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ABSTRACT

Compositional applications for real-time event segmen-
tation are discussed. A causal real-time onset detector
which makes onset data available as fast as possible is
introduced, based on work by Klapuri, Hainsworth and
Jensen and Andersen. This analysis frontend informs al-
gorithmic cutting procedures which respect the events of
the incoming audio stream. A further refinement stores
events to particular buffers based on a coarse categori-
sation between snare, kick or hihat classes. Algorithmic
composers running playback of these buffers thereby re-
spond to changing timbral events of a live feed from an
instrumentalist or other audio source. The use of an onset
detection threshold to create abstracted rhythms based on
some existing source is further examined.

Keywords: Onset Detection, Audio Capture, Real-time
Segmentation, Categorisation

1. INTRODUCTION

The automatic segmentation and labeling of audio events
has many applications from content retrieval to source sen-
sitive sound processing. Practical attempts often employ
signal features including the spectral centroid, zero cross-
ing rate or MFCC coefficients and statistics tracking these
values over the time course of the sound. Rossignol et
al. [16] give a system that characterises signals on three
scales,sourcedifferentiating speech and music,feature
measuring such descriptors as harmonicity or presence of
vibrato andnote/phonesegmenting signals into short sub-
second events based on nine features. Current investiga-
tions into the classification of sounds can involve very
large sets of features such that exhaustive search for the
optimal subgroup is computationally intractable [7]. Spot-
ting events requires reaction to to the perceptually critical
segment boundary of the onset [20]. Many onset detec-
tion schemes have now been proposed [1, 3, 5, 9, 19]. The
offset at the end of an acoustic event is usually less reli-
ably marked [19], though the character of the onset can
also vary from wideband transient to a smooth envelope,
depending on the source. The effectiveness of event de-
tection algorithms thus vary with the signal to be tracked

and the assumptions taken about the source. It is quite
possible in human hearing that selection is taken from a
number of detection models based on peripheral evidence
of the spectral content and resolved immediate stylistic
characteristics, in accord with maximising information. It
is assumed herein that such higher level management of
low level algorithms is sidestepped.

Onset detection work is most effective against mono-
phonic sources, the case of polyphonic audio providing a
well known problem in auditory scene analysis. Whilst
some progress may be possible through independent com-
ponent analysis and the like, Scherier [18] criticises the
dream of perfect segregation of streams in polyphony, rather
seeking a more human goal of ‘understanding without sep-
aration’. When multiple instruments are involved, overlap
of parts makes the act of segmentation without component
extraction guaranteed to cut a mixture of transients and
steady states. There is a compositional awareness of this,
common for example in the fugal forms of Bach, where
the entry of parts is staggered, and the counter melodies
constructed to to aid differentiation of onsets by avoiding
unison events. Onsets are thus accessible, and a rhythmic
aggregate may be the cognitive resultant, but the overlap
of sounding objects forbids perfect separation. Pragmati-
cally, audio can be segmented and extracted as best possi-
ble, even if some blends of decay and new onsets result.
It will be argued that transient information (the likely ba-
sis for the cuts) will take precedence in perception, and
interesting compositional effects are obtained.

The focus of this paper is in live performance, where
a (typically monophonic) acoustic instrument or a (poly-
phonic) live band or ensemble is being captured and ma-
nipulated, and segmentations are performed on-the-fly. The
ideal is to react as quickly as possible, though some delay
for analysis of the captured events my be necessary. Con-
versely, no faster than real-time look ahead is possible, as
in streaming an existing soundfile from disk. The time
duration of the extracted events is usually under one sec-
ond, fitting into thenote/phonescheme of [16], but large
enough to allow perceptual integration (over 100mS). This
level is suitable for rhythmic rate manipulation in process-
ing, and is thesound objecttime scale of Roads’ taxon-
omy [15]. Segmenting an incoming audio stream allows



the extracted sound events to be individually processed,
and their reuse outside the original context.

The implementations described in this paper were un-
dertaken by writing native code and C++ plugins for the
SuperCollider3 (SC3) audio programming language [12]
( http://sourceforge.net/projects/supercollider). The ori-
entation of this language towards realtime performance
combining signal processing and algorithmic composition
makes it an attractive platform for the research; it is also
open source and cross platform (Linux, Mac OS X).

Section 2 provides a mathematical description of the
onset detection schemes leveraged. Section 3 describes a
technology for live algorithmic audio cutting, integrating
onset detection. This is the basis for an on-the-fly seg-
menter with a ready made selection of compositional al-
gorithms. An experimental program for realtime categori-
sation is introduced in section 4 and further compositional
extensions explored in section 5.

2. ONSET DETECTION METHODS

A number of onset detection functions are being investi-
gated to support segmentation effects. Anssi Klapuri [9]
pioneered the use of the relative difference for peak de-
tection given an amplitude envelope signalA(t). His psy-
choacoustic motivation was the relation to the Weber frac-
tion ∆I/I for discrimination of intensity changes, for his
functionW (t) takes the form:

W (t) =
d
dt (A(t))

A(t)
=

d(log(A(t)))
dt

(1)

.
If A(t) is below a certain amplitude,W (t) is taken as

zero.
Whilst Klapuri first applied this on the outputs of a

21 band envelope extractor and combined results across
bands with a loudness model1, Hainsworth [5] [6, page
128] introduces an equivalent construction2 in the con-
text of distance measures between FFT frames for chord
change detection:

d(k) = log2(
|Xn(k)|
|Xn−1(k)|

) (2)

β∑
k=α

max(d(k), 0) (3)

whereα andβ define lower and upper limits for a par-
ticular subset of bands and|Xn(k)| is the magnitude of
thekth bin for thenth frame of spectral data. Hainsworth
selects 30Hz to 5KHz as his range on the basis of qual-
ity of harmonic information for his applications, though
this is also of course the area of greatest sensitivity of the
ear. A generalisation of this would weight the different

1Klapuri tracks loudness in each band according to a psychoacoustic
model, using this to form an overall loudness measure of the event from
which to assess a detection by thresholding.

2For a difference equation approximation to the derivative,
d(log(A(t)))

dt
≈ log(A(t))− log(A(t− 1)) = log(

A(t)
A(t−1)

)

bands, perhaps using Fletcher Munson contours based on
the intensity of the input for a psychoacoustically relevant
model, and perhaps in a way learnt for specific tracking
tasks. The weighting may be selected so as to focus at-
tention on particularly salient bands for an identified tim-
bral profile. Further, such a weighting might bias detec-
tions to a desired frequency range, as in tracking only low
frequency energy impulses in a bass drum or bass guitar
rhythm, though this may also be achieved by pre filtering
of the input.

d(k) = w(k)(log2(
|Xn(k)|
|Xn−1(k)|

)) (4)

In comparison to the multiplicative difference, the ad-
ditive difference is also an option:

d(k) = w(k)(|Xn(k)| − |Xn−1(k)|) (5)

Wherew(k) is usually a constant 1. The onset detec-
tion feature of High Frequency Content (HFC) can be ex-
pressed wherew(k) = k2 as defined by Jensen and An-
dersen [8],w(k) = k as per Masri and Bateman [11] or a
generalisedw(k) = kγ whereγ is to be optimised.

Figure 1 gives a comparison of different onset detection
methods on rhythmic polyphonic audio (some ’intelligent
dance music’, compressed and with many hard transients).
1024 point FFTs were taken with an overlap of two, on
a spectral range of 30-20000Hz. The first row gives the
source, the second the detection function for the relative
difference measure, the fourth for the Jensen and Ander-
sen version of HFC. Rows three and five show a squared
difference function of the respective detection functions
which highlights their peaks. Note that the noise floor is
a little higher for the relative difference function, and that
there are differences of opinion of location and strength
of spectral changes between the two functions. As a con-
trast, Figure 2 shows the same detection functions act-
ing on a solo violin piece with many dynamic contrasts.
The Hainsworth/Klapuri spectral amplitude ratio method
shows some superior detections here, particularly for the
slower and softer attacks. This is in no way a proof of
the general properties of these detection schemes, which
vary in their effectiveness based on the subject audio to
analyse. It is envisaged that different onset detection al-
gorithms may be required for different circumstances of
employment, optimising for a particular performance en-
vironment and musical collaborator.

The Hainsworth FFT version of Klapuri’s idea and the
Jensen and Andersen HFC feature were implemented as
phase vocoder UGens for SuperCollider 3. For efficiency,
the SC3 implementation uses an overlap of 2 for a 1024
point FFT, the 86 or so frames a second providing a res-
olution of under 12 mS. Hainsworth runs his 2048 point
FFT calculations at an overlap of 8, giving around 170
frames per second, whilst Klapuri downsamples his sig-
nals to about 200 samples per second. Since the detection
functions will pick up on a spectral change early on in an
event (near the physical onset rather than the perceptual),
the onset can be stored quickly and the offset calculated



Figure 1. Comparison of relative difference (upper) and additive difference withk2 weighting (lower) onset detection
functions for a Squarepusher dance music track

Figure 2. Comparison of relative difference (upper) and additive difference withk2 weighting (lower) onset detection
functions for a John Cage solo violin piece

as the stream continues to arrive. As long as the playback
head is kept away from the record head, this allows imme-
diate reuse or processing of events within an FFT frame of
their detection. The last zero crossing or energy minima
can be stored to keep track of a sample starting position
for new events, though this is less effective for polyphonic
or slurred monophonic audio.

3. BBCUT AND ONSETS

BBCut [2] is an extension library for SuperCollider spe-
cialising in realtime algorithmic audio cutting, available
free under the GNU GPL from http://sicklincoln.org/code.
Real-time computer generated splicing of audio material
is provided in procedures inspired by a variety of styles,
including dance music production drum programming and
breakbeat cutting (drum and bass, intelligent dance mu-
sic), thrash drumming, recursive cutting, change ringing
permutation patterns and other compositional algorithms.
BBCut provides a separation of the algorithmic composers
that decide upon cuts from the rendering of the cuts them-
selves, such that the same composition code can be plugged
into a cutter of incoming audio streams, or a cutter of fixed
buffers; as software engineering, this encourages code reuse.

Whilst the naivest mode of cutting is to assume even
slicing of the source material, there are options to adopt
knowledge of the permissible onsets into a source. Onset

positions are critical to audio cutting, where the paradigm
is to jump around the source to make permutational use of
the material rather than subsist on rigid linear playback.
This generative reuse of the source material will work ef-
fectively if the source has been properly segmented into
events such that there are no transient discrepancies act-
ing as rhythmic confounds. This is conceptually the same
as positioning a read pointer into a soundfile or buffered
memory of a live stream, such that the start position at
the beginning of a new cut lines up sensibly with events
within that target3. Enveloping may be applied to avoid
clicks and to smooth out transitions, but if natural cutting
points can work without such ramping, so much the better.

How does BBCut use segmentation information for the
source to be spliced, when asked to source audio data for
an arbitrary length output slice? The simplest option is to
restrict any choice of onset to the start positions of the seg-
mented events of the source, and to only allow one event
to be referenced at a time, such that playback is of that
event alone, whatever the desired output length.

A more indirect option associates each known onset in
the source to a quantised position. This location is deter-
mined with respect to an imposed rhythmic template of
the algorithmic cutting4. A likely assumption would be

3There may of course be conflicts between the imposed rhythm of
the composition and the recorded rhythm of the sample source.

4The degree this will respect or pervert the rhythmic frame of the



that the source is a certain length in beats and of fixed
tempo and time signature. The order of the onset events
is preserved in such a quantisation. The advantage is that
extractions of material which are of medium length (say
a few beats), and may take in more than one segmented
event from the source, can guarantee playback that does
not clash the rhythm of the source with the rhythm of the
generative cutter. Playback of successive source events
occurs at separations taken from the quantise positions,
whilst the audio is still read from the original known on-
set positions. The rhythmic template, with whatever no-
tion of groove or swing, can be adjusted, and the quantise
position of the source events updated to reflect this. In
computational terms, this requires a further data array for
the quantised locations; search code finds the set of quan-
tised event starts within this array falling within a cut of
some duration from a given starting point. Knowing the
indices within the quantise position array tells us immedi-
ately the indices for the events in the true onset position
array for the source. These events can be rendered at the
appropriate time for the quantise array so they fit in with
the imposed template, reading the data from the source.

To assist in discovering onsets in offline preparation of
source material, a GUI for onset detection (Figure 3) was
introduced in BBCut1.3, with a number of options for the
detection algorithm, all of which run in realtime. Adapta-
tions of the Hainsworth and Jensen and Andersen methods
described above are provided along with a simple RMS
(root mean square) amplitude derivative detector. Since
the two former FFT based routines have been built into
the SuperCollider distribution independent of BBCut, they
are also available as general purpose realtime detectors;
the GUI is just a helpful frontend. Discovered segments
can be played back individually in the GUI via keyboard
shortcuts and misdetects deleted or moved.

In live performance, a buffer can be allocated to receive
captured audio, and event detection fully automated. As
the audio is recorded, the onset detection simultaneously
runs, noting times of triggers of the detection function
as event onsets, and disallowing multiple detects within
50mS of each other. The event offsets are taken as a max-
imal fixed duration from the onset or coinciding with a
new onset. This is sufficient for a single fixed capture to
make the new events available via the technology already
described.

As a further refinement, a continuous stream of input
audio can be continually analysed for events whilst record-
ing to a limited memory circular buffer. If the onset data
is held in a list and the capture continuous, since the write
pointer position is known, the list can be continuously
updated with onset information, and all read pointer ac-
cess will stay up to date with the changing buffer con-
tents. Where this is required, updating the quantise array
as well will keep the cut renderer in step with the incom-
ing stream.

sourcedepends on further assumptions or knowledge on the captured
audio, obtained possibly through beat/metre induction principles.

4. CATEGORISATION ON-THE-FLY

The best set of signal descriptors for classification of sound
can depend on the categories of sound to be judged. For
general sound classification, Peeters and Rodet [14] de-
scribe the CUIDADO system which is open-ended in fea-
tures and user customisable in the type of sounds to clas-
sify, discriminating a relevant subset of features for a par-
ticular classification task. Categorisation of percussive
sounds is tackled by Paulus and Klapuri [13] using a prob-
abilistic model based on ten signal features, and Herrera
et al. [7] exploring over two hundred.

Without tackling the best selection of features, an on-
the-fly categoriser was built as an experiment in compo-
sitional application for event segmentation based on the
onset detector already introduced, . The goal of this proto-
type is categorisation of incoming sound events as soon as
possible, into one of three classes, notionally being kick,
snare and hihat percussive sounds. The single feature ini-
tially used for classification in prototyping is the average
spectral centroid bin:∑L

n=0

∑N/2
k=0 k|Xn(k)|
L

(6)

Where there are L frames of an N point FFT in a given
event.

Hiding certain technicalities based on blocksize calcu-
lation, pseudocode for an on-the-fly categorisation algo-
rithm is presented in figure 4.

A SuperCollider UGen, CaptureCategorise, was writ-
ten in C to implement this. The UGen has inputs for the
threshold of detection, and to choose the boundaries for
the feature determining classification. Defaults were aver-
age centroid bin below 90 for a kick, below 120 for a snare
and a hihat above that. This was sufficient to demonstrate
some live (vocal) beatbox control, with captured buffers
being played back in a basic generative drum beat, and
the appropriate contents continually overwritten when a
new event was detected.

A more robust system would entail learning from a
database of examples, even an online learning process dur-
ing performance, to discover a relevant feature space for
discrimination. Still, the exploration of further basic fea-
tures provides some immediate compositional dividends.

5. FURTHER COMPOSITIONAL APPLICATIONS

In the course of an exploration of causal real-time onset
detection functions, the author had recourse to listen back
to sources, whilst simultaneously triggering beeps at the
detections. It was noted that by changing the non-adaptive
threshold of the detection function, a series of abstracted
rhythms could be generated from the source. Shifting
threshold gives a complexity parameter for the generated
rhythms. The source may then be hidden, and the detec-
tions used to trigger arbitrary sound events. A form of
onset detection cross synthesis can take place when one



Figure 3. BBCut Onset Detector GUI

for each FFT frame {
store last time domain zero crossing
if(recording event) {

calculate running spectral centroid, power of frame

if(eventlength>MAXLENGTH or power <MINPOWER) {
finish recording to temporary buffer up to last zero crossing
copy event data to one of three buffers based on the
time averaged spectral centroid
}

else store frame data to temporary buffer and increment eventlength
}

else if(onset detected) start recording event from last zero crossing, initialise eventlength
}

Figure 4. Pseudocode for an on-the-fly capture and categorise algorithm

source provides the trigger rhythm, and events extracted
from a second are triggered.

As one example of this technique, the capture and cat-
egorise process ran on one input stream, classifiying input
events to three buffers. These buffers were played back
using rhythms generated by thresholded onset detection
from three separate source loops.

In an aesthetic sense, misdetections increase the ab-
straction and the less accurate onset detection functions
and less salient signal features may still be appropriated
for compositional purposes. In the on-the-fly categorisor,
miscategorisations can provide some stimulating results!

6. CONCLUSIONS AND FUTURE WORK

Whilst an imposed rhythmic framework has provided the
skeleton for reuse of sound objects in this work, the in-
corporation of pulsation levels and other musical knowl-
edge extracted from a cutting target should provide a more
powerful system yet. Event detection is a first stage in
beat induction, providing readily available inter onset data
for histogramming or autocorrelation, though the leap to
the symbolic stage is not a necessity, as Scheirer’s model
proves [17]. A model which provides a higher level rhyth-
mic framework empowers some interesting processing op-
tions, as Gouyon et al. prove [4].

A more systematic testing of the onset detection algo-
rithms is a necessary next stage, optimising some of the

parameters indicated in section 2. It is anticipated that
specific compositions, working with particular instrumen-
talists, may demand the use of a particular detection algo-
rithm. The categorisation process can certainly be made
more robust, and a key issue is the best personalisation to
the sound world of a collaborating musician. Databasing
of a timbral space during an interaction would be a worthy
pursuit, which is well within reach if the composer spec-
ifies the feature space in advance. Captured events can
be further analysed for the perceptual centre [10] so as to
make sure that the physical start is appropriately sched-
uled. Another potential problem to be dealt with is the ac-
cidental capture of double strikes and other potential con-
flicting rhythmic confounds in single events which disturb
the rhythmic flow of the output.

This paper is a stepping stone towards a sensitive sys-
tem for audio capture and processing. A number of com-
positional applications of real-time onset detection have
been highlighted.
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