
Trait Alias
BW_Week22_.g. Body_Weight
Organ_pWAT_.g. Fat
CLAMS_Lean_.g. Lean_mass

ColdTest_5h..grad_C. Cold_test
OGTT_AUC_Insulin_.AUC. Insulin

OGTT_AUC_Glucose Glucose
VO2_Sprint_PostWheel_.m. Respiration

Profiling type Number of fea-
tures

Proteome
(peptides) 22 227

(protein groups) 3 090
(proteins matching transcripts) 2100

Transcriptome 25 135
Genome loci 3 811

Table 2. Seven traits were selected for benchmark-
ing process. Out of total 115 measured traits, whose 
correlation is shown on the left, we selected traits, 
representative of each hifly correlatied group.

Table 1. Mice multi-omics profiling. Here 
we show preliminary results from proteomic 
level only

Fig 2. Correlation heatmap of variable importance rank for top 100 variables. Each ntree & mtry 
combination was repeated 10 times, the resulting variable ranks were compared for each setup by cor-
relating ranks. Default forest size (500 trees) produces different importance ranking for each realisation: 
the resulting ranks don’t correlate neither within 500-tree forests, nor with the ranks of bigger forests. 
However, forests of 5000-40000 of trees yield ranks that are more similar to each other.  Thus, to get 
a reliable importance-ordered list of variables, bigger forest size is necessary. Mtry influence is lower. 
However, for mtry value, close to default (1/3 of variables, here 1030), a middle-size forest of 5000 trees 
yields a variable list, very similar to list of 20000-40000 trees.

Fig 1. Random forest performance 
generally grows with increased num-
ber of trees and stability of prediction 
improves

Random Forest Algorithm Results
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Variable selection
1. Important vari-
ables vary more in 
VI, so only variables 
with variation above 
threshold are 
maintained. 
2. A set of nested 
models is constructed 
with a forward-selec-
tion procedure. The 
set of variables, that 
leads to minimum er-
ror is retained as the 
interpretation set.
3. A minimal-predictive variable set 
is determined by filtering out redundant 
variables from the interpretation set. 

1. Breiman L. Random Forests. Machine Learning.45(1):5-32.
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3. Williams EG, Wu Y, Jha P, Dubuis S, Blattmann P, Argmann CA, et al. Systems proteomics of liver mitochondria function. Science. 

2016;352(6291):aad0189.

In biomarker research, the goal is to con-
struct an prediction rule on the basis of a 
small number of predictors. Formally, this 
means representing a macro-level response 
as a function of molecular features (DNA 
variants, transcript or protein abundancies) 
with minimal error. 

Develop a framework for selection of a 
composite biomarker: an ensemble of small 
number of predictors, that is able to predict 
the macro-level response.

To benchmark the process of construc-
tion of the composite biomarker, we use 
a mouse model. Mouse model has an ad-
vantage over human samples, as many con-
founding factors are controlled. Here we 
use measurements of 35 murine strains 
from the BXD recombinant inbred strain 
panel exposed to high-fat and chow diets.  

As explanatory variable set we use mo-
lecular profile 
of liver, and as 
response vari-
ables, we have 
selected 7 phe-
notypic traits 
related to me-
tabolism.

Random forest is an ensemble machine 
learning method, that constructs a multi-
tude of decision trees [1]. Randomisation is 
achieved by using:
1) a random subset of features for split se-
lection at each node; 
2) a bootstrap of samples in each tree. 
Variable importance (VI), used for feature 
selection is calculated as follows:

Molecular profiling

Algorithm parameter choice Algorithm Performance

Feature selection

Random Forest parame-
ters: 
- ntree (number of 
trees) 
- mtry (number of fea-
tures, tried at each node)

Higher ntree improves: 
1. stability of prediction 
2. performance (Fig. 1) 
3. stability of variable im-
portance list (Fig.2). 
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Random Forest 
explains up to 
30% of variance 
with default pa-
rameters. Fea-
ture selection 
improves pre-
diction substan-
tially (by 21-
53%).

Surprising-
ly few features 
are required to 
achieve better 
prediction. 

For highly correlated features, also predic-
tors selected are shared (see Venn diagram) 

Trait selection
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