories have been defined by music experts at the Univer-
sity of Alicante who have also collaborated in the task of
assigning meta-data tags to the files and rejecting outliers.
The total amount of pieces is 856 (Academic 235; Jazz 338;
Popular 283), providing around 60 hours of music data.

4.2 Learning algorithm

We have applied Tilde’s top-down decision tree induction
algorithm [2]. Tilde can be considered as a first order logic
extension of the C4.5 decision tree algorithm: instead of
testing attribute values at the nodes of the tree, Tilde tests
logical predicates. This provides the advantages of both
propositional decision trees (i.e. efficiency and pruning tech-
niques) and the use of first-order logic (i.e. increased expres-
siveness). First-order logic enables us to use a background
knowledge (which is not possible with non relational data
mining algorithms). It also provides a more elegant way to
represent musical concepts/events/rules which can be trans-
mitted as they are to the users. Thus the classification pro-
cess can be made transparent to the user.

Tilde builds models, namely first-order logic decision trees
which can also be represented as ordered sets of rules (or
Prolog programs). In the case of classification, the target
predicate of each model represents the classification prob-
lem.

4.3 Learning task

We use Tilde with genre/3 as target predicate, where
genre(g,A,B) means the song A (represented as its full
list of chords) belongs to genre g. The last argument B, the
output list (i.e. the empty list) is necessary to comply with
the context free definite clause grammar representation. The
predicates considered to build the model are interval/3
and gap/2, defined in the background knowledge (cf. Ta-
ble 2). In addition we constrain the system to use at least two
consecutive interval predicates between two gap pred-
icates. This guarantees that we are considering local root
interval sequences of a least length 2 (i.e. chord sequences
of length 3) in the songs. However notice that the context
free grammar definite clause representation allows these lo-
cal root interval sequences to be of any length larger than
2.

4.4 Classification results

Our objective was to classify musical pieces into the three
main genres present in the dataset: academic, jazz and pop-
ular music. For that we both built a model that was directly
dealing with the 3-class problem and induced three mod-
els dealing with each of the 2-class subproblems. For each
classification task we performed a 5-fold cross-validation.
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Furthermore we controlled the complexity of the decision
trees built by varying the minimal number of examples a
leaf should cover (MC). The results of these experiments
are shown in Table 3.

academic/jazz/popular MC=2 MC=5 MC=10
Accuracy (baseline = 0.398) 0.663 0.665 0.655
Stderr 0.016 0.016 0.016
# nodes in the tree 91.0 42.6 26.6
# literals in the tree 248.6 116.2 71.0
academic/jazz MC=2 MC=5 MC=10
Accuracy (baseline = 0.590) 0.839 0.860 0.844
Stderr 0.015 0.015 0.015
# nodes in the tree 22.2 10.6 5.2
# literals in the tree 62.6 29.4 14.8
academic/popular MC=2 MC=5 MC=10
Accuracy (baseline = 0.540) 0.743 0.768 0.723
Stderr 0.019 0.019 0.020
# nodes in the tree 42.8 24.0 12.0
# literals in the tree 113.6 61.6 31.6
jazz/popular MC=2 MC=5 MC=10
Accuracy (baseline = 0.551) 0.843 0.819 0.804
Stderr 0.015 0.016 0.016
# nodes in the tree 44.0 21.8 12.2
# literals in the tree 125.2 61.0 31.8

Table 3. Classification results (on the test data) using a 5-
fold cross-validation. MC (minimal number of examples a
leaf should cover) is a parameter of the decision tree learn-
ing algorithm. The number of nodes and literals present in a
tree gives an estimation of its complexity.

The models for all the classification tasks have a good
accuracy which is not much affected by the value of the
minimal coverage of a leaf (MC): the accuracy is always
much higher than the baseline. Changing the minimal cov-
erage of a leaf from 2 examples to 5 examples (and similarly
when going from MC=5 to MC=10) leads to trees contain-
ing half the number of nodes and literals (so models that are
two times simpler). As long as the classification accuracy
is not affected using simpler models has several advantages.
Firstly, the processing time to assign a class to an unseen
example is smaller when using simpler models. Moreover
simpler models contain less rules and each rule covers on
average a higher number of examples. Such rules tend to be
more meaningful and do not capture local or isolated phe-
nomena, so are less subject to overfitting. Finally if we want
to display the model to the user (for transparency reasons)
simpler models are easier to understand. Here a good com-
promise is reached when using MC=5 for which the classi-
fication accuracy is generally higher than for any other MC
value and the models are simpler but not overly simplified.

The confusion matrices for the four classification tasks
when using MC=5 are shown in Table 4. We obtain respec-
tively 86% (academic vs. jazz), 77% (academic vs. popular),
82% (jazz vs. popular) and 67% (3-class problem) accuracy.
The best results are obtained when trying to distinguish jazz
from another genre (academic or popular). The biggest dif-
ficulty that appears in both the 3-class task and the 2-class
task is to distinguish academic music from popular music.
Indeed the harmony of these two genres can be very simi-
lar, whereas jazz music is known for its characteristic chord
sequences, very different from other genres harmonic pro-
gressions.

Real/Predicted academic jazz popular Total
academic 145 31 58 234
jazz 33 267 37 337
popular 68 56 151 275
Total 246 354 246 846
academic 197 37 234
jazz 43 294 337
Total 240 331 571
academic 165 69 234
popular 49 226 275
Total 214 295 509
jazz 272 65 337
popular 46 229 275
Total 318 294 612

Table 4. Confusion matrices (on the test data) for the four
classification tasks using a 5-fold cross-validation and for
minimal coverage of a leaf set to 5 (MC=5).

4.5 Overview of the extracted rules

As explained in Section 4.2 for each run Tilde returns a clas-
sification model that can be represented as a tree or as an or-
dered set of rules (or a Prolog program). Because of space
limitation we only show some interesting and recurrent rules
extracted from the various models built (a complete list of
classification models and their rules is available upon re-
quest). However note that a rule in itself can not perform
classification both because of having a lower accuracy than
the full model and because the ordering of rules in the model
is important to the classification (i.e. some rule might never
be used on some example because one of the preceding rules
in the model covers this example).

The following rule was found in the academic vs. jazz
classification models:
genre(academic,A,B) :- gap(A,C), interval(perf fifth,C,D),
interval(perf fifth,D,E), gap(E,B).
“Some academic music pieces contain a chord root interval
sequence of two consecutive ascending perfect fifth.”
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This rule can be interpreted as the common IV-I-V degree
progression. Interestingly the same rule appears in the pop-
ular vs. jazz classification model to characterise popular mu-
sic. So rather than characterising academic music or popular
music this rule suggests that a sequence of two consecutive
ascending fifth does not occur very frequently in jazz music
(at least not as frequently as in academic or popular music).

The above rule is further specialised in the 3-class mod-
els to characterise popular music this time:
genre(popular,A,B) :- gap(A,C), interval(perf fifth,C,D),
interval(perf fifth,D,E), interval(min sev,E,F), gap(F,B).
“Some popular music pieces contain a chord root interval
sequence of two consecutive ascending fifth directly followed
by an ascending minor seventh.”
This sequence could be for instance the IV-I-V-IV sequence
found in the verse of “Let it be” by the Beatles.

Other rules found both in the academic vs. jazz and the
3-class models are:
genre(academic,A,B) :- gap(A,C), interval(min sev,C,D),
interval(perf fifth,D,E),interval(perf fourth,E,F),gap(F,B).
“Some academic music pieces contain a chord root interval
sequence in which an ascending minor seventh is followed
by an ascending perfect fifth, followed by an ascending per-
fect fourth.”
and:
genre(academic,A,B) :- gap(A,C), interval(perf fifth,C,D),
interval(perf fifth,D,E), gap(E,F), interval(perf fifth,F,G),
interval(perf fourth,G,H), gap(H,B).
“Some academic music pieces contain a chord root interval
sequence of two ascending perfect fifth later (but not neces-
sarily directly) followed by an ascending perfect fifth and an
ascending perfect fourth.”
They can be respectively interpreted as V-IV-I-IV and IV-I-
V later followed by a back and forth pattern such as I-V-I or
IV-I-IV.

Some very jazzy patterns were also found, such as:
genre(jazz,A,B) :- gap(A,C), interval(perf fourth,C,D),
interval(aug fourth,D,E), gap(E,B).
“Some jazz music pieces contain a chord root interval se-
quence containing an ascending perfect fourth followed by
an ascending augmented fourth.”
and:
genre(jazz,A,B) :- gap(A,C), interval(maj sev,C,D),
interval(perf fourth,D,E), gap(E,B).
“Some jazz music pieces contain a root interval sequence
containing an ascending major seventh directly followed by
an ascending perfect fourth.”

5 CONCLUSIONS AND FUTURE WORK

In this paper we presented a first-order logic approach to
automatically extract genre classification models using har-

mony. This models are not black boxes: thanks to the ex-
pressiveness of first order logic the decision tree models we
obtained can be presented to the users as sets of human
readable rules. Good classification results (comparable to
previous work results in the field) were obtained with these
first-order decision trees algorithms. With almost no accu-
racy loss we managed to lower the complexity of our mod-
els from 50 rules to 25 rules on average, getting simpler,
faster to use and more meaningful decision trees. By using
a context-free definite-clause grammar representation which
can encode chord sequences of any length we extended pre-
vious classification and characterisation studies that were
limited to chords sequences of fixed length. For instance in
[1] musical style was characterised using chord sequences
of length 4 . In [8], the n-gram representation is used to
study chord sequences of length 2, 3 or 4 only. Our sys-
tem not only allows for any chord sequence length but also
enables the coexistence of harmony progressions of various
lengths in the same model.

Future work includes adding the chord categories (e.g.
minor triad, dominant seventh, etc.) in our grammar to try
to increase the classification accuracy of our models. We
also plan to test if using degrees (when key estimation is
possible) instead of root intervals can improve our models.
Finally we intend to test our framework on audio data using
chord transcription algorithms.
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