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ABSTRACT and the assumptions taken about the source. It is quite
possible in human hearing that selection is taken from a

Compositional applications for real-time event segmen- number of detection models based on peripheral evidence
tation are discussed. A causal real-time onset detectorof the spectral content and resolved immediate stylistic
which makes onset data available as fast as possible isharacteristics, in accord with maximising information. It
introduced, based on work by Klapuri, Hainsworth and is assumed herein that such higher level management of
Jensen and Andersen. This analysis frontend informs al-low level algorithms is sidestepped.
gorithmic cutting procedures which respect the events of  Onset detection work is most effective against mono-
the incoming audio stream. A further refinement stores phonic sources, the case of polyphonic audio providing a
events to particular buffers based on a coarse categoriell known problem in auditory scene analysis. Whilst
sation between snare, kick or hihat classes. Algonthmlc some progress may be possib'e through independent com-
composers running playback of these buffers thereby re-ponent analysis and the like, Scherier [18] criticises the
spond to changing timbral events of a live feed from an gream of perfect segregation of streams in polyphony, rather

instrumentalist or other audio source. The use of an Onsetseeking amore human goa| uﬁderstanding without sep-
detection threshold to create abstracted rhytth based Or&ration’_ When mu|t|p|e instruments are invo|ved’ over|ap

some existing source is further examined. of parts makes the act of segmentation without component

Keywords: Onset Detection, Audio Capture, Real-time extraction guaranteed to cut a mixture of transients and

Segmentation, Categorisation steady states. There is a compositional awareness of this,
common for example in the fugal forms of Bach, where

1. INTRODUCTION the entry of parts is staggered, and the counter melodies

constructed to to aid differentiation of onsets by avoiding
The automatic segmentation and labeling of audio eventsunison events. Onsets are thus accessible, and a rhythmic
has many applications from content retrieval to source sen-aggregate may be the cognitive resultant, but the overlap
sitive sound processing. Practical attempts often employof sounding objects forbids perfect separation. Pragmati-
signal features including the spectral centroid, zero cross-cally, audio can be segmented and extracted as best possi-
ing rate or MFCC coefficients and statistics tracking these ble, even if some blends of decay and new onsets result.
values over the time course of the sound. Rossignol etlt will be argued that transient information (the likely ba-
al. [16] give a system that characterises signals on threesis for the cuts) will take precedence in perception, and
scales,sourcedifferentiating speech and musifgature  interesting compositional effects are obtained.
measuring such descriptors as harmonicity or presence of The focus of this paper is in live performance, where
vibrato andnote/phonesegmenting signals into short sub- a (typically monophonic) acoustic instrument or a (poly-
second events based on nine features. Current investigaphonic) live band or ensemble is being captured and ma-
tions into the classification of sounds can involve very nipulated, and segmentations are performed on-the-fly. The
large sets of features such that exhaustive search for thaedeal is to react as quickly as possible, though some delay
optimal subgroup is computationally intractable [7]. Spot- for analysis of the captured events my be necessary. Con-
ting events requires reaction to to the perceptually critical versely, no faster than real-time look ahead is possible, as
segment boundary of the onset [20]. Many onset detec-in streaming an existing soundfile from disk. The time
tion schemes have now been proposed [1, 3, 5, 9, 19]. Theduration of the extracted events is usually under one sec-
offset at the end of an acoustic event is usually less reli- ond, fitting into thenote/phonescheme of [16], but large
ably marked [19], though the character of the onset canenough to allow perceptual integration (over 100mS). This
also vary from wideband transient to a smooth envelope, level is suitable for rhythmic rate manipulation in process-
depending on the source. The effectiveness of event deing, and is thesound objectime scale of Roads’ taxon-
tection algorithms thus vary with the signal to be tracked omy [15]. Segmenting an incoming audio stream allows



the extracted sound events to be individually processed,bands, perhaps using Fletcher Munson contours based on
and their reuse outside the original context. the intensity of the input for a psychoacoustically relevant
The implementations described in this paper were un- model, and perhaps in a way learnt for specific tracking
dertaken by writing native code and C++ plugins for the tasks. The weighting may be selected so as to focus at-
SuperCollider3 (SC3) audio programming language [12] tention on particularly salient bands for an identified tim-
( http://sourceforge.net/projects/supercollider). The ori- bral profile. Further, such a weighting might bias detec-
entation of this language towards realtime performance tions to a desired frequency range, as in tracking only low
combining signal processing and algorithmic composition frequency energy impulses in a bass drum or bass guitar
makes it an attractive platform for the research; it is also rhythm, though this may also be achieved by pre filtering

open source and cross platform (Linux, Mac OS X). of the input.

Section 2 provides a mathematical description of the
onset detection schemes leveraged. Section 3 describes a d(k) = w(k)(logQ(M)) 4)
technology for live algorithmic audio cutting, integrating | Xn—1(F)|

onset detection. This is the basis for an on-the-fly seg- |, comparison to the multiplicative difference, the ad-
menter with a ready made selection of compositional al- jitive difference is also an option:

gorithms. An experimental program for realtime categori-
sation is introduced in section 4 and further compositional d(k) = w(k)(| X (k)] — | Xn_1(k)]) (5)

extensions explored in section 5. .
Wherew(k) is usually a constant 1. The onset detec-

tion feature of High Frequency Content (HFC) can be ex-
pressed where)(k) = k? as defined by Jensen and An-
dersen [8]w(k) = k as per Masri and Bateman [11] or a
generalisedv(k) = kY where~ is to be optimised.

Figure 1 gives a comparison of different onset detection
methods on rhythmic polyphonic audio (some 'intelligent
dance music’, compressed and with many hard transients).
1024 point FFTs were taken with an overlap of two, on
a spectral range of 30-20000Hz. The first row gives the
source, the second the detection function for the relative
(A1) d(log(A(t))) difference measure, the fourth for the Jensen and Ander-
W(t) = Al = i (1) sen version of HFC. Rows three and five show a squared

difference function of the respective detection functions
which highlights their peaks. Note that the noise floor is
zero. a little higher for the relative difference function, and that

Whilst Klapuri first applied this on the outputs of a there are differences of opinion of location and strength

21 band envelope extractor and combined results acros$! SPectral changes between the two functions. As a con-

bands with a loudness modeHainsworth [5] [6, page trast, Figure 2 shows the same detection functions act-
128] introduces an equivalent construcfidn the con- ing on a solo violin piece with many dynamic contrasts.

text of distance measures between FET frames for chordThe Hainsworth/Klapuri spectral amplitude ratio method
change detection: shows some superior detections here, particularly for the

slower and softer attacks. This is in no way a proof of
| X (k)] the general properties of these detection schemes, which

d(k) = log?(m) (2) vary in their effectiveness based on the subject audio to
analyse. It is envisaged that different onset detection al-

2. ONSET DETECTION METHODS

A number of onset detection functions are being investi-
gated to support segmentation effects. Anssi Klapuri [9]
pioneered the use of the relative difference for peak de-
tection given an amplitude envelope sigrdk). His psy-
choacoustic motivation was the relation to the Weber frac-
tion AI/I for discrimination of intensity changes, for his
function W (t) takes the form:

&l

If A(t) is below a certain amplitudéy/ (¢) is taken as

B gorithms may be required for different circumstances of
Z max(d(k),0) (3) employment, optimising for a particular performance en-
k=a vironment and musical collaborator.
wherea and 3 define lower and upper limits for a par- The Hainsworth FFT version of Klapuri’'s idea and the

ticular subset of bands and, (k)| is the magnitude of ~ Jensen and Andersen HFC feature were implemented as
thek'" bin for then'” frame of spectral data. Hainsworth ~phase vocoder UGens for SuperCollider 3. For efficiency,
selects 30Hz to 5KHz as his range on the basis of qual-the SC3 implementation uses an overlap of 2 for a 1024
ity of harmonic information for his applications, though point FFT, the 86 or so frames a second providing a res-
this is also of course the area of greatest sensitivity of theolution of under 12 mS. Hainsworth runs his 2048 point

ear. A generalisation of this would weight the different FFT calculations at an overlap of 8, giving around 170
frames per second, whilst Klapuri downsamples his sig-

nals to about 200 samples per second. Since the detection

IKlapuri tracks loudness in each band according to a psychoacoustic
model, using this to form an overall loudness measure of the event from

which to assess a detection by thresholding. functions will pick up on a spectral change early on in an
2For a difference equation approximation to the derivative, €vent (near the physical onset rather than the perceptual),
AMog(ADD) ~ og(A(t)) — log(A(t — 1)) = log(%) the onset can be stored quickly and the offset calculated



Figure 1. Comparison of relative difference (upper) and additive difference ittwveighting (lower) onset detection
functions for a Squarepusher dance music track
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Figure 2. Comparison of relative difference (upper) and additive difference iftlveighting (lower) onset detection
functions for a John Cage solo violin piece

as the stream continues to arrive. As long as the playbackpositions are critical to audio cutting, where the paradigm
head is kept away from the record head, this allows imme- is to jump around the source to make permutational use of
diate reuse or processing of events within an FFT frame ofthe material rather than subsist on rigid linear playback.
their detection. The last zero crossing or energy minima This generative reuse of the source material will work ef-
can be stored to keep track of a sample starting positionfectively if the source has been properly segmented into
for new events, though this is less effective for polyphonic events such that there are no transient discrepancies act-
or slurred monophonic audio. ing as rhythmic confounds. This is conceptually the same
as positioning a read pointer into a soundfile or buffered
memory of a live stream, such that the start position at
3. BBCUT AND ONSETS the beginning of a new cut lines up sensibly with events
] o ) within that target. Enveloping may be applied to avoid
BBCut [2] is an extension library for SuperCollider spe- jicks and to smooth out transitions, but if natural cutting
cialising in realtime algorithmic audio cutting, available points can work without such ramping, so much the better.
free ur_lderthe GNU GPL from http:/_/s_icklincoln._org/code_. How does BBCut use segmentation information for the
.Real't'me computer gener_ated_ splicing of QUd'O material source to be spliced, when asked to source audio data for
IS pr0\_/|ded N proce<_jures msplred by a variety of.styles, an arbitrary length output slice? The simplest option is to
including danC(_a music production drgm programming and restrict any choice of onset to the start positions of the seg-
breakbeat cutting (drum and bass, intelligent dance MU ented events of the source, and to only allow one event
sic), thrash drumming, recursive cutting, change ringing to be referenced at a time s’,uch that playback is of that
permutation patterns and other compositional algorithms. event alone. whatever the desired output length
BBCut provides a separation of the algorithmic composers . . . ) .
A more indirect option associates each known onset in

that decide upon cuts from the rendering of the cuts them- . o : S
P g tGe source to a quantised position. This location is deter-

selves, such that the same composition code can be plugge ; : ;
) : ; ) : mined with respect to an imposed rhythmic template of
into a cutter of incoming audio streams, or a cutter of fixed

buffers; as software engineering, this encourages code reutshee. algorithmic cuttingy A likely assumption would be

Whilst the naivest mode of cutting is to assume even — . .
. . : There may of course be conflicts between the imposed rhythm of
slicing of the source m_ate_”aL there are options to adopt ihe composition and the recorded rhythm of the sample source.
knowledge of the permissible onsets into a source. Onset “The degree this will respect or pervert the rhythmic frame of the




that the source is a certain length in beats and of fixed 4. CATEGORISATION ON-THE-FLY

tempo and time signature. The order of the onset events

is preserved in such a quantisation. The advantage is thaflhe best set of signal descriptors for classification of sound
extractions of material which are of medium length (say can depend on the categories of sound to be judged. For
a few beats), and may take in more than one segmentedyeneral sound classification, Peeters and Rodet [14] de-
event from the source, can guarantee playback that doescribe the CUIDADO system which is open-ended in fea-
not clash the rhythm of the source with the rhythm of the tures and user customisable in the type of sounds to clas-
generative cutter. Playback of successive source eventsify, discriminating a relevant subset of features for a par-
occurs at separations taken from the quantise positionsticular classification task. Categorisation of percussive
whilst the audio is still read from the original known on- sounds is tackled by Paulus and Klapuri [13] using a prob-
set positions. The rhythmic template, with whatever no- abilistic model based on ten signal features, and Herrera
tion of groove or swing, can be adjusted, and the quantiseet al. [7] exploring over two hundred.

position of the source events updated to reflect this. In  Without tackling the best selection of features, an on-
computational terms, this requires a further data array for the-fly categoriser was built as an experiment in compo-
the quantised locations; search code finds the set of quansitional application for event segmentation based on the
tised event starts within this array falling within a cut of onset detector already introduced, . The goal of this proto-
some duration from a given starting point. Knowing the type is categorisation of incoming sound events as soon as
indices within the quantise position array tells us immedi- possible, into one of three classes, notionally being kick,
ately the indices for the events in the true onset position snare and hihat percussive sounds. The single feature ini-
array for the source. These events can be rendered at théally used for classification in prototyping is the average
appropriate time for the quantise array so they fit in with spectral centroid bin:

the imposed template, reading the data from the source.

To assist in discovering onsets in offline preparation of 25:0 sz/g k| X, (k)|
source material, a GUI for onset detection (Figure 3) was L
introduced in BBCutl1.3, with a number of options for the ] ] ]
detection algorithm, all of which run in realtime. Adapta- Where there are L frames of an N point FFT in a given
tions of the Hainsworth and Jensen and Andersen method€Vent-
described above are provided along with a simple RMS Hiding certain technicalities based on blocksize calcu-
(root mean square) amplitude derivative detector. Sincelation, pseudocode for an on-the-fly categorisation algo-
the two former FFT based routines have been built into fithm is presented in figure 4.
the SuperCollider distribution independent of BBCut, they A SuperCollider UGen, CaptureCategorise, was writ-
are also available as general purpose realtime detectorsten in C to implement this. The UGen has inputs for the
the GUI is just a helpful frontend. Discovered segments threshold of detection, and to choose the boundaries for
can be played back individually in the GUI via keyboard the feature determining classification. Defaults were aver-
shortcuts and misdetects deleted or moved. age centroid bin below 90 for a kick, below 120 for a snare

In live performance, a buffer can be allocated to receive and a hihat above that. This was sufficient to demonstrate

captured audio, and event detection fully automated. AsSOMe live (vocal) beatbox control, with captured buffers

the audio is recorded, the onset detection simultaneouslybhe'ng P'ayefj back in a basic .genﬁra'uve d“_Jm bear‘]t’ and
runs, noting times of triggers of the detection function the appropriate contents continually overwritien when a

as event onsets, and disallowing multiple detects within new event was detected. i )
50mS of each other. The event offsets are taken as a max- A More robust system would entail learning from a
imal fixed duration from the onset or coinciding with a database of examples, even an online learning process dur-

new onset. This is sufficient for a single fixed capture to N9 Performance, to discover a relevant feature space for

make the new events available via the technology a|readydiscrimina.tion. Siill, t_he explloration of fu_r_ther ba_ls_ic fea-
described. tures provides some immediate compositional dividends.

(6)

As a further refinement, a continuous stream of input
audio can be continually analysed for events whilstrecord- 5. FURTHER COMPOSITIONAL APPLICATIONS
ing to a limited memory circular buffer. If the onset data
is held in a list and the capture continuous, since the write |In the course of an exploration of causal real-time onset
pointer position is known, the list can be continuously detection functions, the author had recourse to listen back
updated with onset information, and all read pointer ac- to sources, whilst simultaneously triggering beeps at the
cess will stay up to date with the changing buffer con- detections. It was noted that by changing the non-adaptive
tents. Where this is required, updating the quantise arraythreshold of the detection function, a series of abstracted
as well will keep the cut renderer in step with the incom- rhythms could be generated from the source. Shifting
ing stream. threshold gives a complexity parameter for the generated

rhythms. The source may then be hidden, and the detec-

sourcedepends on further assumptions or knowledge on the captured tions used t(_) trigger arbitrary _Sound events. A form of
audio, obtained possibly through beat/metre induction principles. onset detection cross synthesis can take place when one
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Figure 3. BBCut Onset Detector GUI

for each FFT frame {
store last time domain zero crossing
if(recording event) {
calculate running spectral centroid, power of frame

if(eventlength>MAXLENGTH or power <MINPOWER) {
finish recording to temporary buffer up to last zero crossing
copy event data to one of three buffers based on the
time averaged spectral centroid

else store frame data to temporary buffer and increment eventlength

else if(onset detected) start recording event from last zero crossing, initialise eventlength

Figure 4. Pseudocode for an on-the-fly capture and categorise algorithm

source provides the trigger rhythm, and events extractedparameters indicated in section 2. It is anticipated that
from a second are triggered. specific compositions, working with particular instrumen-

As one example of this technique, the capture and cat-talists, may demand the use of a particular detection algo-
egorise process ran on one input stream, classifiying inputrithm. The categorisation process can certainly be made
events to three buffers. These buffers were played backmore robust, and a key issue is the best personalisation to
using rhythms generated by thresholded onset detectiorthe sound world of a collaborating musician. Databasing
from three separate source loops. of a timbral space during an interaction would be a worthy

In an aesthetic sense, misdetections increase the abpursuit, which is well within reach if the composer spec-
straction and the less accurate onset detection functiondfies the feature space in advance. Captured events can
and less salient signal features may still be appropriatedbe further analysed for the perceptual centre [10] so as to
for compositional purposes. In the on-the-fly categorisor, make sure that the physical start is appropriately sched-
miscategorisations can provide some stimulating results! uled. Another potential problem to be dealt with is the ac-
cidental capture of double strikes and other potential con-
flicting rhythmic confounds in single events which disturb
the rhythmic flow of the output.

Whilst an imposed rhythmic framework has provided the ~ This paper is a stepping stone towards a sensitive sys-

skeleton for reuse of sound objects in this work, the in- tem for audio capture and processing. A number of com-

corporation of pulsation levels and other musical knowl- Positional applications of real-time onset detection have

edge extracted from a cutting target should provide a morebeen highlighted.

powerful system yet. Event detection is a first stage in

beat induction, providing readily available inter onset data

for histogramming or autocorrelation, though the leap to

the symbolic stage is nqt a necgssity, as Scheirer’'s model 7 ACKNOWLEDGEMENTS

proves [17]. A model which provides a higher level rhyth-

mic framework empowers some interesting processing op-

tions, as Gouyon et al. prove [4]. This research is supported by AHRB grant 2003/104481.
A more systematic testing of the onset detection algo- Many thanks to Juan Bello, Kristoffer Jensen and Steven

rithms is a necessary next stage, optimising some of theHainsworth.

6. CONCLUSIONS AND FUTURE WORK
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