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Abstract. Segmentation is often required for the analysis of dynamic Positron
Emission Tomography (PET) images. However, noise and low spatial resolution make
it a difficult task and several supervised and unsupervised methods have been proposed
in the literature to perform the segmentation based on semi-automatic clustering of
the time activity curves of voxels. In this paper we propose a new method based on
spectral clustering that does not require any prior information on the shape of clusters
in the space in which they are identified. In our approach, the p-dimensional data,
where p is the number of time frames, is first mapped into a high dimensional space
and then clustering is performed in a low dimensional space of the Laplacian matrix.
An estimation of the bounds for the scale parameter involved in the spectral clustering
is derived. The method is assessed using dynamic brain PET images simulated with
GATE and results on real images are presented. We demonstrate the usefulness of
the method and its superior performance over three other clustering methods from the
literature. The proposed approach appears as a promising pre-processing tool before
parametric map calculation or ROI-based quantification tasks.

Keywords: PET, Dynamic imaging, Clustering

1. Introduction

The estimation of kinetic parameters using compartmental modelling or reference-based
methods generally requires the delineation of regions of interest (ROI) where each
region is supposed to include voxels with the same time-activity curve (TAC). The
method used for ROI definition highly impacts the quantitative results. In clinical
practice, segmentation is generally either performed manually by an expert on the PET
images, or ROIs are identified on anatomical images coregistered with the PET images.
Manually defined ROIs are operator dependent and 3D ROI drawing is both time-
consuming (Krak et al 2005) and challenging due to the noise in PET images. The use of
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anatomical images to identify the regions also suffers several shortcomings. Registration
is needed to compensate for motions between or within the acquisitions. Moreover,
using anatomical information is not necessarily relevant to the underlying biochemistry
(Maroy et al 2008): the distribution of molecular targets can be heterogeneous within
anatomical brain structures (e.g. neuroinflammation in neurodegenerative disorders),
and functional regions can be different from anatomical regions.

For these reasons, there has been an increased interest in segmenting dynamic PET
images based on TACs. Currently, the most commonly used approaches for analyzing
data from molecular targets that do not have clearly identified reference regions are
supervised methods that decompose the TACs of voxels into a linear combination of
predetermined classes (Turkheimer et al 2007, Yaqub et al 2012). In this work, we
focus on unsupervised methods that aim at creating clusters of voxels with homogeneous
behaviors without any a priori on the shape of the TACs. The underlying hypothesis
is that physiological similarity of voxels in ROIs can be identified by analyzing the
similarity between their TACs. Clustering methods group similar elements into subsets
(or clusters) on the basis of a similarity criterion. The methods proposed in the literature
for dynamic PET segmentation can currently be divided into two categories depending
on the space in which clustering is performed.

Clustering in data space

In this first category of TAC clustering methods, segmentation is directly performed in
the data space. Wong et al (2002) proposed a K-means method based on a weighted
least-square distance. They used two criteria based on information theory to estimate
the number of clusters. K-means can be interpreted as a non-probabilistic limit of the
Expectation-Maximization algorithm (EM) applied to a mixture of Gaussian functions.
An EM method was proposed by Ashburner et al (1996), based on the shapes of the
TACs rather than their magnitudes. Another EM method was proposed by Brankov
et al (2003) along with a similarity metric measuring the correlation between TACs.
Kamasak (2009) proposed a maximum a posteriori method that clusters the voxels in
the projection domain. A parametric method has also been proposed by Krestyannikov
et al (2006) in which clusters were identified in the projection space with a least-square
method. Hierarchical methods have also been used operating directly in the data space.
Zhou (2000) described a hierarchical average linkage algorithm as a preprocessing step
prior to parametric analysis. Guo et al (2003) proposed a two-stage clustering process
based on histogram thresholding and hierarchical linkage. A method operating in data
space that combines minimal energy path active contours and hierarchical linkage was
also reported by Maroy et al (2008).

Projection in a lower dimensional space

In the second category, the p-dimensional data, where p is the number of time frames, is
projected into a space of dimension less than p where the clusters are identified. Kimura
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et al (2002) used a principal component analysis to reduce the dimensionality and a K-
means algorithm to identify the clusters. A factor analysis combined with C-means was
proposed by Frouin et al (2001) to segment the heart cavities from perfusion data.

Implicit mapping into high dimensional space

The main limitation of the two previous types of approaches is that some a prior:
information regarding the shape of clusters in the space in which they are identified
is implicitly used (Filippone et al 2008). In our work, we thus considered for the
segmentation of dynamic PET images a third category of clustering methods that
regroups the kernel (Shawe-Taylor and Cristianini 2004) and spectral clustering (Shi
and Malik 2000) methods. In this category of methods, the dot product is replaced by a
kernel function to map the data into a high dimensional space called feature space. The
strength of these methods lies in their ability to identify clusters without assuming any
specific cluster shape in the feature space. This implicit mapping into high dimensional
space increases the separability between clusters and a linear partitionning in the feature
space produces nonlinear separating hypersurfaces in the input space.

While a link between kernel and spectral clustering methods has been pointed out
(Bengio et al 2004, Dhillon et al 2007), spectral clustering combines the advantages
of the mapping into a high dimensional space and the clustering in a low dimensional
space. Unlike some kernel methods that directly analyze the projections into high
dimensional space to cluster the data, spectral clustering uses the spectral elements of
the kernel matrix to find a proper low dimensional representation of the data in the high
dimensional space.

In this paper, we describe an approach based on spectral clustering, called kinetic
spectral clustering (KSC), to segment the dynamic PET images. The proposed approach
uses a weighted Euclidian distance that considers the level of noise contained in each
frame and we estime the bounds of the scale parameter involved in the similarity
function of spectral clustering. Our approach is assessed using GATE Monte Carlo
PET simulations of numerical phantoms and results are compared with three other

clustering methods from the literature. Comparative results are also presented on real
dynamic PET images of a rat with [I8F|DPA714.

2. Kinetic Spectral clustering of dynamic PET data

2.1. Method

Spectral clustering requires the calculation of a weighted graph that represents the
similarity (or affinity) between data points (Ng et al 2001). The nodes of the graph
correspond to data points and the weight of the edge between two nodes is a function of
the similarity between the corresponding two data points. In dynamic PET, we denote
the TAC at voxel ¢ by a vector x; € R?P in which p represents the number of frames of
the PET sequence. Let us consider a data set S = {x;,7 = 1..n} € R? made of n TACs,
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where n is the number of voxels in the 3D volume corresponding to the field of view of
the scanner. Let k£ be the number of clusters to identify.

The weighted graph is represented by the affinity matrix W. The w;; entries are
the measures of the affinity between a voxel z; and another voxel z;, defined by an
exponentially decaying function of the distance p between their associated TACs:

2
exp (——p(g’;ﬁj) ) if i £ 4,

0 otherwise,

(1)

wij =

where o is a scale parameter. The computation of the Gaussian affinity measure between
time activity curves of voxels embeds the data from R” into a high dimensional feature
space in which clusters can be separated without constraints on their shape convexity.
In the case of a Gaussian kernel the redescription space is infinite, without having to
actually compute the transformation to this space as it is implicitly done by the use
of the kernel. This measure is a Mercer kernel whose matrix represents a symmetric
positive definite function in the theory of integral equations.
We define the distance between two TACs as a weighted Lo-norm in R?:

P 2
plaia) = | Yow |2 —al”] 2)
v=1

where xz(d) is the value of voxel z; in the 4 frame. The weight w., are based on
noise level estimation as proposed by Cheng-Liao and Qi (2010) to weight more heavily

the differences observed in frames having a better signal-to-noise ratio:

Jo7, exp(=8)do

, 3
o @
where A = In 2/T% and T1 is the half-life of the radioisotope (18F was used in this
study), ¢, is the elapsed time since injection at the end of frame v and N, is the total

Wy =

number of events in frame . As the overall noise variance in a MAP reconstructed
frame is about proportional to the data variance in the frame (Qi and Leahy 1999), this
weight corresponds to the inverse of the standard deviation of the noise in each frame.
The degree matrix D is defined as a diagonal n x n matrix with d; elements on the
diagonal. The degree d; of node i is the sum of all edges weights linked with x;:

Jj=1

Several Kirchhoff Laplacian matrices can be used. To ensure robustness with respect
to broad degree distributions in the similarity graph, we used a symmetrical undirected
normalized graph Laplacian matrix (Shi and Malik 2000):

L=1-D"'W, (5)
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where [ is the identity matrix of dimension n x n.

Spectral clustering then consists in calculating the first k& eigenvectors of L
corresponding to its smallest eigenvalues (hence to the largest of D~'WW) and projecting
the data within this low-dimensional space. This changes the representation of the data
points into axes where the clusters are best separated. As a last step, any conventional
clustering algorithm can be used in this space where clusters can be more easily identified
(Luxburg 2007). In this work we used the classical K-means algorithm as the last step
to identify the clusters. To illustrate the principle of the proposed method, Figure 1(a)
displays clusters composed of theoretical TACs discretized over 100 frames with added
Gaussian noise. The initial 100-dimensional data (TACs) were first mapped into high-
dimensional feature space and then the distances between the data were projected into
a final low dimensional space of dimension 6 given that 6 clusters were modelled. The
representation of the clusters on the space spanned by the first three axes of the low-
dimensional space is shown in figure 1(b), where it can be observed that the embedded
data clusters are well separated and easily identified.
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Figure 1. Illustration of spectral clustering on TACs affected by Gaussian noise.
(a) noisy TAC clusters in R (100 time frames); (b) data representation in the first
three dimension R? of the spectral space showing the separation in the proposed final
low-dimensional space.

2.2. Scale parameter analysis

Spectral clustering relies on the affinity matrix, and the Gaussian affinity scale parameter
affects the quality of the clustering results because it conditions the separability between
the clusters in the spectral embedding space and controls the affinity between the data
(Ng et al 2001). Several heuristic approaches were suggested to set this scale parameter.
Brand et al (2003) fixed o as the mean of the distances between each point and its closest
neighbor. Zelnik-Manor et al (2004) adopted a local point of view and defined for each
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point z; a scale parameter o; as the distance between the point z; and its 7" closest
neighbor. While for some applications these estimations might be correct, they might
not always be optimal.

Rather than trying to automatically estimate the best value of o, we propose to
define an appropriate interval which the Gaussian scale parameter ¢ should belong to.
This interval can be used to guide manual parameterization or to set research bounds
of optimization methods. It is generally accepted that o can be interpreted either as
a threshold under which two points are considered similar or as a neighborhood radius
(Von Luxburg 2007). From this geometrical point of view, we estimate the upper and
lower bounds of o as some distances based on the TAC distribution.

We consider a limit case in which either all the points can be considered in the same
cluster or each point in one distinct cluster. In other words, we start by considering an
uniform TAC distribution in which all the TACs have the same neighborhood radius.
By assuming that the p-dimensional data set is isotropic enough, we approximate the
volume occupied by the whole data set S as a p-dimensional box bounded by the largest
distance between all pairs of TAC in S. We then define the reference distance, noted
Binaz, which separates all the TACs with their closest neighbors, as follows:

maxi<;j<n || — ;]|

Biaz = T

ne

(6)

where n and p are respectively the number and the dimension of the TAC.

Equation (6) means that a condition for some clusters to exist is that some TACs
must be at a distance lower than a fraction of B,,,,. Therefore we define B,,,, as an
upper bound of the interval for the scale parameter.

For the non-zero lower bound estimation, we consider the threshold under which
the o parameter does not affect the clustering result. This threshold, noted B,,;,, is the
lowest distance between all pairs of TAC in S, calculated as follows:

Bnin = min |lz; — z]|. (7)

X4L,JxN
By definition, the distance between all pairs of TACs is largest or equal than B,,;, so it
does not condition the separability between the clusters. For values of o smaller than
Bpin (0 < Bpin), the Gaussian affinity matrix can be ill-conditioned and will not permit
the extraction of dominant eigenvectors. The scale parameter o should therefore be

within this interval:
Bmin S g S Bmax- (8)

Note that these B,,;, and B,,,, bounds could be based on a theoretical study which
links the Gaussian affinity and the discretization of the heat kernel. This theoretical
development shows that the Gaussian scale parameter should be within an appropriate

interval in order to preserve the geometrical properties and thus the clustering quality
(Mouysset et al 2012).
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3. Validation

0344
0345

0346 3.1. Data simulation

0347

0348 The proposed clustering algorithm was evaluated using realistic PET images obtained
0849 from GATE Monte Carlo simulations (Jan et al 2004, Jan et al 2011).

0350

0351

0352 3.1.1. TAC model TACs were simulated based on the three compartment model
0358 proposed in (Maroy et al 2008, Kamasak et al 2005). This model assumes homogeneous
0354

0355 vascular fraction in each considered region. The input function, corresponding to the
0356 molar concentration of the tracer in the plasma, is denoted C'p and was given by:

0357

0358 Cp(t) = Oéo((Oqt — Qg — 043)67)\125 + 042€7>\2t + age*ABt). (9)
0359

0360

0361 The kinetics of tissue compartment ¢, denoted C; were computed as :

0362

0363 3

Ci(t) = | Y _[aiwe "] | % Cp(t), (10)
0365 w=1

222? where * denotes the convolution operator. The parameters o, a1, ag, oz, A1, A2, Az, @i
0368 and b, ,, were randomly set using the constraints proposed in Maroy et al (2008).
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Figure 2. (a) Example of simulated time activity curves used for our experiments;

(b) ROIs of the Zubal head phantom used for PET image simulation.

0384
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0388

0389 3.1.2. Image simulation We simulated dynamic PET images of the brain with GATE
222? (Jan et al 2004, Jan et al 2011), using the Zubal head phantom as a voxelized source
0392 (Zubal et al 1994). We simulated dynamic images as acquired using the Philips Gemini
0393 GXL PET scanner, with 20 frames (5 x 30sec followed by 15 x 60sec). Seven regions of

0394

0305 the phantom were considered for image simulations: cerebellum, frontal lobes, occipital,

0396 thalamus, parietal lobes, remaining parts of the head, and air around the head, as
0397 shown in figure 2(b). These regions were the ground truth for assessing the segmentation
0398

0399
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accuracy. Activities in all ROIs were simulated according to (10). Examples of simulated
TACs for each ROI are shown in figure 2(a). List-mode simulations were performed on a
bi i7-980x computer with 12 cores and 48Go RAM. The total number of coincidences for
each time frame varied between 8 and 70 millions. Corrections were applied for random
and scattered coincidences. Reconstruction of the dynamic PET images was performed
with an ANW-OSEM iterative method, using 4 iterations and 16 subsets, into voxels of
2.2mm X 2.2mm X 2.8mm.

3.2. Clustering quality criteria

3.2.1. Quality of clustering We measured the quality of clustering, denoted by @), by
estimating the Dice metric, which was calculated for every ROI as follows (Dice 1945):

QCard(Sres N Struth) (11)
card(Sres) + Card(‘gtruth) ’

where S,.s and Sy, are respectively the set of points of the clustering result and of

Q=

the ground truth.

3.2.2. TAC Error We calculated the root mean square error (Err) between the average
TAC of identified clusters and the corresponding ground truth TACs used for the

simulation : i
1
Err = % Z Z d(ge, x;)? (12)

c=1 z;,€Ce

where C is the set of voxels clustered in class ¢, g. is the ground truth TAC of the
corresponding ROI, and d(g., z;) is the distance between g. and a voxel x; € C,, as
defined in (2).

3.83. Comparison with other segmentation methods

3.3.1. K-means Wong et al (2002) introduced a K-means (KM) clustering method to
classify a number of tissue TACs as a function of their shape and magnitude into a
smaller number of distinct classes that are mutually exclusive. The method is based
on the RMSE defined by equation (12) to minimize the within-cluster sum of squares
distances.

3.3.2.  Hierarchical method We used an agglomerative hierarchical clustering (HC)
consisting in merging clusters iteratively as proposed by Guo et al (2003). The average
linkage cluster method is used with a distance defined by:

||9fz —x; ||
o) =3 3 bl 13
i€C) jeCpm

where C; and C,, are the [ and m!" clusters respectively, and N; and N,, are the
numbers of data points in C; and C,,. To avoid solutions in which a cluster would
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include a single data point, k + 10 clusters were calculated (k being the number of
clusters in the ground truth), and the smallest clusters were merged with the other
clusters so as to maximize the quality of clustering Q).

3.3.3.  Ezpectation-Mazimization Expectation-Maximization (EM) is a model-based
approach in which clusters are represented as a parametric Gaussian distribution. The
method consists in finding the parameters such as the fit between the data and the model
is optimized. We used the maximum log-likelihood model proposed by Ashburner et al
(1996).

3.4. Demonstration of KSC on real dynamic PET images

We performed intrastriatal injections of quinolinic acid to achieve unilateral lesions of
the left striatum of an adult Wistar rat. The injection of such exitotoxins into the
brain causes marked gliosis and severe inflammation around the injection site (Isacson
et al 1987). The rat underwent dymanic microPET acquisitions with [I8F|DPA-714, a
radiotracer of the translocator protein (TSPO) which constitutes a biomarker for brain
neuroinflammation. The dynamic acquisition consisted in a series of 27 frames of the
following durations: 4x10s, 4x20s, 6x60s, 10x80s and 3x600s on a GE Explore Vista
microPET/CT scanner. Images were reconstructed using a FORE+AWOSEM method
(10 iterations, 16 subsets) with a voxel size of 0.39 x 0.39 x 0.78mm?. Images of the
brain were registrated into Paxinos coordinates in which an atlas can be used to indicate
the expected localization of the lesion. The atlas was merged and regularized, and then
used as a mask to consider only the voxels inside the brain. We performed clustering
of these registered dynamic scans into 4 ROIs with all the studied methods, expecting
to find blood, specific uptake and non-specific gray matter and white matter uptakes.
The segmentation results were visually analyzed for consistency as no gold standard was
available.

4. Results

4.1. Clustering of realistic dynamic PET image simulations

Figure 3 displays representative results of the clustering obtained from the simulated
dynamic PET images. In both rows, the first column contains the ground truth regions,
the second column shows a simulated frame, and the last four columns show the results
obtained with the 4 segmentation methods. All methods recovered most of the simulated
regions. However, regions were more precisely delineated when using KSC compared
to KM, HC and EM. In all cases the regions delineated by KSC were close to the
corresponding ground truth, while this was not the case for other methods which yielded
spurious regions. In particular, parietal and occipital regions of the sagittal slice (second
row) were merged in the results obtained with KM and EM, and consequently the
background was split in two regions. In the result obtained with HC the parietal region
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and background are merged, while all regions were correctly identified using KSC. It can
also be noticed in the sagittal view that KSC is less sensitive to the variations in noise
statistics along the axis of the scanner (top and bottom parts of the slice). While all
methods were affected by partial volume effect, KSC was less prone to create spurious

regions in between two actual regions, except for the thalamus in figure 3(1), which is
surrounded by voxels associated to the frontal region.

(k) Q)

Figure 3. Clustering results on axial and sagittal slices from simulated images. First
row : axial slice a) Ground truth b) Sample frame of the simulated image ¢) K-means d)
Hierarchical clustering ) EM clustering f) KSC. Second row : sagittal slice g) Ground
truth h) Sample frame of the simulated image i) K-means j) Hierarchical clustering k)
EM clustering 1) KSC.

Table 1 summarizes the quantitative results averaged over all ROIs and all slices
of the simulated images. For each dynamic simulation, eight slices (four transverse and
four sagittal slices) were individually processed. The quality of clustering measured by
@ score (11) was significantly increased by KSC compared to the other methods, with
global averaged scores of KSC of respectively 80% and 78% in axial and sagittal slices,
with an increase between 6% and 33% compared to the 3 other methods. Such scores
indicate accurate identification of the ROIs as the spatial resolution of the numerical
phantom was intrinsically better than the one in the reconstructed PET images, leading
to an expected loss of details in the reconstructed images. The error on TAC estimation
was lower using KSC compared to KM, HC and EM, with a global reduction factor
comprised between 1.3 and 2.8.
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Table 1. Figures of merit characterizing the segmentation accuracy.

Zubal head

Method Q: axial(%) Err: axial = Q: sagittal(%) Err: sagittal

KM 75 £ 18 021£024 65+20 0.41 £0.34
HC 68 = 16 0.46 £0.34 66 £ 28 0.48 £0.47
EM 68 + 18 0.34£031 52£23 0.80 +£0.73
KSC 80+ 9 0.16£0.20 78+14 0.28 £0.25

4.2. Scaling parameter bounds

To assess the bounds derived for the scale parameter o, we measured two criteria against
the value of o used in KSC for the clustering of the noisy TACs presented in figure 1(a).
The supervised criterion Py is the percentage of mis-clustered TACs. Figure 4(a)
displays P.or for a representative case with k& = 6 clusters, for values of o € [le2..1el1]
on a semilogarithmic scale. The values of the estimated lower bound B, and upper
bound B, are shown using dashed lines. For values of o outside the proposed bounds,
clustering errors occur, which was consistent with the theoretical bound estimates.

100

80r

60 -

Perror

40+

20r

Condition number of W

T T T
5 10

Figure 4. Affinity parameter bounds. (a) Percentage of clustering error against o
(semi-log scale); (b) Condition number of W against o (log-log scale).

The second criterion is unsupervised, it is defined as the condition number of the
affinity matrix W displayed in figure 4(b). The values of the estimated lower bound
Bnin and upper bound By, are shown in dashed lines. It can be observed that for
values smaller than B,,;,, the normalized affinity matrix is ill-conditioned. With such
high condition number, classical algorithms for estimating dominant eigenvectors of the
affinity matrix cannot converge. These results explain the Py, of 100% found for low
values of o in figure 4(a).
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4.3. Real dynamic PET data

Figure 5 displays representative results obtained with the 4 segmentation approaches.
Figures ba and 5b respectively present the Schiffer atlas (Schiffer et al 2006) illustrating
the expected location of the lesion and a representative frame (late frame with the
highest SNR among the frames). Figures 5c-f display the results obtained with KM, HC,
EM and KSC approaches. All methods except HC produced relatively large ROIs with
one that could correspond to the region with specific uptake. The corresponding TACs

of the four ROIs obtained with each method are presented in figures 5g-j. In the case of
KSC, and to a lesser degree EM and KM, the 4 TACs could possibly correspond to an
input function (ROI 2), brain with non-specific uptake merging white and grey matter
(ROI 1), specific uptake (ROT 3) and a delayed input function (ROI 4). Identification
of the corresponding physiological behaviors was more difficult for the TACs obtained
with the HC method.

Figure 5. Clustering results on a real dynamic PET scan of a rat brain. First row :
representative registered transverse slice a) Schiffer atlas b) Sample frame of the real
image series ¢) K-means d) Hierarchical clustering e) EM clustering f) KSC. Second
and third rows : average TACs of the clustered ROIs g) K-means h) Hierarchical
clustering i) EM clustering j) KSC.
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5. Discussion

We have described a new dynamic segmentation method, called Kinetic Spectral
Clustering, to identify functional regions with similar TACs. The proposed method
aims at overcoming some inherent limitations of conventional dynamic PET clustering.
It is able to nonlinearly separate physiologically meaningful clusters in the time domain
by mapping the data into a high dimensional space and then identifying the clusters
in a low dimensional space. KSC was compared to three other methods and presented
improved segmentation performances. The method was shown to detect different kinetic
behaviors and their associated ROIs. In the simulated brain data, no assumption was
made on the anatomical structures nor on the pharmacokinetics of the tracer. No
statistical model was needed as in the case of probabilistic methods like EM. The only
pre-processing step consisted in simple thresholding to exclude voxels outside the head
using the summed image over the entire acquisition.

In the experiments, the methods were applied on 2D-+t slices because of the
computational complexity of the matrix calculation involved in KSC. The computational
cost of KSC is higher than other methods such as K-means, as eigenvalues and
eigenvectors of large matrix (size> 20k x 20k) have to be calculated. In this paper, all
methods were implemented in MATLAB on a 4 cores, 12 Go RAM computer. Clustering
of the entire volume was not possible with such implementation as it would require the
storage and eigendecomposition of matrices of size larger than 5M x 5M. The specific
mathematical approaches needed for such decompositions were not investigated in this
work. For such 3D+t clustering, specific methods like Lanczos or Arnoldi algorithms can
be implemented to handle the very large matrix computations. A fully 3D processing is
expected to increase the robustness and facilitate the interpretation of the segmentation
results. Alternative approaches include slice-by-slice clustering followed by cluster
merging, or preclustering the data with fast linear methods (e.g. Kmeans) to reduce the
size of the data, followed by KSC segmentation. This was however not in the scope of
the proposed paper.

The results presented in real microPET dynamic PET images are only qualitative as
no ground truth was available. Future experimentations with arterial blood sampling are
required to objectively assess the quality of real dynamic image clustering with KSC.
The images were registered into Paxinos coordinates before the segmentation, which
introduced an implicit regularization of the data that reduced the influence of noise in
all methods. Three of the four methods produced an ROI that could correspond to the
lesioned area. However, the lesion ROI obtained using KSC yielded a TAC that was
more consistent with the expected kinetic in the lesion than the corresponding lesion
TACs obtained using the EM or K-means segmentation.

In this study, a weighting scheme proposed by Cheng-Liao and Qi (2010) was used
to favor the influence of frames with reduced noise and better SNR. While it provided
promising results, alternative weights can also be considered. Depending on the studied
application and on the a priori knowledge available, it could improve the performance of
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KSC. For instance in some applications where a contrast between grey and white matter
is normally expected (e.g. beta amyloid plaques in Alzheimer disease) it could be worth
favoring the earliest and latest frames to benefit both from the difference between gray
matter and white matter perfusion and from the specific uptake information, reducing
the influence of middle frames where the TACs of grey and white matter cross.

The final step of the spectral clustering process involves a K-means algorithm to
cluster the data, but there is nothing principled about using the K-means algorithm
in this step (Luxburg 2007). While initialization should be considered cautiously when
K-means is used directly on the data in their original R? space, the data resulting from
the spectral clustering process should contain well-distinct clusters. We project the data
on the unity sphere on which the K-means is initialized using the most distant centroids.

The number of clusters is generally unknown and is currently an input parameter
of KSC. In this study, the correct number of clusters was systematically used, for the
K-means, EM and KSC methods. A higher number of clusters (k+10) was used for
the hierarchical method as it tends to produce classes consisting of isolated points, and
the classes were manually merged into the correct number of classes so as to maximize
the quality of clustering. The estimation of the number of clusters is a general problem
for all clustering algorithms and some methods have been designed that can be used
with spectral clustering (Fraley and Raftery 2002, Still and Bialek 2004, Luxburg 2007).
While this problem was not considered in this work, we are currently exploring the use of
a specific matrix norm as an ad-hoc indicator of both within cluster and between-cluster
similarities to automatically estimate the number of classes.

In dynamic PET images, the TACs of voxels within a functional ROT are not exactly
behaving the same and a variety of TACs can be observed within a functional ROI. These
differences in TAC come from several factors among which the local variations in the
radiotracer target density, the partial volume effect (PVE) that produces a mixture
of kinetics on the borders of adjacent ROIs, and the level of noise. In the R? space of
TACs, such factors spread the clusters away from their centroids. In KSC, as in the other
three segmentation methods, there is no implicit assumption regarding the presence or
absence of such spreading. These methods aim at generating the clusters that are
as much different to each other as possible, and as homogeneous as possible within a
cluster, implicitly allowing for some spreading. However, the TAC behavior affects the
quality of clustering when kinetic profiles overlap too much between functional ROIs.
The reconstruction parameters that have an influence on this spreading (number of
iterations, corrections, voxel size, frame durations, regularization to cite a few) should be
optimized if KSC is used in clinical applications. While the PVE issue could be reduced
by PVE correction methods, we did not use any in this study. The relatively good
behavior of KSC can be explained by the fact that it makes no assumption regarding
the shape of the clusters in the projection space. Among other undesirable artefacts
that can alter the segmentation process, physiological motions can severely impact the
kinetics measured in each voxel. In this study we focused on brain imaging for which
motion artefacts are less frequent, but when applicable, movement correction methods
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should be used.

The proposed algorithm does not account for the spatial coordinates of the voxels,
as none of the three compared methods. The comparative evaluation of the methods
therefore tested their effectiveness in the feature selection process. Incorporating spatial
information would likely reduce the sensitivity of the method to noise and increase its
robustness (Chen et al 2001). In KSC, it can be performed by adding a spatial distance
term within the Gaussian kernel (Shi and Malik 2000), or by including the coordinate
information as part of the features. However, in both cases it would introduce an
additional parameter (or equivalently a choice in the coordinate system) to control
the tradeoff between the terms related to the distance between kinetics and the term
describing the spatial distance between voxels. In brain imaging, some disconnected
regions can have the same kinetics hence spatial constraints might be difficult to
optimize. Further developments are required to include a spatial term in KSC.

KSC can be used as a pre-processing step before kinetic analysis to increase the
signal-to-noise ratio. It is based on the differences in the voxel kinetics, which is the
same type of information used to calculate parameters of compartimental models. These
models produce parametric images, like binding potential maps. KSC could increase the
robustness of quantification by providing a reliable segmentation yielding ROIs with
similar TACs that can then be averaged or further manipulated. Supervised approaches
have been proposed and successfully applied to the study of neuroinflammation where no
reference region is devoid of the translocator protein, using [11C|PK1195 (Turkheimer
et al 2007, Yaqub et al 2012). They consist in predetermining kinetic classes that
correspond to the expected TACs behavior and to estimate in each voxel the contribution
of each of these classes. The definition of the kinetic classes currently relies on MRI
segmentation and could benefit from KSC to define ROIs with distinct kinetic profiles
without anatomical priors.

6. Conclusion

We have proposed an approach based on spectral clustering for the segmentation of
dynamic PET images. In KSC, the kinetic data is mapped into a high dimensional
space and then embedded into a low dimensional space which increases the separability
of the clusters and makes KSC able to handle clusters that have arbitrary shapes in
the feature space. We proposed an estimation of the bounds of the scale parameter
involved in the clustering process. We showed experimental results on GATE Monte
Carlo simulations and real dynamic PET images which confirmed the improvement
obtained in ROI delineation compared to three other segmentation methods. As a result,
KSC appears as a promising pre-processing tool before parametric map calculation or
ROI-based quantification tasks.
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