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Abstract

The Yule-Simon distribution is a discrete probability distribution related to
preferential attachment processes such as the growth in the number of species
per genus in some higher taxon of biotic organisms, the distribution of the sizes
of cities, the wealth distribution among individuals, the number of links to pages
in the World Wide Web, among others. In this paper we present an algorithm to,
given a set of observations stemmed from a Yule process, obtain the parameter
of the Yule-Simon distribution with maximum likelihood. In order to test our
algorithm, we use a modified Polya urn process simulation to generate some data
that was used as input to our algorithm. We make a comparison of our algorithm
with another methods and also we show an application to some empirical data.
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1. Introduction

The Yule-Simon distribution was formulated by Yule [1] to describe the dis-
tribution of species among genera in some higher taxon of biotic organisms.
New genera are added to a taxon whenever a newly appearing species is con-
sidered sufficiently different from its predecessors that it does not belong in any
of the current genera. New species are added as old ones speciate, that is, split
into two species. The probability that a new species appears in a genus is pro-
portional to the number of species the genus already has. Simon introduced
essentially the same growth mechanism to explain the observed distribution of
word frequencies in texts [2, 3, 4, 5]. This mechanism is also underlying to
the preferential attachment model of complex networks proposed by Baràbasi
and Albert [6, 7]. Then the Yule-Simon distribution is related not only to the
distribution of species among genera, but also to many other stochastic data
like distribution of words frequencies in a document, distribution of income,
distribution of cities by number of habitants, among many others [8].
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The probability mass function of the Yule-Simon distribution depends on
a single parameter. This papers presents an algorithm to estimate, given a
set of observations stemmed from a Yule process, the Yule-Simon distribution
parameter with the maximum likelihood.

2. Yule-Simon distribution

To explain how are distributed the different species among the genera, Yule
[1] proposed the following model:

There are two types of mutations, ones that produce a new specie of the same
genus, called specific mutations, and other that produce an entirely new genus,
called generic mutations. Let g be the generic mutation rate and s the specific
mutation rate. Assuming that populations of one specie grows exponentially,
the probability that a genus of age t to be composed of a single specie is

p1(t) = e−s·t. (1)

The probability of a genus of age t to be composed by two species, p2(t) is equal
to the probability of having a specific mutation at some time between time 0
and t and not having any further mutation, that is,

p2(t) =

∫ t

0

p1(t′) · s · e−2s(t−t
′)dt′

= e−st ·
(
1− e−st

)
. (2)

By induction, it can be showed that, for a genus of age t, the probability of
having a k number of species is given by

pk(t) = e−st ·
(
1− e−st

)k−1
. (3)

And, since the distribution of ages of genera is given by g · e−gt, the probability
that a given genus could have k species is given by

pk =

∫ ∞
0

pk(t) · g · e−gtdt

=

∫ ∞
0

e−st ·
(
1− e−st

)k−1 · g · e−gtdt
=

g

s
·
∫ 1

0

xg/s(1− x)k−1dx

=
g

s
· B(g/s+ 1, k)

=
g

s
·

Γ(k)Γ
(g
s

+ 1
)

Γ
(g
s

+ 1 + k
) (4)
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where B is the Euler Beta function and Γ is the Gamma function [9]. If we make
ρ = g/s we have the Yule-Simon distribution [1, 2] probability mass function:

f(k; ρ) = ρ · Γ(k) · Γ(ρ+ 1)

Γ(k + ρ+ 1)
. (5)

where k is any positive integer and the ρ > 0 parameter, called the shape, is a
real number.

This distribution was rediscovered by Simon [2] as that of words by the
frequency of their use in a document. In the Simon model, when a text is being
written each word is added in the following way: with probability α a new word
is added and with probability (1−α) a previous word is selected. The probability
that it will be a particular word already written is linearly proportional to the
number of its previous occurrences. The probability that a particular word had
been repeated k times along the document is given by (5), where ρ = 1/(1−α).

Simon observed that the same distribution can be applied to other cases like
distributions of numbers of papers published by scientists, distribution of cities
by population and distribution of incomes.

More recently, in order to explain the distribution of connectivity in the
World Wide Web [10] and other networks Barabasi and Albert [6] proposed
the preferential attachment model. This model reduces to Simon’s model as
was pointed out in [7]. For a review of the close relation of Yule’s model with
Polya urn models, branching processes, random graphs and coagulation models,
among others, see [8].

3. Fixed Point Algorithm

In this section we present an algorithm to estimate the parameter ρ of the
p.m.f. given by equation (5). Our algorithm is based on a maximum likelihood
estimation of the Yule distribution parameter given a set of observations of a
random variable.

Given k1, k2, . . . , kN i.i.d. observations, the joint probability of these obser-
vations given a fixed shape ρ is

f(k1, k2, . . . , kN |ρ) = f(k1; ρ) · f(k2; ρ) · · · f(kN ; ρ) (6)

Then the likelihood of the parameter ρ given the observations k1, k2, . . . , kN is
defined as

L(ρ|k1, k2, . . . , kN ) =

N∏
i=1

f(ki; ρ) (7)

Given the set of observations k1, k2, . . . , kN we want to estimate the Yule distri-
bution parameter ρ which maximizes the likelihood L. For practical convenience
we instead work with the logarithmic average likelihood defined as

l̂ =
1

N
lnL (8)
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and then

l̂ =
1

N
ln

[
N∏
i=1

f(ki; ρ)

]
=

1

N

N∑
i=1

ln f(ki; ρ) (9)

Replacing (5) in (9) we get:

l̂ = ln ρ+ ln Γ(ρ+ 1) +
1

N

N∑
i=1

ln Γ(ki)−
1

N

N∑
i=1

ln Γ(ki + ρ+ 1) (10)

then

∂l̂

∂ρ
=

1

ρ
+

Γ′(ρ+ 1)

Γ(ρ+ 1)
− 1

N

N∑
i=1

Γ′(ki + ρ+ 1)

Γ(ki + ρ+ 1)
(11)

that is

∂l̂

∂ρ
=

1

ρ
+ ψ(ρ+ 1)− 1

N

N∑
i=1

ψ(ki + ρ+ 1) (12)

where ψ is the digamma function [9].
In order to obtain the maximum loglikelihood we make (12) equal to zero to

obtain

1

N

N∑
i=1

ψ(ki + ρ+ 1) =
1

ρ
+ ψ(ρ+ 1) (13)

The digamma function satisfies the following recurrence relation [9]:

ψ(x+ 1) = ψ(x) +
1

x
(14)

which we can apply to reduce the terms inside the summation at the left side
of (13) as follows:

ψ(ki + ρ+ 1) = ψ(ki + ρ) +
1

ki + ρ

= ψ(ki − 1 + ρ) +
1

ki − 1 + ρ
+

1

ki + ρ

...

= ψ(1 + ρ) +
1

1 + ρ
+ · · ·+ 1

ki + ρ

that is

ψ(ki + ρ+ 1) = ψ(ρ+ 1) +

ki∑
j=1

1

ρ+ j
(15)

and then

1

N

N∑
i=1

ψ(ki + ρ+ 1) = ψ(ρ+ 1) +
1

N

N∑
i=1

ki∑
j=1

1

ρ+ j
(16)
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Replacing (16) in the left side of (13) we have

ψ(ρ+ 1) +
1

N

N∑
i=1

ki∑
j=1

1

ρ+ j
=

1

ρ
+ ψ(ρ+ 1) (17)

Then we obtain

ρ =
N∑N

i=1

∑ki
j=1 1/(ρ+ j)

. (18)

The equation (18) suggests to us a fixed point algorithm to estimate the
shape ρ with maximum likelihood. This fixed-point algorithm is showed as the
algorithm 1.

Data: An array k1, . . . , kN of N observations of a Yule process, an initial
approach ρ0, and a tolerance ε

Result: Estimated parameter ρ of the corresponding Yule distribution
begin

f ← false;
while ¬f do

ρ1 ← N/
(∑N

i=1

∑ki
j=1 1/(ρ0 + j)

)
;

f ← (|ρ1 − ρ0| < ε);
ρ0 ← ρ1;

end
return ρ1;

end

Algorithm 1: Fixed Point Algorithm to estimate ρ

In order to test our algorithm we firstly use data generated by the simulation
of a Yule process with some already known ρ parameter, so we can verify how
accurate is the estimation made by the algorithm 1. For simplicity sake, we
simulate a modified Polya urn process, as explained in the following section.

4. Modified Polya urn process simulation

Consider the following modified Polya urn process: Given finitely many bins
each containing one ball, suppose that additional balls arrive one at a time. For
each new ball, with probability α, a new bin is created and the ball is placed
in that bin; and with probability (1 − α), the ball is placed in an existing bin,
such the probability the ball is placed in a particular bin is proportional to the
number of balls in that bin [11, 12]. We can observe that this stochastic process
is fully equivalent to the Simon’s model. Then, the probability a bin has exactly
k balls is given by equation (5) with ρ = 1/(1− α).

The simulation algorithm of this modified Polya urn process is the algorithm
2. In algorithm 2, the probability α of a new bin creation in each time step, the
amount bM of balls to generate before stop and the initial number b0 of balls
are given as input and then it outputs the sequence of integers k1, k2, . . . , kN ,
where ki is the number of balls that contains the i-th bin.
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In order to test algorithm 1, we first use algorithm 2, giving a fixed α, to
generate the sequence k1, · · · , kN and then we use this sequence as input of
algorithm 1. The estimated parameter ρ computed by algorithm 1 must be
close to 1/(1− α).

Data: Parameter α of the modified Polya urn process, initial number of
balls b0, number of balls to generate bM

Result: An array k1, . . . , kN where ki is the number of balls contained in
the bin i

begin
balls ← b0;
N ← b0;
for i← 1 to N do

ki ← 1;
end
while balls ≤ bM do

Generate a pseudo random number 0 ≤ r0 ≤ 1;
if r0 < α then // A new bin is generated

N ← N + 1; kN ← 1; balls←balls+1;
else// Ball is placed in a preexisting bin

Generate a pseudo random number 1 ≤ r1 ≤ balls;
b← 0; s← 1;
while r1 > b+ ks do // Preferential attachment

b← b+ ks; s← s+ 1;
end
ks ← ks + 1; balls← balls+ 1;

end

end
return k1, . . . , kN ;

end

Algorithm 2: Polya urn process simulation

In table 1 we summarize some of the results we obtained from our experi-
mental tests. In the first column we have the parameter α given to simulation
algorithm 2. The second column is the value of 1/(1 − α), that is, the exact
value of ρ which we want to estimate using algorithm 1. The following columns
are the different estimations of ρ for various supplied data sets.

The algorithm 1 was always run with ε = 0.00001 and initial approach
ρ0 = 0. For the estimate ρ1 the data were generated with bM = 2 × 105. For
ρ2, data was generated with bM = 2.5× 105. And bM was 5× 105 and 1× 106,
for estimates ρ3 and ρ4 respectively. As observed in table 1, good estimates of
ρ were always obtained, and the accuracy mainly depends, as expected, on the
number of observations used as input.

In all our experimental tests we always observe convergence of algorithm 1
and even for N ≈ 1×106 the running time was less than a second on a computer
with a 1 GHz Pentium Dual Core processor. In most of our experimental tests
convergence was reached in less than 10 iterations. In our future work the formal
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α 1/(1− α) ρ1 ρ2 ρ3 ρ4
0.1 1.111111 1.108276 1.106701 1.109161 1.113740
0.2 1.250000 1.238459 1.244910 1.247314 1.248361
0.3 1.428571 1.446412 1.429618 1.426060 1.427149
0.4 1.666666 1.682525 1.671963 1.662993 1.664442
0.5 2.000000 2.035083 2.004017 1.993611 1.999833
0.6 2.500000 2.540717 2.505299 2.495214 2.499993
0.7 3.333333 3.357493 3.340851 3.325171 3.331717
0.8 5.000000 5.022355 5.019381 5.000228 4.995364
0.9 10.00000 10.09391 9.984415 9.994049 9.994425

Table 1: Experimental test results

proof on convergence properties of our algorithm remains.

5. Comparison with other methods

Given that the p.m.f. expressed by eq. (5) has the property that for suffi-
ciently large k we have

f(k; ρ) ≈ ρ · Γ(ρ+ 1)

kρ+1
∝ 1

kρ+1
, (19)

then f(k; ρ) can be estimated as an inverse power law with exponent ρ+1 [1, 2].
Two current methods to estimate, given a set of observations, the inverse power
law exponent are the least-squares and maximum-likelihood fitting methods [13].

First of all, a power-law distribution is one described by a probability density
p(x) such that

p(x) = Cx−β (20)

where C is a normalization constant and the exponent β is called the scaling
parameter.

In the well known least-squares fitting method, the scaling parameter of the
power law is obtained by performing a least-squares linear regression on the
histogram plotted on a log-log scale. The value of the parameter β is given by
the absolute slope of the straight line. This procedure dates back to Pareto’s
work on the distribution of wealth at the end of the 19th century [14].

In the maximum-likelihood fitting method, the maximum likelihood estima-
tor for the scaling parameter is given by:

β = 1 +N

[
N∑
i=1

ln(2xi)

]−1
(21)

where xi, i = 1, . . . , N are the observed values of x [13].
Then, another way to estimate the Yule-Simon distribution parameter ρ

is applying least-squares or maximum-likelihood fitting methods to obtain the
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scaling factor β and then we can estimate ρ as β − 1. We did this for the
synthetic data generated by the modified Polya urn process simulator discussed
on the previous section and the we compare the obtained estimations with those
produced by our algorithm. Results of this tests are summarized on table 2.

α 1/(1− α) ρF ρL ρM
0.1 1.111111 1.109161 1.072947 0.715815
0.2 1.250000 1.247314 1.163400 0.761797
0.3 1.428571 1.426060 1.359513 0.812980
0.4 1.666666 1.662993 1.536816 0.870747
0.5 2.000000 1.993611 1.771245 0.935924
0.6 2.500000 2.495214 2.002797 1.010872
0.7 3.333333 3.325171 2.356327 1.097092
0.8 5.000000 5.000228 3.052245 1.196469
0.9 10.00000 9.994049 4.545002 1.309242

Table 2: Estimated parameters comparison (synthetic data)

In the first column of table 2 we have the parameter α of the modified
Polya urn process and then, in the second column, the exact corresponding
parameter ρ = 1/(1−α). The estimation ρF was obtained using our fixed-point
algorithm with a tolerance ε = 0.00001 and an initial approach ρ0 = 0. The
estimation ρL was obtained by the least-squares fitting method and ρM by the
maximum-likelihood fitting method. The data was generated using algorithm 2
with bM = 2× 105.

As can be observed, better results were obtained with our method. Matter
of fact, ρM < ρL < ρF and this divergence grows as ρ becomes greater. Again,
on these tests we use synthetic data because simulation allows to fix an exact
value of ρ and then we can measure how accurate are the obtained estimations.
As a further test, we apply this methods to empirical data, as discussed below.

6. Application to empirical data

According to Simon [2], the Yule-Simon distribution applies to frequency of
words occurrence in a text. In this second test, for a given text composed by
N different words, ki is the number of times that i-th word appears on this
text. We use k1, . . . , kN as input data for algorithm 1 to estimate parameter
ρ. For comparison, we also make estimations of ρ by the least-squares and
maximum-likelihood fitting methods discussed on previous section.

As texts we choose the following novels: (A) Ulysses by James Joyce, (B)
Don Quixote by Miguel de Cervantes, (C) Moby Dick by Herman Melville, (D)
War and Peace by Leo Tolstoi and (E) Les Miserables by Victor Hugo. We
use English translations of Cervantes, Tolstoi and Hugo novels. All texts were
downloaded from the Gutenberg Project site.
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Estimated parameter for each method are presented on table 3. As before,
ρF was obtained with algorithm 1, ρL with least-squares and ρM with maximum-
likelihood fitting methods.

Text N ρF ρL ρM
A 30938 1.108752 0.635097 0.721935
B 24329 0.905986 0.371927 0.640057
C 17752 0.886444 0.461332 0.624012
D 18505 0.629574 0.372494 0.493363
E 23975 0.700271 0.447398 0.534301

Table 3: Estimated parameters comparison (empirical data)

In order to measure the goodness of fit we follow the method exposed on
[13] which generates a p value that quantifies the plausibility of a model. This
procedure is as follows: Empirical data is fitted to a model using one of the
reviewed methods (fixed point, least-squares or maximum-likelihood) and the
corresponding Kolmogorov-Smirnov statistic is calculated for this fit. Next, a
large number of synthetic data sets are generated with same parameters to those
of the distribution that fits the observed data. Then the Kolmogorov-Smirnov
statistic for each data set relative to its own model is calculated. Then is counted
what fraction of the time the resulting statistic is larger than the value for the
empirical data. This fraction is the p-value that measures the goodness of fit.

In table 4 we present p-values for each one of the estimated parameters
for each text. pF is the p-value for a Yule-Simon model with ρ obtained by
algorithm 1, pL is for the power-law model with parameters estimated by the
least-squares fitting method and pM for the power-law model obtained by the
maximum likelihood method.

Text pF pL pM
A 0.627049 0.269625 0.358362
B 0.540541 0.278090 0.412921
C 0.313208 0.340580 0.387681
D 0.372494 0.456140 0.445175
E 0.381679 0.368298 0.487179

Table 4: Goodness of fit

From these results can be inferred that, in A and B texts, word frequencies
are well fitted by a Yule-Simon distribution but in another cases a Yule-Simon
model seems as good as a pure power-law. To find an explanation of why some
texts seems to follow more closely a Yule model than others is beyond the aim
of this paper.
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7. Conclusions

In this paper we present an algorithm to, given a set of observations stemmed
from a Yule process, obtain the parameter of the Yule-Simon distribution with
maximum likelihood. In order to test our algorithm, we use a modified Polya
urn process simulation to generate some data that was used as input to our
algorithm. Then we compare the estimate of the parameter with the exact
value of the corresponding parameter fixed on the simulator. Good properties
of convergence were observed in all our experimental tests. We also made a
comparison with another methods, obtaining better results for synthetic and
for some empirical data.

The algorithm presented in this paper can be applied to easily adjust a
Yule-Simon distribution to a set of observations coming from a preferential
attachment process as those related to complex networks.
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