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Abstract

We develop a model for explosive eruptions in cylindrical conduits generated by plug disruption at the top of the

conduit. The eruption is calculated for a standard set of parameters for rhyolite. The model takes into account temperature

variations and non-Newtonian magma rheology. We analyzed the influence of principal parameters such as fragmentation

criteria, magma rheology, and initial conditions. We conclude that the variation of magma temperature is less than 70 K

during eruption, and the model with bubble concentration-dependent viscosity leads to the increase of the steady discharge

rate by about 40%.

The eruption model is extended to include interaction between magma in the conduit and water in a surrounding aquifer.

The phreatomagmatic eruption is also initiated by plug disruption. Two cases of initial aquifer pressure are considered:

magmastatic and hydrostatic. These cases are valid for confined and unconfined aquifers. For the first case (confined

aquifer), water influx influences the conduit flow soon after plug disruption and leads to the additional peaks of discharge

rate; for the second case (unconfined aquifer), a purely magmatic, explosive eruption of longer duration is followed by a

phreatomagmatic phase. In both cases, magma discharge rate increases by 10–100% in comparison with purely magmatic

eruption.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The significant hazard posed by explosive volcanic

eruptions has motivated widespread study of these
0377-0273/$ - see front matter D 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.jvolgeores.2004.09.014

T Corresponding author. Tel.: +7 95 939 5286; fax: +7 95 939

0165.

E-mail addresses: starab@yandex.ru (A.B. Starostin)8

barmin@imec.msu.ru (A.A. Barmin)8 melnik@imec.msu.ru

(O.E. Melnik).
phenomena and many models of explosive eruptions

have been published (Wilson et al., 1980; Slezin, 1984;

Barmin and Melnik, 1993; Woods, 1995; Melnik,

2000; Papale, 2001; Slezin, 2003; and others). Most of

these models are steady state and one-dimensional.

Here we present a transient model of explosive

eruption that considers the main physical processes.

Magma flow in the conduit is modeled as a two-phase

homogeneous fluid. We use this model to investigate

eruption dynamics and magma–water interaction.
al Research 143 (2005) 133–151
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During a phreatomagmatic eruption, intensive

magma–water interaction can have a strong influence

on the dynamics of the eruption, as happened on

Santorini, 1640 BC (Pfeiffer, 2001), Vesuvius, 79 AD

(Sheridan et al., 1981), and other volcanoes. There are

several different mechanisms by which water may

interact with the magma, for example, seawater, or

water from a crater lake, can penetrate the upper part

of volcanic conduit if the top of the edifice has been

damaged; ground water can be injected from an

aquifer as the conduit is being eroded. The depth and

the scale of the magma–water contact zone may vary

greatly and they are poorly constrained by observa-

tions. When water infiltrates the conduit, the water

vaporizes and expands while the magma cools and

fragments. Expansion of the mixture induces the

phreatomagmatic explosions. For a small amount of

water, influence of its injection is negligible, whereas

a large amount of water prevents magma from

explosions. Wohletz (2002) investigates the optimum

magma/water mass ratio for maximum explosivity of

phreatomagmatic event. However, the mass ratio itself

depends on the dynamics of mingling of the two

phases. How far and how fast water penetrates the

magma depends on two factors, the vapor film on the

contact surface of the phases oppose the mingling,

whilst the different instabilities on the contact surface

produce a finer mingling. The relationship between

magma/water mass ratio, mingling processes, and

explosivity have been investigated experimentally in

several experimental studies (White, 1996; Wohletz,

2002; Zimanowski and Büttner, 2002). These studies

confirm magma–water interaction as the most impor-

tant process in phreatomagmatic events. In our

phreatomagmatic eruption model, we mostly concen-

trate on magma flow in the conduit and water flow in

the aquifer and we assume an equilibrium interaction

between the flows.
2. Explosive eruption modelling

2.1. Physical model and governing equations

In this section we develop a model for a purely

magmatic eruption. Explosive eruptions often start

with the disruption of a lava dome or a cryptodome.

Explosive activity is commonly triggered by lava-
dome collapse, as observed at the Soufrière volcano,

Montserrat (Robertson et al., 1998; Druitt et al.,

2002), or by collapse of a volcanic edifice, as at

Mount St. Helens (Voight et al., 1999). In both cases,

disruption of the material in the upper part of volcanic

conduit, referred to as the volcanic bplug,Q causes

magma fragmentation and rapid acceleration of the

fragmented material. Simultaneously, a rarefaction

wave propagates down the conduit causing rapid

bubble growth by decompression and volatile exso-

lution. This, in turn, leads to further fragmentation,

sustaining the eruption.

We assume that bubbles are nucleated in a single

event which occurs when magma pressure reaches the

saturation value for dissolved volatiles. The bubbles

are filled with volatiles exsolved from the melt (only

H2O is considered in the model). The bubbly liquid

has a density qm of 1000–2500 kg m�3 and a

viscosity l of 106–109 Pa s leading to a rather slow

ascent velocity v of 1–10 m s�1; hence, the Reynolds

number Re=qmvD/l in the bubbly liquid is smaller

than 1 (D=30–50 m conduit diameter), and we can

apply the Poiseuille’s law for the wall friction. The

high viscosity of the magmatic liquid and the small

bubble radius ensure that bubble rise relative to the

melt is negligible. We assume sufficiently rapid

diffusion that dissolved water concentration c is

always equal to its equilibrium value according

Henri’s law. We use the formula for viscosity as

function of concentration c and temperature T

suggested in Hess and Dingwell (1996). We account

for the influence of bubbles on the suspension

viscosity using the method proposed in Llewellin

and Manga (2005-this issue) and discuss the effect

that this has on the dynamics of eruption.

We assume that the bubbly magma fragments

immediately when the gas volume fraction reaches a

critical value acr at which point it undergoes a

transition to a gas-particle dispersion. Following

Sparks (1978), we assume that fragmentation occurs

at a front, with position xf, where the gas fraction is

equal to acr.

After fragmentation, the wall friction is negligible

in the comparison with the gravity force because it is

controlled by the relatively low turbulent viscosity of

the gas phase. We assume that fragmentation is

complete and that all of the gas in the bubbles is

released to form a continuous gas phase which carries
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ash particles in a gas-particle dispersion. We assume

that the ash particles are small and, consequently, that

they have the same velocity as gas phase (Melnik,

2000).

Based on the assumptions presented above, we

consider magma ascent as a homogeneous two-phase

flow (melt and gas) with both phases having the same

velocity v, temperature T, and pressure P. Since we

assume complete fragmentation, the exsolved gas

phase can be characterized by a single variable a
(gas volume fraction) in both zones. The flow of

magma in a cylindrical conduit with diameter D is

described by the following system of equations: mass

conservation Eq. (1), momentum Eq. (2), energy Eq.

(3), and additional relationships (4)–(8):

Bq
Bt

þ Bqv
Bx

¼ 0 ð1Þ

Bqv
Bt

þ B qv2 þ Pð Þ
Bx

¼ � qg � fl ð2Þ

BE

Bt
þ B E þ Pð Þvð Þ

Bx
¼ � qgv� flv ð3Þ

c ¼ kp
ffiffiffi
P

p
ð4Þ

E ¼ cmqT þ qv2

2
ð5Þ

q ¼ a
P

RT
þ 1� að Þqm ð6Þ

P ¼ P a; Tð Þ ð7Þ

aVacr fl ¼ 32l c; Tð Þv
D2

aNacr fl ¼ 0
ð8Þ

Here q, P, T, v are the density, the pressure, the

temperature and the velocity of the mixture, qm is the

density of the pure melt, a is the gas volume fraction,

c is the mass concentration of water dissolved in the

melt and R is the universal gas constant for water

vapour. The total energy per unit volume of magma,

E, depends only on the magma temperature and its

heat capacity, because the mass of the gas phase is

negligibly small in comparison with the mass of the

melt. The momentum equation contains the resistance

force fl and gravity forces, which also enter into the

energy equation.
2.2. Equation of state, boundary and initial conditions

In this section, we discuss the equation of state (7)

and boundary and initial conditions for the governing

equations.

The melt component is conserved in each packet of

magma:

B 1� að Þ 1� cð Þqm

Bt
þ B 1� að Þ 1� cð Þqmv

Bx
¼ 0

ð9Þ

By combining and integrating conservation laws (1)

and (9) we find the ratio of pure melt density to

magma density to be constant and equal to 1�c0,

where c0 is the initial concentration of dissolved ga-

ses. We can write this ratio down as (see Appendix A):

1� að Þ 1� cð Þ

a
P

qmRT
þ 1� að Þ

¼ 1� c0ð Þ ð10Þ

Using (10) together with Henri’s law (4) and the

equation of state (6), the pressure can be written as a

function of gas volume fraction and temperature:

P a; Tð Þ ¼ jm Tð Þ
2

1�a
a

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

js

þ 4

jm Tð Þ
a

1�a

s
� 1ffiffiffiffiffiffi

js

p
" #!2

ð11Þ

where js ¼ c20=k
2
p ;jm Tð Þ ¼ qmRT c0= 1� c0ð Þ.

Formula (11) allows the pressure at fragmentation

Pf=P(acr ,T) to be calculated. Pf is a monotonous

decreasing function of acr; consequently, high values

of acr lead to low pressures at fragmentation; hence,

magma viscosity reaches higher values, and conse-

quently, magma discharge is lower.

Eqs. (1)–(8) form the basis of our explosive-

eruption model. We now consider the response of

this model to disruption of the volcanic plug. Initially,

the pressure under the plug is magmastatic, and the

temperature is constant; above the plug, pressure and

temperature are atmospheric:

t ¼ 0

xVxp P xð Þ ¼ Pmst xð Þ; T ¼ Tch
xNxp P ¼ Patm; T ¼ Tatm

ð12Þ
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The initial magmastatic pressure profile below the

plug Pmst(x) is calculated from Eq. (2) for v=0 and Eq.

(11):

dPmst

dx
¼ � a

Pmst

RT
þ 1� að Þqm

�
g

�
ð13Þ

a ¼
qm kp

ffiffiffiffiffiffiffiffi
Pmst

p
� c0

� 	
Pmst

RT
1� c0ð Þ þ qm c0 � kp

ffiffiffiffiffiffiffiffi
Pmst

p� � ð14Þ

Eqs. (13) and (14) are solved with the boundary

condition Pmst(0,Tch)=P ch for 0bxbxp where

Pmst(xp,Tch) determines the pressure drop at the plug

DP=Pmst(xp,Tch)�Patm. There is no gas-particle dis-

persion below the plug as a(xp)bacr.
For most explosive eruptions, the erupted vol-

ume is much smaller than the chamber volume;

hence, we assume that at the bottom of the conduit,

the chamber pressure and temperature remain

constant. At the top of the conduit, the pressure
Fig. 1. Discharge vs. time for different pressure drops at the plug. Paramete

bCase 1Q, curve 2 corresponds to bCase 2Q, and curve S corresponds to bS
is equal to atmospheric Patm when the exit velocity

is subsonic; otherwise, no conditions can be

specified.

2.3. Calculations

The system of equations is solved by the Lax–

Friedrichs method (LxF method) which is described

in Appendix A. We run the model using the three sets

of input parameters: bStandardQ refers to standard set

of parameters specified in Sahagian (2005-this issue)

in which case Pch=200 MPa; bCase 1Q uses the same

standard parameters except for the magma chamber

pressure Pch=150 MPa, similarly for bCase 2,Q except
Pch=175 MPa. The evolution of the discharge rate and

fragmentation front position with time for each case

are shown in Figs. 1 and 2, respectively. Fig. 1 shows

that immediately after the disruption of the plug, the

discharge rate grows abruptly as a shock wave exits

the conduit. Fig. 2 shows the corresponding descent of

the fragmentation front resulting from propagation of
rs of the calculations are detailed in Table 1. Curve 1 corresponds to

tandardQ.



Fig. 2. Fragmentation front position vs. time for different pressure drops at the plug. Parameters of the calculations are detailed in Table 1. Curve

1 corresponds to bCase 1Q, curve 2 corresponds to bCase 2Q, and curve S corresponds to bStandardQ.
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the rarefaction wave. After several minutes, the

fragmentation wave stops at xf=xf0 and the eruption

stabilizes. The principal parameters for the stable

eruption regime are presented in Table 1 for the three

model runs—Case 1, Case 2, and Standard.

It can be seen from Table 1 that chamber pressure

influences the pressure drop at the plug DP, higher

values of DP corresponding to higher chamber

pressures. For stabilized eruption, a higher Pch also

corresponds to a higher discharge rate Q0 and a

fragmentation position xf0 nearer the top of the

conduit. A higher magma chamber pressure leads to

a higher initial pressure drop which, in turn, leads to

faster downward propagation of the fragmentation

front. This results in a more intense transition from

the bubbly magma into the gas-particle dispersion

leading to a higher discharge peak at the initial stage

of the eruption. Steady state is reached after

approximately the same length of time in each of

the three cases. For lower chamber pressure (Case 1),
the degree of vesiculation of the magma at the base

of the conduit is higher. This results in a lower

position of the fragmentation level as the eruption

stabilizes.

As eruption stabilizes, the total temperature varia-

tion of the flow is less than 70 K. The magma loses

most of its heat due to the expansion of the gas phase

in the gas-particle dispersion zone. The temperature

variation in this zone is about 50 K.

2.4. The role of bubble concentration-dependent

viscosity

So far, we have assumed the magma viscosity is a

function of the concentration of the dissolved gas

and temperature alone. Several works suggest that, in

fact, the viscosity of the bubbly liquid depends on

the steady and dynamic capillary numbers Ca, Cd

(Manga and Loewenberg, 2001; Llewellin et al.,

2002a,b; Pal, 2003; Llewellin and Manga, 2005-this



Table 1

Parameter set for three calculations of the explosive eruption

Parameters Case 1 Case 2 Standard

Imposed chamber pressure

Pch (MPa)

150 175 200

steady discharge

Q0 (kg s�1)

3.31�107 4.02�107 5.1�107

fragmentation

vesicularity

0.6 0.6 0.6

Calculated pressure drop at the

plug DP (MPa)

18.5 27.7 39.6

peak discharge

(kg s�1)

8.5�107 10.4�107 11.6�107

exit velocity (m s�1) 149 150 150

fragmentation

pressure Pf (MPa)

26 26 26

exit pressure (MPa) 2.65 3.21 4.05

fragmentation front

position xf0 (m)

3480 4130 4750
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issue). These dimensionless numbers depend on the

undeformed bubble radius a, the bubble–liquid

interfacial tension C, the melt viscosity l, the shear
Fig. 3. Discharge vs. time for standard rhyolite parameters (1) and with Ll
strain rate ċ and its time derivative c̈ (Llewellin et

al., 2002a):

Ca ¼ la
C

ċc; Cd ¼ la
C

c̈
ċ

ð15Þ

If Cab1 and Cdb1, the viscosity of the bubble

suspension is higher than the melt viscosity,

lc=(1�a)�1l; otherwise, lc=(1�a)5/3l, and the

suspension viscosity is lower than the melt viscosity.

These relationships are taken from Llewellin and

Manga (2005-this issue) and represent the bminimumQ
effect of the bubbles on the viscosity of the

suspension. To calculate Ca and Cd, the average

values for ċ and c̈ are used. If we assume a parabolic

velocity profile, the average shear strain rate is

c̄̇ ¼ 16

3

v

D
ð16Þ

In our model, the radius of the bubble is not

tracked; therefore, the bubble number density per unit

volume of the bubble suspension n is introduced and
ewellin–Manga correction for n0=10
15 m�3 (2) and n0=10

9 m�3 (3).
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the bubble radius can be calculated based on the

definition of the gas volume fraction: a = 4p a3n/3. As

we assume no progressive bubble nucleation, the

conservation law for the number density of the

bubbles has the form:

Bn

Bt
þ Bnv

Bx
¼ 0 ð17Þ

We combine Eq. (17) with the mass conservation

law for the pure melt (9) and integrate to obtain (see

Appendix A for details):

n

1� cð Þ 1� að Þ ¼ n0

1� c0
ð18Þ

where n0 is the number density of bubbles at

saturation pressure Psat=(c0/kp)
2 immediately follow-

ing nucleation, when bubble volume is negligibly

small (ac0). We use Eq. (18) to calculate the bubble

radius:

a ¼ 3

4p
a
n

� �1
3

¼ 3

4p
a 1� c0ð Þ

1� að Þ 1� cð Þn0

� �1
3

ð19Þ

We performed two model runs in which we

included the effect of bubbles on the rheology of

the suspension. We used standard rhyolite parameters

and chose n0=10
9 m�3 for one run and n0=10

15 m�3

for the other in order to investigate the effect of

natural variability in the bubble nucleation density.

Eruption rates predicted by these model runs are

shown in Fig. 3, along with the results for a model run

using the standard rhyolite parameters and neglecting

the effects of bubbles on the suspension’s rheology.

Fig. 3 shows that the magma discharge rate in the

steady-state regime increases by almost 40% when the

effect of bubbles on suspension rheology is consid-

ered. The calculated discharge only slightly depends

on the particular choice of n0 in the wide range of this

parameter.
Fig. 4. Schematic view of the volcanic system containing the aquife

before plug disruption. The conduit is plugged and aquifer edges are

not permeable for water to inject into the conduit.
3. Phreatomagmatic eruption modelling

We now consider phreatomagmatic eruptions

induced by the influx of phreatic water from an

aquifer into the conduit.

The injection of water into the conduit results in

low-temperature deposits, dramatic changes of dis-
charge rate, and other unsteadiness of eruption

processes. Analysis of deposits at the Furnas volcano,

São Miguel, Azores (Cole et al., 1995), and at the Kos

Plateau Tuff, Greece (Allen and Cas, 1998), indicate

that transitions between bwetQ and bdryQ regimes are

associated with fluctuations in discharge rate. Many

phreatomagmatic eruptions follow a long phase of

purely magmatic activity which can last for several

hours (Vesuvius, 79 AD, Arrighi et al., 2001) or days

(Tolbachik, 1975; Doubik and Hill, 1999). In such

cases, the transition to the phreatomagmatic phase can

significantly increase the discharge rate (Sheridan et

al., 1981; Doubik and Hill, 1999; White and

Schmincke, 1999).

3.1. Model development

Fig. 4 illustrates the volcanic system, including

the aquifer, before the eruption when the conduit is
r
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still plugged. The geometry of the system is axi-

symmetric; the aquifer surrounds the conduit and has

no horizontal limits. The aquifer contacts the conduit

at the position xa and has thickness ha. The magma–

water interaction induces complicated physical pro-

cesses (White, 1996; Wohletz, 2002), which we treat

as averaged in time and space. We make the

following assumptions about the influence of the

influx:

(1) The thickness of the aquifer is much smaller

than the length of the conduit haVL. The influx

zone is the cylinder formed by the aquifer–conduit

interface. We assume that this interface is small

compared with the flow domains either of magma

or of water; therefore, we do not consider the

distribution of the parameters in the cross section of

the influx zone but assume that the pressure at the

edge of the aquifer Pw(0.5D) is equal to the

pressure within the influx zone Pa, where Pa is

the conduit pressure averaged along the influx

zone:

Pa ¼
1

ha

Z xaþha

xa

P xð Þdx ð20Þ

(2) The characteristic time of water injection

from the aquifer to the conduit is significantly

longer than the characteristic time of its vapor-

ization (Barmin et al., 2003). Therefore, incoming

water is immediately heated up to the equilibrium

boiling temperature Te and vaporizes. The result-

ing vapour immediately reaches the mixture

temperature.

(3) The resulting vapour either mixes with the

free gas phase if the aquifer intercepts the conduit

in the gas-particle dispersion regime or forms new

bubbles if the aquifer intercepts the conduit in the

bubbly liquid regime. This is perhaps the most

voluntary assumption, but we make it since there

are no direct observations of magma–water min-

gling in the conduit during the phreatomagmatic

episodes.

As a consequence of these assumptions, water

mass flux j and associated heat flux q must be added

to the governing equations. The heat flux q is the

quantity of heat necessary, per unit time, to vaporize

the injected mass of water j and to heat it to the
mixture temperature. Eqs. (1) and (3) are modified as

follows:

Bq
Bt

þ Bqv
Bx

¼ j

BE

Bt
þ B E þ Pð Þvð Þ

Bx
¼ � qgv� flv� q ð21Þ

The flow of water within the aquifer is described

with the mass conservation law (22), Darcy’s law

(23), and the equation of state for water (24):

m
Bqw

Bt
þ div qwu ¼ 0 ð22Þ

u ¼ � k

lw

grad Pw ð23Þ

qw ¼ qw0 1þ aw Pw � Patmð Þð Þ ð24Þ

Here, qw, Pw, and u are the density, the pressure,

and the velocity of the water, respectively, lw is the

water viscosity, aw is the water compressibility

coefficient, m, k are, respectively, the porosity and

the permeability of the aquifer. Water temperature in

the aquifer Tw is assumed to be constant.

As the aquifer has no horizontal limits and its

thickness is much smaller than conduit length, the

flow in the aquifer is assumed to be planar and axi-

symmetric. The polar coordinate system is the most

appropriate for solving Eqs. (22)–(24) in this case.

The parameters in the aquifer are functions of the

distance to the conduit r and the time t.

We calculate the rates of phreatic water mass and

heat influxes into the conduit using Darcy’s law (23):

xaVxVxa þ ha

j ¼ 4qwk

Dm

BPw

Br

����
r¼D=2

q ¼ j cw Te � Twð Þ þ cv T � Teð Þ þ kwð Þ

0Vxbxa; xa þ habxVL

j ¼ 0 q ¼ 0 ð25Þ

where cw and cv are the heat capacities of water and

vapor, kw is the latent heat of vaporization. The
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equilibrium boiling temperature Te is a function of the

pressure in the influx zone and is taken from Barmin

et al. (2003).

The total water influx from the aquifer per time

unit J is the product of the volume of the influx zone

and the water mass flux:

J ¼ p
4
D2ha j ð26Þ

The magma discharge in the conduit increases

above the influx zone due to this input. In all our

calculations, J is smaller than 20% of the average

magma discharge.

We use the transient model (2),(4)–(9),(21)–(25) to

consider the development of a phreatomagmatic

eruption after plug disruption. The boundary and

initial conditions in the conduit are the same as were

discussed above in Section 2.2. The chamber temper-

ature is 1300 K. This allows us to consider the

strongest influence of the water influx. The aquifer

position xa is deeper than the plug position xp (Fig. 4).

We consider two cases with different initial

pressures in the aquifer. The first case considers

magmastatic initial pressure in the aquifer; it models

the situation when the aquifer is confined (not freely

connected to the surface). The second case assumes the

hydrostatic pressure, corresponding to the unconfined
Fig. 5. Schematic view of the volcanic
aquifer connected to the surface. Other aquifer

parameters are taken from Delaney (1982) and Troise

et al. (2001). Aquifer porositym is 0.2, its permeability

k is 10�11 m�2 (confined aquifer) or 5�10�12 m�2

(unconfined aquifer). The temperature of water in the

aquifer is 290 K. The thickness of the aquifer is taken

to be ha=100 m: this defines the length of the influx

zone.

3.2. Regimes of water injection and their steady-state

features

Before considering the transient results let us

discuss the results of the steady-state model deduced

from the Eqs. (2),(4)–(9),(21) with constant mass and

heat influxes. By means of the steady-state model, an

explosive eruption with constant water injection was

studied in Barmin et al. (2003). Barmin et al.

recognize three regimes of water injection correspond-

ing to the fragmentation front position relative to the

aquifer. If xabxf, the influx occurs in the bubbly liquid

zone we name this situation Regime 1. If the

fragmentation front is located in the influx zone:

xa+hazxfzxa, we name this situation Regime 2. If

xa+haNxf influx occurs in the gas-particle dispersion

zone, we name this situation Regime 3. The regimes

are presented in Fig. 5 for a constant depth aquifer and
system in the different regimes.
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different fragmentation front positions. If an eruption

is steady state, it occupies one of the regimes. A

transient eruption triggered by a plug disruption

starts in Regime 1 and may undergo a transition to

each of the regimes before stabilization in the one of

them. If the system stays in a certain regime for a

long time, the transient behaviour acquires the

steady-state features of the regime, which are

considered below.

Fig. 6 shows the dependence of steady discharge

rate Q(xa,J) and steady fragmentation front position

xf(xa,J) on xa as it changes from 0.02L to 0.98L

(L=5 km) for different, fixed values of J. The

dependency Q(xa,J) is normalized on the discharge

rate Q0=Q(xa,0) for zero influx J=0. The dependency

xf(xa,J) is normalized on the fragmentation front

position xf0=xf(xa,0) for zero influx J=0. Three

regimes are clearly seen by changes in the slopes of

the curves.

For Regime 1, when water infiltrates beneath the

fragmentation front, the water injection significantly

changes the properties of the column of the bubbly

liquid above the influx zone (see Fig. 5). The gas

volume fraction a of the column increases due to the

additional free gas fraction and the temperature of

the column decreases due to vaporization of the

injected water. The temperature of the mixture

decreases by about 100 K; consequently, the melt

viscosity increases by a factor of 4 according to Hess

and Dingwell (1996). With the increase in a and

decrease in T, the fragmentation happens earlier than

in the case without influx ( J=0). Thus, the water

injection shortens the bubbly liquid zone. Fragmen-

tation depth increases monotonically with the

increase in J. For Regime 1, fragmentation front

position is deeper than xf0 and discharge rate is

higher than Q0 (Q~1 to 1.8Q0).

For Regime 3, the influence of the infiltrating

water is the weakest and it does not lead to a large

variation in the fragmentation front position and

discharge rate (Q~0.7 to 1.3Q0). Injected water turns

to vapour, expands and flows out with gas-particle

dispersion; it does not influence the fragmentation

process directly as it does in Regime 1. The injected

water may adjust to the discharge rate and the exit

discharge Q(xa,J)+J may be higher than Q0. But due

to the choked conditions at the conduit, the exit

discharge may be lower than Q0.
For Regime 2, the fragmentation occurs in the

influx zone. The injected water is enough to bring the

system to fragmentation directly in the influx zone.

A large water influx may induce fragmentation much

deeper than xf0. Thus, the bigger the influx, the wider

the interval of xa values for Regime 2.

For the steady eruptions considered, the total water

influx J does not exceed 20% of the steady magma

discharge Q0; nevertheless, in each regime, the

temperature of the mixture decreases by about

100 K as the flow passes the influx zone.

3.3. Transient results: confined aquifer

Let us assume that a confined aquifer has

magmastatic pressure before the eruption starts. The

aquifer permeability k is equal to 5�10�12 m2 and the

aquifer porosity m is equal to 0.2. To get the initial

value of pressure, we average the magmastatic

pressure along the influx zone according to Eq. (26):

Pa ¼
1

ha

Z xaþha

xa

Pmst xð ÞdxcPmst xa þ 0:5hað Þ ð27Þ

Figs. 7 and 8 demonstrate the discharge rate, the

fragmentation front, the total water influx, and the

magma temperature at the influx zone vs. time for the

two cases of aquifer positions (respectively, xa=2.15 km

and 1.9 km, L=5 km). Both cases are similar at the

initial stage. After plug disruption at xp=5 km, the

discharge rate reaches its maximum after a few

seconds. The influx appears as the rarefaction wave

propagates down and reaches the aquifer. The water

injection accelerates the fragmentation front. The

front moves down, more rapidly increasing the

amount of fragmented material and leads to the

second maximum of discharge at about 1 min after

plug disruption. For both aquifer positions, the second

discharge peak due to the water injection exceeds the

first one caused by plug disruption. Over about 1 min

the water influx reaches its maximum value. The

fragmentation front stops in the influx zone (Regime

2), and while it is keeping a constant position about

x=2.1 km, the water influx fades as a rarefaction wave

propagates inside the aquifer and pressure gradient

decreases. When water influx becomes low the front

starts to ascend and the discharge rate decreases. Due

to the influx of the water from outer parts of the



Fig. 6. Steady phreatomagmatic eruption: Steady discharge and fragmentation front position vs. aquifer position for different influxes

J=18�105, 6�105, 2�105, 0 kg s�1. At one-to-one line fragmentation front position and aquifer top coordinate are equal.
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aquifer, the total water injection into the conduit

increases again leading to fragmentation front descent

and an increase in discharge.
For the case of a shallower aquifer (Fig. 7), the

total water influx reaches a smaller maximum in each

pulse and stabilizes in 5 min. As a result, the discharge



Fig. 7. Phreatomagmatic eruption with several peaks of discharge: Discharge (Q), fragmentation front position (x), total water influx ( J), and

temperature in the influx zone (T) vs. time for aquifer position xa=1900 m.
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has several peaks of diminishing magnitude before it

stabilizes.

For the case of a deeper aquifer (Fig. 8), the influx

peaks repeat with an almost constant amplitude (curve

J), causing the fluctuations of the magma discharge

(curve Q). Their period is about 1–2 min. The

discharge fluctuations last for 40 min. Their amplitude

is about 10% of the average discharge, although the
total water input J is less than 10% of the average

magma discharge Q. But nevertheless, the process

stabilizes, because the water influx has a tendency to

decrease as the part of the aquifer affected by the flow

spreads out and the pressure gradient smoothes.

During the oscillations, the system switches between

Regimes 1 and 2. The oscillations cannot appear in

Regime 3 because in that case, the influx influences



Fig. 8. Phreatomagmatic eruption with fluctuating discharge: Discharge (Q), fragmentation front position (x), total water influx ( J), and

temperature in the influx zone (T) vs. time for aquifer position xa=2150 m.
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the fragmentation front position indirectly, by changes

in the gas-particle dispersion zone.

The water influx evolution depends on the pressure

distribution in the aquifer as follows from (25). Fig. 9

shows the pressure profiles in the aquifer. We can

conventionally separate the aquifer into two ring

zones surrounding the conduit. In Zone 1, closer to

the conduit, the pressure profile changes according to

the pressure evolution in the conduit. In Zone 2, the

pressure always decreases with time because the

average pressure at the aquifer–conduit interface is

lower than the initial aquifer pressure; furthermore,

the pressure profile becomes less steep and the influx

has a tendency to decrease.
Fig. 10 compares the discharge evolution for

purely magmatic eruptions and two phreatomagmatic

eruptions with different aquifer position as discussed

above (xa= 2.15 km and 1.9 km). After the plug

disruption, in each case, the eruption initially evolves

as if purely magmatic until the influx initiation. When

there is no aquifer, the eruption stabilizes after

approximately 1 min (Fig. 10, curve 1). When an

aquifer is included in the model, the infiltration of

water induces instability in the eruption which causes

the fluctuation in the discharge rate visible in curves 2

and 3 of Fig. 10. The nature of these fluctuations

varies from several discharge peaks (Fig. 10, curve 2)

to long fluctuations of discharge (Fig. 10, curve 3).



Fig. 10. Discharge vs. time for different aquifer positions. Curve 1 corresponds to the eruption without influx, curve 2 corresponds to the

eruption with the aquifer at xa=2150 m, curve 3 corresponds to the eruption with the aquifer at xa=1900 m.

Fig. 9. Pressure profiles in the aquifer at the time 14 s (curve 1), 164 s (curve 2), 314 s (curve 3), and 2700 s (curve 4).

A.B. Starostin et al. / Journal of Volcanology and Geothermal Research 143 (2005) 133–151146
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3.4. Transient results: unconfined aquifer

Next, we consider the case of hydrostatic pressure

in the aquifer (i.e., the aquifer is unconfined and has a

free connection with the surface). We assume that

aquifer permeability k is equal to 10�11 m2 and the

aquifer porosity m is equal to 0.2. To get the initial
Fig. 11. Phreatomagmatic phase after long purely magmatic explosive erup

during eruption without aquifer influence. Fragmentation front position (x2
with aquifer influence.
value of pressure, we average the hydrostatic pressure

along the influx zone according to the Eq. (26):

Pa ¼ L� xa � 0:5hað Þqwg þ Patm ð28Þ

In this case, the aquifer pressure remains lower

than the conduit pressure and no influx occurs if the

chamber pressure is fixed. During long-term Plinian
tion: Fragmentation front position (x1) and discharge (Q1) vs. time

), total water influx ( J), and discharge (Q2) vs. time during eruption
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eruptions, the chamber pressure decreases due to the

evacuation of the magma from the chamber. We

assume that the pressure change corresponds to the

erupted volume (Woods and Koyaguchi, 1994):

dPch

dt
¼ � #Q 0; tð Þ ð29Þ

Here, the coefficient h depends on the chamber and

wallrock properties (Woods and Koyaguchi, 1994). In

our calculations, h=10�3 m s�2.

Fig. 11 compares a purely magmatic explosive

eruption with an explosive eruption which includes a

phreatomagmatic phase. In the phreatomagmatic case,

we assume that there is an aquifer at xa=1.5 km

(L=7 km). Fig. 11a shows the evolution of the

fragmentation front for a purely magmatic eruption

(curve x1) and for an eruption with a phreatomag-

matic phase (curve x2). The figure also shows the

evolution of the total water influx for the eruption

with the phreatomagmatic phase (curve J). Fig. 11b

shows the discharge evolution for two eruptions

(respectively, curve Q1 and Q2). After an initial,

strongly transient stage lasting about 5 min, the

eruption enters a quasi-static regime in which the

magma discharge rate and the fragmentation front

decrease with the decreasing chamber pressure.

During the quasi-static regime, the purely magmatic

eruption fades constantly over about 55 min until the

discharge reaches a value at which the model loses

validity due to other effects. The phreatomagmatic

phase begins at about 30 min after the plug disruption

when the fragmentation front comes close to the

aquifer position (xa=1.5 km). In 5 min, the influx

grows from zero to the maximum intensity and

remains close to that for the rest of the model run.

The water influx accelerates the descent of the

fragmentation front and brings more fragmented

material to the gas-particle dispersion: the evacuation

of this material causes the maximum in the discharge

rate. For the calculated set of parameters, the water

influx causes a doubling of the discharge rate. The

initiation of the phreatomagmatic phase is controlled

by the evolution of the chamber pressure: connected

with the coefficient h in our model. For a larger

chamber or a lower discharge, the onset of the

phreatomagmatic phase will occur later in the

eruption.
4. Discussion

Although the conduit flow model presented in this

paper has many limitations, it captures the main

physics of explosive eruption behaviour. Furthermore,

the parameters for the stabilized eruption (fragmenta-

tion front position, discharge rate and others) are

consistent with the parameters calculated by more

elaborate steady-state model (Papale, 2001; Melnik et

al., this volume). The calculations confirm the validity

of our assumption of isothermal regime for purely

magmatic explosive eruption. The time that is

required for the eruption to stabilize is of the order

of several minutes that gives a proof for reliability of

steady-state approach for the modelling of sustained

explosive eruptions.

The model is extended to account for the inter-

action between magma flow in the conduit and

phreatic water from an aquifer that happens during

phreatomagmatic eruptions. Several results emerge

from our calculations of transient phreatomagmatic

eruptions triggered by plug disruption. First of all,

there is a possibility of damped oscillation in the

discharge rate with a period of several minutes. This

feature is commonly observed during phreatomag-

matic eruptions and may give an explanation for the

layered nature of phreatomagmatic deposits. Sec-

ondly, a transition from purely magmatic to phreato-

magmatic eruption may occur as an eruption

develops. In this case, the phreatomagmatic phase is

associated with an increase in the discharge rate, as

happened at Vesuvius in 79 AD (Sheridan et al.,

1981). We suppose that this happens due to the

injection of water from a deep, porous, unconfined

aquifer, when water influx immediately reaches a high

intensity. The emptying of the magma chamber and

the resulting decrease in chamber pressure controls the

timing of the transition to the phreatomagmatic phase.

In conclusion, the developed model becomes an

elaborate tool for studying the transient dynamics of

explosive eruptions. Many limitations including

details of magma–water interaction, magma fragmen-

tation, mass transfer in ascending magma and others

should be overcome in the future.

Notation table

Symbol Name (units)

q mixture density (kg m�3)
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qm melt density (kg m�3)

qg exsolved gas density (kg m�3)

qw water density (kg m�3)

v mixture velocity (m s�1)

a gas volume fraction

E total magma energy per unit volume (Pa)

P mixture pressure (Pa)

Pch chamber pressure (Pa)

Pst saturation pressure (Pa)

Pmst magmastatic pressure (Pa)

Patm atmospheric pressure (Pa)

Pw water pressure (Pa)

aw water compressibility coefficient (Pa�1)

u water velocity (m s�1)

T mixture temperature (K)

Tch magma chamber temperature (K)

Te temperature of equilibrium water boiling (K)

Tatm atmospheric temperature (K)

Tw water temperature (K)

k aquifer permeability (m2)

m aquifer porosity

L conduit length (m)

D conduit diameter (m)

xf fragmentation front position (m)

xp plug position (m)

xa aquifer position (m)

ha aquifer thickness (m)

l magma viscosity (Pa s)

lw water viscosity (Pa s)

kp solubility coefficient (Pa�0.5)

Q discharge rate (kg s�1)

Q0 steady discharge rate (kg s�1)

j water influx (kg s�1 m�3)

J total water influx from the aquifer (kg s�1)

q heat influx (Pa s�1)

kw latent heat of vaporization (J kg�1)

cv vapour heat capacity (J kg�1 K�1)

w water heat capacity (J kg�1 K�1)

h the coefficient for chamber pressure decreasing

(m s�2)
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Appendix A. On integrals of governing equations

The integrals of the continuity equations appear as

a consequence of the assumption of 1D one-velocity

flow. Any of the continuity equations without a source

term (1), (9), (17) can be represented in a following

form:

dlnq#

dt
þ Bv

Bx
¼ 0

d

dt
¼ B

Bt
þ v

B

Bx

q# ¼ q; 1� að Þ 1� cð Þqm; n ð30Þ

Combining two of the equations in (30), we can

obtain:

d q= 1� að Þ 1� cð Þqm½ 	ð Þ
dt

¼ 0 ð31Þ

d 1� að Þ 1� cð Þqm=nð Þ
dt

¼ 0 ð32Þ

The integrals of ratios (31) and (32) have constants

taken from the nucleation front where n=n0, a=0,
c=c0, q=qm. Therefore, the ratio of densities is

conserved at an individual particle if there is no

external water influx into the conduit. With fixed

constants, the integrals become Eqs. (10) and (18).

Even if the nucleation occurs in the magma chamber,

we still can use Eqs. (31) and (32) with constants from

the nucleation front. Eq. (10) together with the

mixture density definition (6) allows the equation of

state for pressure (7) to be determined.
Appendix B. Numerical method

The code used to solve the transient problems (1)–

(8) and (2), (4)–(9), (21)–(25) is based on the Lax–

Friedrichs numerical method. The Lax–Friedrichs

conservative method (Nessyahu and Tadmor, 1990;
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Guang-Shan and Tadmor, 1998) is applied for flow in

the conduit. We use it since the system of governing

equations (2),(4)–(9),(21)–(25) has a conservative

form and can be represented as:

Bu

Bt
þ A uð Þ Bu

Bx
¼ c u; tð Þ A xð Þ ¼ Bf uð Þ

Bu
xð Þ

u ¼ q;Q; v;Eð Þ; Q ¼ qv; v ¼ 1� cð Þ 1� að Þ

f uð Þ ¼ Q;P þ qv2; vqmv P þ Eð Þv
� 	

c ¼ j; � qg � fl; 0; � Qg � flv� q
� 	

ð33Þ

The method works on the equally spaced x-grid

with step Dx. The x-grid has to be shifted on 0.5Dx

after each time step Dtk: xi
n=xi

n+1+0.5Dx. According to

Nessyahu and Tadmor (1990), we chose Dtk to satisfy

CFL conditions. At any time step, the vector function

u(x) is fitted by a piecewise-linear approximation. In

order to account for discontinuities, we use the

minmod function MM, which chooses the best

appropriate slope uiV(xi
n,tk) from numerical derivatives

for the approximation:

MM d1; d2; ::dnð Þ¼
0 ak; l : dkdlV0
mini dið Þ 8k dkb0

maxi dið Þ 8k dkN0

8<
: ð34Þ

Here, instead of parameters di left, right or central

derivatives are substituted. The principal method

formulas follow from the approximation of Eq. (33)

in the integral form on the rectangle {(xi
n,tk),

(xi
n+Dx ,tk), (xi

n+1+0.5Dx ,tk+1),(xi
n+1�0.5Dx ,tk+1)}.

The method has two semi-steps: predictor which

approximates the values u(xi
n, tk+0.5Dtk), and correc-

tor which calculates the values on the staggered grid

u(xi
n+0.5Dx,tk+1).

u xi; tk þ 0:5Dtkð Þcu xi; tkð Þ þ Dtk

Dx
f V u xi; tkð Þð Þ

u xi þ 0:5Dx; tkþ1ð Þc 1

2
u xi; tkð Þ þ u xiþ1; tkð Þð Þ

þ 1

8
uV xi; tkð Þ � uV xiþ1; tkð Þð Þ

þ Dtk

Dx
f u xiþ1; tk þ 0:5Dtkð Þð Þð

� f u xi; tk þ 0:5Dtkð Þð ÞÞ
To estimate the accuracy of this method, the

transient task was solved until stabilization and

stabilized profiles were compared with profiles from

the steady-state solution that was solved by the

integration of ODE. For 500 cells in the x-grid the

steady and stabilize pressure profiles coincide to

within 0.1%.

The problem in the aquifer (24) is solved by an

implicit method that leads to three-diagonal matrices

that was solved my means of the Thomas method. For

a fixed pressure at the edge and a finite aquifer radius

an analytical steady-state solution for pressure profiles

was compared with the stabilized result of the

calculations. For 100 cells in the r-grid the analytical

and stabilize pressures coincide to within 1%.

In order to get an appropriate solution of the full

problem (9),(2),(4),(6),(8),(21),(24),(25) we combine

the two methods and iterate the influx to satisfy the

boundary condition at the edge of the aquifer.
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