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Abstract: The motion equations of matter in the gravitational field, acceleration field, 

pressure field and other fields are considered based on the field theory. This enables us to 

derive simple formulas in the framework of the gravitational equilibrium model, which allow 

us to estimate the physical parameters of cosmic bodies. The acceleration field coefficient   

and the pressure field coefficient   are a function of the state of matter, and their sum is 

close in magnitude to the gravitational constant G . In the presented model the dependence is 

found of the internal temperature and pressure on the current radius. The central temperatures 

and pressures are calculated for the Earth and the Sun, for a typical neutron star and a white 

dwarf. The heat flux and the thermal conductivity coefficient of the matter of these objects are 

found, and the formula for estimating the entropy is provided. All the quantities are compared 

with the calculation results in different models of cosmic bodies. The discovered good 

agreement with these data proves the effectiveness and universality of the proposed model for 

estimating the parameters of planets and stars and for more precise calculation of physical 

quantities. 
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Résumé: Sur la base de la théorie des champs les équations du mouvement de la matière dans 

le champ gravitationnel, le champ de l'accélération, le champ de pression et dans autres 

champs sont considérées. Cela permet de dériver dans le domaine du modèle d'équilibre 

gravitationnel des formules simples qui permettent de faire des estimations des paramètres 

physiques des corps spatiaux. Le coefficient du champ de l'accélération   et le coefficient du 

champ de pression   sont une fonction de l'état de la matière, et leur somme est proche en 

amplitude à la constante gravitationnelle G . Dans le présent modèle, les dépendances de 

temperature et pression intérieures du rayon actuel sont trouvées. Les températures centrales 

et les pressions sont calculées pour la Terre et le Soleil, pour une étoile à neutrons typique et 

une naine blanche. Le flux thermique et le coefficient de conductivité thermique de la matière 

de ces objets sont trouvés et une formule d'estimation de l'entropie est présentée. Toutes les 

quantités sont comparées avec les résultats des calculs en les différents modèles de corps 

spatiaux. Une bonne conformité trouvée avec les données confirme l'efficacité et l'universalité 

du modèle proposé pour estimer les paramètres des planètes et des étoiles, et pour les calculs 

plus précis de quantités physiques. 

Les mots-clés: la théorie du champ, le champ d’accélération, le champ de pression, le champ 

gravitationnel, modèle d’équilibre gravitationnel. 

 

1. Introduction 

The most accurate models of cosmic objects include detailed numerical calculations of 

certain internal structures (the solid or liquid core, shell, convective zone) with the use of 

equations of the state of different phases of matter and acting fields. For compact objects it is 

necessary to take into account the quantum and relativistic effects. 
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However, physics has in store the models that allow us to quickly estimate the 

characteristic parameters of planets and stars based only on the observable data, such as 

radius, luminosity, spectrum, surface temperature, gravitational redshift, asteroseismology 

data, etc. A well-known example is a polytropic model, in which the gas pressure is related to 

the mass density by a polytrope at the constant thermal capacity of the matter [1-3]. With 

polytropic index 3n   and 3/ 2n   the model gives the correct order of such quantities as the 

central density, temperature, pressure, potential gravitational energy and a number of other 

quantities. 

White dwarfs are objects, in which the electron gas degenerates and makes the major 

contribution to the pressure in the matter. For neutron stars, the same is true for the neutron 

gas. There is a well-known simple calculation of the state of matter in white dwarfs and 

neutron stars, based on the equality of the gravitational energy and quantum mechanical 

energy and providing the typical values of the masses and radii of these objects. A more 

detailed analysis leads to the Chandrasekhar limit [4-5] as the greatest mass of a white dwarf, 

beyond which it becomes a neutron star. 

In [6] the structure of compact stars is modeled by solving the equation of hydrostatic 

equilibrium by parameterization of the mass density dependence on the radius. This leads to 

the dependence of the masses and radii of the objects on the central density and the 

dependence of the pressure on the radius, expressed in terms of the gamma-function and the 

hypergeometric function. 

The natural drawbacks of the above-mentioned approaches are the limited range of 

application or the low accuracy of predictions of physical quantities and the internal structure 

of objects. 

Next, we will present the model of gravitational equilibrium, which is based on the field 

theory. In order to illustrate the possibilities of this model, we will calculate some physical 

parameters of a number of objects and will compare them with the results of calculations 
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made by other authors. The positive aspect of the proposed approach is its universality, which 

allows applying it to any cosmic objects. In addition, this model provides very simple 

formulas to estimate the parameters of planets and stars at minimum of necessary 

assumptions. 

 

2. The model description 

In the model of gravitational equilibrium it is assumed that the corresponding object 

(planet, star) is in a state when the processes of energy exchange between the gravitational 

field and other fields have finished in it. From a theoretical point of view, all the fields acting 

in cosmic objects can be viewed as the components of a single general field [7]. In addition to 

the gravitational field, which is the main component, contribution to the general field can also 

be made by the electromagnetic field, pressure field, acceleration field, dissipation field, 

strong interaction field, weak interaction field, as well as other fields in the matter of the 

objects under consideration. At equilibrium, all the fields are relatively independent, because 

the energy fluxes between the fields and the matter on the average tend to zero. The 

expression for the general field equations follows from the principle of least action: 

 

2

4
s J

c

  




   ,                        0s  

     ,                                 (1) 

 

where s   is the general field tensor, 

  is the general field coefficient, 

     is the Levi-Civita symbol or completely antisymmetric unit tensor, 

0J u   is the mass four-current, 

0  is the mass density in the reference frame associated with the particle, 
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cdx
u

ds


   is the four-velocity of a point particle, c  is the speed of light. 

 

Since the general field tensor is the sum of tensors of particular fields, then the equations 

of any field can be represented in the form of (1) after the respective substitution of the field 

tensor, the constant of this field and the four-current. A characteristic feature of (1) is the fact 

that the equations of the general field and of each particular field have the form of Maxwell 

equations for the electromagnetic field, written in a covariant form in the curved space for 

non-inertial reference frames. 

 

3. The acceleration field and the temperature 

The equations of the acceleration field according to (1) have the following form [8]: 

 

2

4
u J

c

  




   ,                        0u   

     ,                                 (2) 

 

where u   is the acceleration field tensor,   is the acceleration field coefficient. 

 

The tensor u   includes the vector components S  and N , which can be found by the rule: 

 

0 0 0

1
i i i iu u u S

c
    ,                 i j i j j i ku u u N     ,                     (3) 

 

where the indices , ,i j k  form a triples of non-recurring numbers of the form 1,2,3 or 3,1,2 

or 2,3,1; the three-vectors S  and N  can be expanded into the components: 

1 2 3( , , ) ( , , )i x y zS S S S S S S  S ;   1 2 3( , , ) ( , , )i x y zN N N N N N N  N  . 
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For simplicity, we will consider equations (2) in the flat Minkowski space, that is, within 

the framework of the special theory of relativity. In this case, equations (2) are written as the 

equations for strength S  and for the solenoidal vector N  of the acceleration field: 

 

04  S ,      0

2 2

41

c t c

 
  



vS
N ,      0 N ,      

t


  



N
S .         (4) 

 

With the help of the vectors S  and N  we can form an acceleration four-vector, 

characteristic of the body particles moving at the velocity v  and having the Lorentz factor  : 

 

0 0
0 0 0 0

du
a u J

d c





 
 


     S v , 

 0 0 0 [ ]
i

i i

du
a u J

d



   

     S v N .                                 (5) 

 

A gravitationally bound body usually has a spherical shape, so that the four-acceleration 

a  with a covariant index will be a certain coordinate function. The vectors S  and N  also 

allow us to calculate the stress-energy tensor of the acceleration field B   and the vector 

2
0 [ ]

4

i c
cB


  K S N , which is the vector of the energy-momentum flux density of the 

acceleration field. 

The main reason that the acceleration field of the matter particles has its own energy 

density, energy flux density and field strength is the gravitation force. Under the action of this 

force the gradients of pressure, temperature, mass density and other quantities are formed in 

cosmic bodies. The closer to the center of the body we approach, the higher the temperature 
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and, consequently, the average velocity of the particles and the value of the four-velocity 

become. For a single particle, the four-potential of the acceleration field is the covariant four-

velocity 
cdx dx

u cg
ds ds




    of this particle. However, in case of a set of closely 

interacting particles it is not so – in the total four-potential of the system’s acceleration field 

,u
c



 
  
 

U  the scalar potential   and the vector potential U  of the acceleration field 

become independent quantities as a consequence of different rules of summation of 

contributions from the scalar and vector quantities of different particles. 

In [9], we calculated the energy and the vector of the energy-momentum flux density K  of 

the acceleration field for a set of similarly charged particles that form a gravitationally bound 

system in the form of some liquid and filling a spherical volume. The same was done for other 

fields, including the gravitational and electromagnetic fields, as well as the pressure field. It 

allowed estimating the acceleration field coefficient in a first approximation with the help of 

the gravitational constant G , the vacuum permittivity 0  and the relation /q m  for the 

particles in question: 

2

2

0

3
3

4

q
G

m



  .                                                      (6) 

 

In article [10], the concept of acceleration field allowed us to calculate the relativistic 

energy of the system of particles and the gravitational mass of the system; and in [11] it 

allowed us to derive the relativistic Navier-Stokes equations for viscous charged matter, 

taking into account the pressure field and dissipation field. 

Since in the definition u u u u u              the acceleration tensor is 

expressed in terms of the four-potential of the acceleration field, in equations (2) we can pass 
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on from the acceleration tensor to the four-potential u  . This leads to the wave equations for 

the potentials   and U  of the acceleration field [12]: 

 

2

4
( )s s s s

s s s sg u g u u u u J
c

       

        


             .            (7) 

 

In (7) u g u 

  is the four-potential of the acceleration field, expressed with a 

contravariant index using the metric tensor g 
, and 

   are the Christoffel symbols, which 

are the function of g 
. We solved equation (7) in [9] for the case of a set of randomly 

moving particles without general rotation, which are connected with each other by means of 

gravitation and the electromagnetic field including the pressure field. In Minkowski space the 

scalar component (7) is reduced to the equation for the Lorentz factor, thus we obtain the 

following: 

 

2

0 0cg u cu c

     ,           
0

0u u c   ,         0

2

4

c

  



   ,                     (8) 

 

where the Lorentz factor 
2 2

1

1 v c
  


 is the function of the current radius r  inside the 

sphere and the average value for the set of particles, v  is the average velocity of the particles 

in the reference frame K  , which is associated with the center of inertia of the system. 

 

The solution of (8) in case of uniform density is the following expression: 

 

2

0
0 2

0

2
4

34

c c
c

c rr

c cr

   
   

 

 
    

 
sin ,                            (9)   
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where 
2 2

1

1
c

cv c
 


 is the Lorentz factor for the velocities cv  of the particle in the 

center of the sphere. 

 

From (9) by raising to the square we obtain approximately the following: 

 

2
2 2 04

3
c

r
v v


   ,                                                    (10) 

 

so that as the current radius r  inside the sphere increases while moving from the center to 

the periphery of the sphere, the velocity v  of the particles decreases. 

 

Assuming that the velocity v  is the root mean square velocity of the particles, and taking 

into account its relation to the kinetic temperature in the form of 
21 3

2 2
um v kT  , where k  is 

the Boltzmann constant, expression (10) is transformed into the temperature-radius 

dependence: 

 

2

04 ( )

9 3

u u
c c

m r m M r
T T T

k kr

  
    .                                    (11) 

 

where cT  is the temperature at the center of the sphere, um  is the mass of one gas particle, 

( )M r  is the mass within the current radius r . 

 

From (11) it follows that the temperature inside the cosmic bodies in the first 

approximation decreases parabolically, depending on the square of the radius of the 



10 

 

observation point. Assuming in (11) that at the body radius r R  the body mass is equal to 

( )M R M , and neglecting the surface temperature ( )T R , we find the formula for the 

temperature in the center of the body: 

 

3

u
c

m M
T

k R


 .                                                           (12) 

 

4. The pressure field 

The four-potential of the pressure field for one particle is found by multiplying the 

function depending on the pressure and density by the covariant four-velocity [8-9], [12]: 

 

0

2

0

,
p

u
c c

 


 
   

 
Π ,                                              (13) 

 

where 0p  and 0  denote the pressure and density in the reference frame pK  of the 

particle, the dimensionless ratio 0

2

0

p

c
 is proportional to the pressure energy of the particle 

per unit mass of the particle,  and Π  are the scalar and vector potentials of the pressure 

field. 

 

For a system of particles, (13) can also be considered valid, but u  should be considered 

not as the four-velocity of an individual particle, but as the four-velocity averaged with 

respect to some ensemble of particles near the observation point. 

The equations of the pressure field according to (1) are as follows: 
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2

4
f J

c

 



 
   ,                      0f   

     ,                            (14) 

 

where f   is the pressure field tensor,   is the pressure field coefficient. 

 

The tensor f   is the result of applying the four-curl to the four-potential  : 

 

f                ,                                        (15) 

 

0

0

0

0

yx z

x
z y

y

z x

z
y x

CC C

c c c

C
I I

c
f

C
I I

c

C
I I

c



 
 
 
 
  

  
 
 
 
 
   
 

.                                           (16) 

 

here the tensor components are the components of the strength vector C  and the 

solenoidal vector I  of the pressure field. 

 

In Minkowski space, equations of the pressure field (14) are considerably simplified: 

 

04  C ,      0

2 2

41

c t c

  
  



vC
I ,      0 I ,      

t


  



I
C .         (17) 

 

It is sufficient to know the vectors C  and I  in order to determine the stress-energy tensor 

P  , the vector of the energy flux density F  of the pressure field and the pressure force 

density in the matter. 
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Substituting (15) into (14) gives the wave equation for the four-potential of the pressure 

field: 

 

2

4
( )s s s s

s s s sg g J
c

       

        

 
                 .          (18) 

 

In case of a self-gravitating system of particles without rotation, which occupies a 

spherical volume, equation (18) and its solution for the scalar potential in view of (9) is 

reduced to the following: 

 

04   .                                                     (19) 

 

2 3 2

0
0

0

2
sin 4 .

34

c c c
c c

c c rr

cr

       
 

   

 
     

 
 

 

Since there is a relation 
0

p


 , at a constant density the solution of (19) is transformed 

into the dependence of the pressure inside the system: 

 

2 2 2

0

4

2 3 ( )

3 8

c c
c c

r M r
p p p

r

     


    .                                   (20) 

 

In large cosmic bodies the pressure on the surface at r R  is rather low and we can 

neglect it in (20). Then, to estimate the pressure in the center of the body we obtain a simple 

formula: 
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2

4

3

8

c
c

M
p

R

 


 .                                                        (21) 

 

5. The gravitational field and the equation of motion of matter 

The equations of the gravitational field in the covariant theory of gravitation [13-16] 

correspond in their form to (1): 

 

 
2

4 G
Φ J

c

 




  ,                          0Φ   

     ,                                   (22) 

 

where Φ   is the gravitational field tensor, which includes the components of the 

gravitational strength vector Γ  and the solenoidal vector Ω  of the torsion field: 

 

0

0

0

0

yx z

x
z y

y

z x

z
y x

c c c

c
Φ

c

c



 


 


 


 

 
 
 
 
  

  
 
 
 
 
   
 

. 

 

The starting point of the covariant theory of gravitation is the four-potential of the 

gravitational field ,D
c



 
  
 

D , which is described by the field’s scalar potential   and 

vector potential D . The four-potential is part of the Lagrangian and it allows us to derive the 

equations of the gravitational field from the principle of least action, while the field tensor is 

associated with the four-potential: Φ D D D D             . This equality can be 

written in vector notation as follows: 
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t



  



D
Γ ,                    Ω D .                                           (23) 

 

In Minkowski space, the mass density 0   , the mass current density 0 J v , the 

mass four-current 0( , ) ( , )J c c     v J , and equations (22) have the following form: 

 

4 G   Γ ,      
2 2

1 4 G

c t c


  



Γ J
Ω ,      0 Ω ,      

t


  



Ω
Γ . 

 

If in (22) we turn from the tensor Φ   to the four-potential D , we will obtain the wave 

equation: 

 

2

4
( )s s s s

s s s s

G
g D g D D D D J

c

       

        


              . 

 

In Minkowski space, this equation falls into two equations for the potentials of the 

gravitational field: 

 

2

02 2

1
4 G

c t


   


  


,                   

2

2 2 2

1 4 G

c t c


  



D J
D .                    (24) 

 

If the system of particles does not move in space as a whole and has no general rotation, 

then it has the vector potential 0D  and the torsion field 0Ω . And if the potential   does 

not depend on time, then the gravitational field becomes static. In this case, according to [9], 
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the scalar potential inside the body at a constant mass density in view of (9) is defined by the 

formula: 

 

2 3 2 2

0
0 0

0

2 ( 3 )
cos 4 sin 4 .

34

c c c
i

G c G c G r aa r

c cr

    
    

   

   
     

   
   (25) 

 

In the concept of the general field [7] the equation of motion of matter is as follows: 

 

0 0 0

d u
u J a u u Φ J F j f J h J J w J

d

        

             


           . 

(26) 

 

where a  is the four-acceleration in the curved space, F  is the electromagnetic tensor, 

j  is the electromagnetic four-current, h  is the dissipation field tensor,   is the strong 

interaction field tensor , w    is the weak interaction field tensor. 

 

The tensors   and w   are important in the cases, when the equilibrium inside cosmic 

bodies is supported by the additional pressure from thermonuclear reactions or radioactive 

decay. The vector component (26) in view of (5) is reduced to the following: 

 

0 0

0 0

[ ]

[ ] [ ] [ ] [ ] [ ] [ ],

i

q q

du

d 

 

 

   

                  

S v N

Γ v Ω E v B C v I X v Y L v μ Q v π

    (27) 
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where the vectors X , L  and Q  denote the strengths of the dissipation field, strong 

interaction field and weak interaction field, respectively, and the vectors Y , μ  and π  are the 

solenoidal vectors of these fields. 

 

If we consider the equation of motion in Minkowski space and take into account only the 

gravitation, the acceleration field and the pressure field, then in the static case we can assume 

0N , 0Ω , and 0I . In view of (23) and (25) we have the following: 

 

0

3

4 ( )

3

c c
i

G G M r

r

   
     

r
Γ r .                                   (28) 

 

The pressure field strength is given by the formula: 
t


 



Π
C , and if the vector 

potential is 0Π , then using (19) we find the following: 

 

0

3

4 ( )

3

c c M r

r

     
  

r
C r .                                      (29) 

 

According to (3) and the definition of the acceleration field four-potential in the form of 

,u
c



 
  
 

U , the acceleration field strength equals: 
t




  


U
S . For a non-rotating 

body both the vector potential U  and the solenoidal vector N U  are equal to zero. In 

this case, using (8-9) inside the body we find the following: 

 

2 0

3

4 ( )

3

c c M r
c

r

  
        

r
S r .                               (30) 
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Substituting Γ , C  and S  in (27) in the absence of other fields, we obtain the equality for 

the field strengths and the relation for the field coefficients: 

 

( )d

dt


    

v
S Γ C ,                               G   .                                  (31) 

 

Outside the system, near its border, we can assume that ( )M r M , r R , and there is a 

gravitational force acting on a certain test particle, but the pressure tends to zero due to the 

low mass density. Then in (31) we should assume 0C , and the gravitational field strength 

Γ  will determine the centripetal acceleration of individual particles, rotating around the 

system. In the non-relativistic case, this can be written as: 
2

2

v GM

R R
 . In view of the equality 

21 3

2 2
um v kT  for the kinetic temperature of the particles near the surface of the system we 

must obtain: 

 

3

u
s

Gm M
T

k R
 .                                                          (32) 

 

The kinetic temperature sT  refers to the kinetic energy of the particles during their rotation 

around the system and it should exceed the average temperature T  of the gas of these 

particles, which is the measure of the gas thermal energy near the system. 

The best conditions for (32) to hold must be in gas clouds, for example, in Bok globules, 

small dark cosmic clouds of gas and dust. In [17] it was found that the radius of a typical 

globule is 0.35 parsecs, the mass is 11 Solar masses, and the recorded temperature of dust in 

some globules can reach 26 K. 
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Assuming in (32) that um  is equal to an atomic mass unit, we find the temperature of 

particles on the surface for a typical globule: 5,5sT   K. If in (11) we assume ( )M r M , 

r R , ( ) sT R T , and taking into account equation (6) for  , the temperature in the center of 

the globule is of the order of 22 K, which is close enough to the observations. 

Using (32) for the Earth gives the kinetic temperature sT  of about 2500 K, and for the Sun 

– about 7.7 million degrees. Such temperatures are actually observed – at the Earth's 

ionosphere the thermal temperature T  is over 2000 K, and at the Solar corona the average 

temperature is about 5 million degrees. Due to the action of the Sun’s gravitation the particles 

are orbiting around the star for a long time, almost without losing their energy. This solves the 

well-known coronal heating problem, according to which a fast-moving heated gas should 

evaporate quickly and the corona should rapidly cool down due the insufficient rate of its 

heating from the photosphere. It is obvious that in this analysis of the problem it is not taken 

into account that the particles can be fully retained by the gravitational field of the Sun and 

rotate around it. In addition, if the particles are always close to the Sun, they can be heated for 

a long time due to solar flares and similar phenomena, finally reaching the observed 

temperature of millions of degrees. 

However, we must limit the use of formulas (31) and (32) due to their incompleteness, 

because along with the motion of particles in solid bodies and stellar plasma, the main 

contribution into the pressure is made by the interatomic forces, including the electromagnetic 

forces of electric charges and the strong gravitation as the component of strong interaction (in 

the gravitational model of strong interaction [14]). These forces can significantly change the 

particle acceleration in the equation of motion (27). 

For an ideal solid body there is no motion of particles inside the body, 0S , and from 

(31), in view of (28), and from the relation 
0

p


  it follows: 
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3

0

( )c
i

G M rp

r






 
        

 
C Γ r .                              (33) 

 

Meanwhile, modelling of the cosmic objects is usually based on the so-called hydrostatic 

equilibrium equation, which has the following form without corrections of the general theory 

of relativity: 

 

0

3

( )GM r
p

r


   r .                                                    (34) 

 

We see that (34) corresponds to (33) with the difference that in (33) the mass density 0  is 

under the gradient sign together with the pressure. At constant density both expressions are 

equivalent, but since the density is usually a function of the radius, expressions (33) and (34) 

do not fully coincide. In the event of noticeable rotation of the object, in (27) we should take 

into account the non-zero torsion field vector Ω  and the solenoidal vector I  of the pressure 

field, then hydrostatic equation (34) becomes even more inaccurate. 

 

6. The case of non-uniform density 

In [7] and [9], we made estimates of the temperature and pressure in the center of various 

cosmic objects by formulas (12) and (21), and we obtained quite a good agreement with the 

models of stars, planets and gas clouds. In this section, we plan to increase the accuracy of our 

calculations. 

In (11) and (20) the density was assumed to be a constant, although the temperature and 

pressure vary within wide ranges approximately quadratically. In general, when solving the 
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wave equations (8) and (19) we should take into account that the density is also a certain 

function of the radius. We will continue to use the following approximation: 

 

2

0 0c Ar Br    .                                                    (35) 

 

Substituting (35) in (8), where we introduce an auxiliary function ( )Z Z r  in the form of 

Z r   , we express the Laplacian as the function of the current radius: 

 

 
2

2 2

02 2 2

1 1 4
c

d d d Z Z
r Ar Br

r dr dr r dr rc

 
 

 
       

 
.                      (36) 

 

It is convenient to seek the solution of this differential equation in the form of a series with 

constant coefficients: 

 

2 3

1 2 3 ... n

nZ k r k r k r k r     . 

 

Limiting the series by the value 5n  , after substituting Z  in (36) and cancelling the 

similar terms we can calculate the coefficients nk . All of these coefficients appear 

proportional to the coefficient 1k , and 2 0k  . Specifying 1 ck  , taking into account the 

relation Z r   , we find the approximate dependence of the Lorentz factor on the current 

radius: 

 

2 3 4 2

0 0

2 2 2 2

2 2

3 3 5 3

c c c c c
c

r A r r
B

c c c c

     
 

 
      

 
.                     (37) 
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In (37) we can neglect the term 
2

0

2

2

3

c

c


 in the brackets, which is small even for neutron 

stars. In the first approximation, we have: 

 

2

22 2

1
1

21

v

cv c



   


,           

2

22 2

1
1

21

c
c

c

v

cv c
   


. 

 

Taking into account the relationship between the particle velocity v  and the temperature 

21 3

2 2
um v kT  , and passing on in (37) from the Lorentz factor to the velocities and then to 

the temperature, we can now specify (11) for the temperature dependence: 

 

2 3 4

04 2 2

9 9 15

u c c u c u c
c

m r Am r Bm r
T T

k k k

      
    .                     (38) 

 

In order to specify the pressure dependence, in (19) we will replace Y r  and will 

substitute (35) and (37) into it: 

 

 

2
2

2 2

2 3 4
2 0

0 2 2 2

1 1

2
4 .

3 3 5

c c c c
c c

d d d Y
r

r dr dr r dr

r A r B r
Ar Br

c c c

     
   

 
   

 

 
       

 

             (39) 

 

We will seek the solution of equation (39) in the form of a quintic polynomial with 

constant coefficients: 

 

2 3 4 5

1 2 3 4 5Y c r c r c r c r c r     . 
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After substituting Y  in (39) and cancelling the similar terms, we see that 2 0c  , 1 cc  . 

Determining other coefficients, we find the function Y , and then the scalar potential  of the 

pressure field: 

 

2 3 4 2

0 0

2

2 2

3 3 5 3

c c c c c
c

r A r r
B

c

         
     

 
.                   (40) 

 

The term 
2

0

2

2

3

c

c


 in comparison with B  in (40) can be neglected. 

As we can see, the coefficients A  and B  in the density-radius dependence (35) make 

additional contribution into the dependences of the temperature (38) and the pressure field 

potential (40) on the current radius. 

 

7. The temperature and pressure estimates 

We will calculate the volume-averaged mass density by integrating (35) with respect to 

the radius from zero to the body’s radius R : 

 

2
2 2 2

0 0 0 03 3 3

0 0

3 3 3 3 3
( ) ( ) .

4 4 4 5

R R

c c c

M AR BR
Ar Br dV Ar Br r dr

R R R
   

 
            

(41) 

 

In (38) and (40) we will assume r R  and substitute there 0c , expressed from (41) in 

terms of the average density 0 . We will also use the expression for the body mass 
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3

04

3

R
M

 
 . This allows us to estimate the surface temperature ( )sT T R  and the pressure 

field potential at the surface ( )s R  : 

 

3 42

3 9 15

u c u c u c
s c

m M Am R Bm R
T T

kR k k

     
    .                           (42) 

 

3 4

2 6 5

c c c
s c

M A R B R

R

       
     .                                  (43) 

 

In (43) we can assume that the scalar potential s  of the pressure field on the surface of 

cosmic bodies is close to zero as compared to the potential c  at the center. This allows us to 

calculate c , as well as the pressure at the center: 

 

3 4

0 0 0
0

2 6 5

c c c c c c
c c c

M A R B R
p

R

        
    . 

 

In this relation, the density at the center 0c  can be expressed using (41) in terms of the 

average density and we can use the equation 
3

04

3

R
M

 
 : 

 

2 2 4 5 2 6

4

3 9 3
.

8 2 20 8 4 25

c c c c c c
c

M M A M BR A R ABR B R
p

R

        


       

(44) 

 

The number of terms in (44) is greater than in (21), which increases the accuracy of 

calculations. Let us now consider the possible values of coefficients of the pressure field and 
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acceleration field. Based on the equation of motion, in (31) we found the equality G   . 

If we compare the pressure at the center (21) and the temperature at the center (12) at constant 

density 0 0c  , we obtain: 

 

03

2

c c c
c

u

kT
p

m

  


 .                                                      (45) 

 

On the other hand, the standard expression for the pressure in view of the radiation 

pressure has the following form: 

 

40 1

3u

kT
p aT

m




  ,                                                     (46) 

 

where 
2 4

3 315

k
a

c


  is the radiation density constant,   is the number of nucleons per 

ionized gas particle, so that the gas particle can be an atom, ion, electron or a single nucleon, 

depending on its state. 

By definition: 

1

0

(1 )
i

u
i i j

i ji

m
x j y

m






 
  
 
  , where ix  is the mass fraction of the element 

with atomic number i , i i um A m  is the nuclear mass of the atom with atomic number i  and 

atomic mass 4iA  , i jy  is the degree of j -multiple ionization of i -th element, so that 

0

1
i

i j

j

y


 . In fully ionized gas, consisting of hydrogen, helium, and other elements with 

2 1iA i  , the expression for   becomes as follows:

1

H He A

3 1
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4 2
x x x
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 
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 

, where 

H um m , He 4 um m , 
A

6

i

i

x x


 . 
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If we do not take into account the radiation pressure, then comparison of (45) and (46) 

implies the equation: 3 2c   . Assuming G   , we find: 

 

3

2 3

c

c

G 


 



,                             

2

2 3 c

G


 



.                               (47) 

 

For the gas of nucleons or hydrogen atoms 1   and 
3

5

G
  , 

2

5

G
  ;  for the gas of 

fully ionized hydrogen 
1

2
   and 

3

7

G
  , 

4

7

G
  ;  for the gas of fully ionized helium 

4

3
   and 

2

3

G
  , 

3

G
  ;  for the fully ionized gas of heavier chemical elements 2   

and 
3

4

G
  , 

4

G
  . 

According to the Earth's model, the inner core temperature reaches 6000 K, and the 

pressure is 113.6 10cp    Pa [18]. Since the Earth is substantially inhomogeneous, we will 

use the data for the Earth's outer core: the radius of 3480 km, the mass 
241.9354 10  kg, the 

temperature on the core surface of the order of 4300c sT   K, and the pressure 
111.3 10csp    

Pa. 

From the analysis of the density-radius dependence of the form of (35), for the model of 

Earth's core in view of (41) we can estimate the coefficients 
31.02 10A    kg/m4 and 

118.5 10B     kg/m5 with the central density 
4

0 1.3 10c    kg/m3. Based on these data, 

given that 
3

4

G
  , 1c  , and using um  as the atomic mass unit, from (42) it follows that the 

temperature at the center of the Earth's core is of the order of 5475cT   K. It is clear that the 

matter at the center of the Earth is not a fully ionized gas, but rather solid crystalline matter. If 
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we assume the temperature at the center equal to 6000 K, from (42) we can estimate the 

effective value of the acceleration field coefficient: 1.08G  .  

For the pressure according to (44), provided 
4

G
  , we obtain the value 

106.3 10cp    

Pa, and taking into account the additional pressure of the crust 
csp  the pressure at the center 

of the Earth must be 111.9 10c cs cp p p     Pa. This pressure is 1.9 times less than the 

pressure in the standard model. We can explain this, among other things, by the fact that the 

equations of motion (33-34) for an ideal solid body are not completely accurate, since they do 

not take into account the contribution of the acceleration field explicitly. These equations 

imply the equality of the gravitational force and the pressure force, which leads to the equality 

of the acceleration inside the body to zero and to the relation G  . But in fact, the 

acceleration inside the body is different from zero and is calculated in (27) and (31) with the 

use of the acceleration field, as a result, according to (47) G  . 

For the model of the Earth as a whole the coefficients in (35) are equal to 
31.02 10A    

kg/m4 and 
101.07 10B    kg/m5. Substituting these coefficients in (44), we find the pressure 

at the center of the Earth: 111.54 10cp    Pa. This pressure is even less than the above 

pressure estimate made with the help of the coefficients for the core, which illustrates the 

effect of inhomogeneity inside the Earth. 

Let us now consider a neutron star with the radius of 12 km and the mass 1.35 SM , where 

SM  denotes the mass of the Sun. We will take as an estimate of the central stellar density the 

value 
175.4 10  kg/m3, with the equation of the state of matter according to the potentials 

AV18 + UIX in [19]. Using the density-radius dependence from [20], we can estimate the 

coefficients in (35): 
133.8 10A     kg/m4, 

95.9 10B    kg/m5. Neglecting the surface 

temperature sT , with condition 
3

5

G
   in (42) we obtain the estimate of the temperature at 
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the center of a neutron star  of the order of 
115 10  K. Let us note that according to [21] up to 

the temperature 
112 10  K stable atomic nuclei can exist in the matter of neutron stars. 

For the pressure at the center of a neutron star from (44) with condition 
2

5

G
   we obtain 

the value 
332.2 10  Pa. This can be compared with the pressure of the nuclear matter 

332.2 10  Pa at the density 
175.4 10  kg/m3 according to [22] and the pressure of the order of 

333.2 10  Pa in [23], while in different models of neutron stars according to [20] the pressure 

does not exceed 
341.6 10  Pa. 

The helium white dwarf with the mass 0.6 SM  must have the radius 
69.2 10  m and the 

central density 
92 10  kg/m3, according to [24]. In view of (41) from the density-radius 

dependence in [25] the coefficients follow in relation (35): 
22.6 10A    kg/m4, 

63.14 10B     kg/m5. With this in mind, from (42) with 
3

4

G
   we find the temperature at 

the center of the white dwarf: 
86.3 10  K, and the pressure at the center, according to (44), is 

equal to 
215.2 10  Pa. 

In the NASA model, at the center of the Sun the supposed mass density is 
51.622 10  

kg/m3, the pressure is about 
162.477 10cp    Pa and the temperature is 

71.571 10  K [26]. 

Since the main sequence stars are much larger in size than white dwarfs and neutron stars, 

the density variation in dependence (35) moving from the core to the stellar surface is very 

large, and two terms are not enough for acceptable accuracy. Therefore, we will turn from the 

model of the Sun as a whole to the model of its core, which is much more uniform. The core 

radius is estimated at the value, which is five times less than the radius of the Sun, the core 

mass is equal to 0.34 SM , the pressure on the core surface is not less than 
154.3 10csp    Pa 

[27], and temperature about 
69.4 10csT    K. So the coefficients for the core in (35) are as 

follows: 
31.21 10A    kg/m4, 

122.93 10B     kg/m5. According to [28], for the Solar core 
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0.72  , then from (47) we obtain 0.52G  , 0.48G  .  From (42) we estimate the 

temperature at the center of the core: 
71.9 10  K. From (44) for the pressure we obtain 

161.68 10cp    Pa. These values are somewhat lower than in the NASA model, but it should 

be noted that the Sun’s crust also exerts pressure on the Solar core. If we sum up the pressures 

cp  and csp , the result will be much closer to cp . 

 

8. Thermal conductivity 

According to the model of stellar evolution, all of the main sequence stars over time turn 

into white dwarfs and neutron stars. It is assumed that in compact stars there are no 

observable sources of internal energy, associated with nuclear transformations. As a result, 

after formation white dwarfs and neutron stars have to cool down slowly over many billions 

of years. 

The surface temperatures of some of the observed hot white dwarfs reach 150 000 K, and 

the surface of cooled white dwarfs has a temperature below 4000 K. The respective 

luminosities corresponding to these temperatures are 0.01 SL  and 
510 SL

 for a dwarf with the 

typical mass of 0.6 SM , and cooling down up to 4000 K takes about 12 billion years [29]. To 

characterize the heat propagation inside a star we will consider a phenomenological 

differential heat-flux equation, describing the Fourier’s law of thermal conduction: 

 

T  h .                                                           (48) 

 

In (48), the energy flux density vector h  is proportional to the thermal conduction 

coefficient   and the temperature gradient. 

In the considered model of gravitational equilibrium, a star or planet cannot cool down 

infinitely. Indeed, the temperature distribution (38) was derived by us based on the fact that 
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the gravitational field was counteracted by the acceleration field and pressure field. The 

equilibrium state must be maintained at any time, as well after the star cools down. Suppose 

that the observed cooled white dwarfs are in such a state that the temperature distribution in 

them is close to the equilibrium distribution (38). Substituting the temperature-radius 

dependence (38) into (48) we find the vector h : 

 

2

02 4 4

3 3 5

u c cm Br
Ar

k

    
   

 
h r .                                   (49) 

 

Substituting in (49) r R , 
3

4

G
  , 1c  , 

9

0 2 10c    kg/m3 and the coefficients A  

and B  for the white dwarf from the previous section, we obtain the absolute value of the 

vector of the energy flux density at the surface: 56sh  . The integral of the vector h  across 

the entire surface of the white dwarf must be equal to the stellar luminosity. Since the vector 

h  is perpendicular to the surface of the star, then the luminosity is equal to: 
24 sL R h . On 

the other hand, the luminosity of a white dwarf in the steady state after long-term cooling is 

presumably equal to 
5

min 10 SL L . From the equation minL L  we find the estimate of the 

thermal conductivity of the stellar matter: 
46.5 10    W/(m·K). This value mainly 

characterizes the thermal conductivity of the upper crust and the atmosphere of the white 

dwarf, while the thermal conductivity of the interior, crust and atmosphere of the star may 

differ many times due to the difference in temperatures and the state of matter. For 

comparison, the thermal conduction coefficient of a diamond with impurities at room 

temperature is 
310  W/(m·K), while the purified diamond’s coefficient reaches 

44.1 10  

W/(m·K) [30], which is one of the highest experimental values for the known substances. 
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 The temperature of the surface of neutron stars can be 
55 10  K or less, which requires 

about 
55 10  years of cooling [31]. If we use the stellar radius of 

41.2 10R    m, then the 

corresponding minimal luminosity will be 
2 4 2

min 4 1.7 10SB s SL R T L      with SB  as the 

Stefan–Boltzmann constant, which is close to the observed luminosities of certain stars [32]. 

Substituting in (49) the data for a neutron star at r R , 
3

5

G
  , 1c  , the central 

density of 
175.4 10  kg/m3 and the coefficients A  and B  from section 7, we obtain the 

absolute value of the vector of the energy flux density at the surface: 76 10sh   . 

Comparison of the luminosities 
24 sL R h  and minL  allows us to estimate the thermal 

conduction coefficient of the stellar matter: 
75.9 10    W/(m·K). This estimate is 

consistent with the results of calculation of the ionic thermal conductivity in the shell of a 

neutron star [33]. 

We will use (49) with r R  for the Earth as a whole, taking into account 
3

4

G
  , the 

central density 
41.3 10  kg/m3 and the corresponding coefficients 

31.02 10A    kg/m4  and 

101.07 10B    kg/m5 from section 7. The energy flux density at the surface is equal to 

45.9 10sh   . The measurements of the heat flux on land and in the oceans give the 

average value of 
29.16 10sh    W/m2 [34], which leads to the thermal conduction 

coefficient  of  155   W/(m·K). According to [35], the thermal conduction coefficient in 

the core of the Earth must be 37 W/(m·K), corresponding to the thermal conductivity of iron, 

on the core-mantle boundary   is reduced to 16.4 W/(m·K) [36], and the thermal 

conductivity of the shell should be almost an order of magnitude less. 

The value we found 155  W/(m·K) is greater than the expected value for the shell of 

the Earth, which can be attributed to inaccuracy of measuring the density  using two 

coefficients. In addition, we did not take into account in the calculation that a significant part 
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of the thermal energy inside the Earth was generated due to the radioactive decay of certain 

isotopes. 

If we repeat all the calculations only for the outer core of the Earth, with its radius of 3480 

km, mass of 
241.9354 10 kg and the supposed total core’s heat flux of 10.6 TW, according to 

[36], then with the coefficients 
31.02 10A    kg/m4 and 

118.5 10B     kg/m5 we will 

obtain a more acceptable value for the upper core: 109   W/(m·K). To improve the results, 

the matter density should be specified in (35) with much greater accuracy and all the sources 

of thermal energy should be taken into account. This is even more important for modelling the 

main sequence stars and the Sun. 

 

9. Entropy 

Planets and stars consist of molecules, atoms, ions, electrons, and as for the white dwarfs 

and neutron stars the list of basic matter particles also includes the atomic nuclei and 

individual nucleons. For multicomponent systems the specific entropy per one matter nucleon 

is calculated by summing up for each type of particles, and taking into account the radiation 

entropy according to [37] it looks as follows: 

 

3 2 3 2
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2 2
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gm kT kn m kTk aT
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             

               

  ,        (50) 

 

where 0

u

n
m


  is the concentration of nucleons, um  is the atomic mass unit, i i um A m  is 

the mass of the atomic nucleus with the charge number i  and the mass number 4iA  , i jg  is 

the statistical weight of the ion of i -th chemical element in j -th ionization state, 

0i i j

i j

i

x y
n

m


  is the concentration of ions in the element i  in j -th ionization state, ix  is the 
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mass fraction of the element with the charge number i , i jy  is the degree j -fold ionization of 

the i -th element, so that 
0

1
i

i j

j

y


 ,  is Dirac constant, 
1

i

e i j

i j

n jn


   is the concentration 

of electrons under electroneutrality conditions. 

 

We will apply relation (50) to the case of a monatomic neutral gas without taking into 

account the contribution of the electrons: 

 

3 2
3

2

5 1 4
ln

2 2 3

um kT aT
s k

n n

    
     

     

.                                     (51) 

 

Expression (51) can be used to estimate the specific entropy in the newly formed neutron 

star, consisting mostly of neutrons with admixture of protons, electrons and atomic nuclei in 

the shell of the star. If the star’s mass is 1.35 SM M  and its radius is 
41.2 10R    m, then 

440

3

3
2.2 10

4u u

M
n

m m R




     m-3. Substituting in (51) the temperature 

115 10  K at the center 

of the neutron star, found in Section 7, we obtain the specific entropy per nucleon: 

1.33ms k . But at the initial time point the entropy is considerably higher, since at the same 

temperature the radius of a hot star exceeds R  and the density n  is less. 

At this temperature, the contribution from the entropy of radiation is 31.5 times less than 

the contribution from the entropy of nucleons. The specific entropy value in the equilibrium 

state should be less than ms , as due to cooling the temperature in the main volume of the star 

would be less than the temperature at the center 
115 10  K. 

The estimation of the specific entropy can be done in a different way. As it was shown in 

[10], the energy of the acceleration field as part of the energy of random motion of particles 

can be expressed as follows: 
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2

10
a

M
W

R


 . 

 

To this energy we must add the energy of the particles due to their interaction with the 

four-potential of the acceleration field. For exact calculation of the kinetic energy of particles 

we can use the virial theorem or the kinetic energy definition as the difference between the 

relativistic energy of the moving particles and their rest energy. In both cases we obtain for 

the kinetic energy the following: 

 

2 2411 0.367

1120
k

M M
W

R R

 
  . 

 

By definition, the increment of the specific entropy is given by the formula: 

S Q
s

N T N

 
   , where S  is the increment of the total entropy, 

u

M
N

m
  is the number of 

nucleons, Q  is the increment of the thermal energy at the temperature T . In the neutron star 

formation we can assume in a first approximation that kQ W  , as well s s  . Then for the 

specific entropy we obtain the following relation: 

 

0.367 uM m
s

RT


 .                                                      (52) 

 

Substituting here 
3

5

G
   at 1   from (47) and the central temperature 

115 10  K, we 

find 0.77s k , which is less than ms . However, this result is subject to further correction in 

view of the fact that the star during transition to the equilibrium radius loses its energy with 

the neutrinos that fly away and is getting rapidly cooled, reducing its entropy. 
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For comparison, there was found in [38] that a hot protoneutron star with the mass 

1.23 SM M , the radius of 55.75 km and the temperature 
115 10  K has the specific entropy 

equal to 13.32s k . When the star reaches its equilibrium radius of 11.15 km, its specific 

entropy at the effective temperature of matter of the order of 
910  K becomes equal to 

0.0054s k  and then decreases continuously due to the subsequent cooling. 

Calculating the entropy of planets and stars with the help of (50) requires knowledge of 

the quantitative chemical composition of matter. If we use (52) for initial estimation of the 

entropy, it is necessary to know the mass, radius and average temperature. For Jupiter, the 

specific entropy, according to (52), at 
3

4

G
   will be of the order of 1.65s k , if as T  we 

use the temperature value 35700cT   K expected at the center of Jupiter within the 

framework of the modern models of gas giants. This value of the specific entropy should be 

increased because as T  we should use a less temperature value, averaged over the entire 

volume. In particular, calculations by a standard method give 9s k  for a planet like Jupiter 

[39]. 

 

10. Conclusion 

In the presented model of gravitational equilibrium, an important role is played by the 

acceleration field and the pressure field. The equations of these fields (2) and (14) allow us to 

calculate the strengths and the solenoidal vectors of the fields and to determine the 

distribution of temperature and pressure inside the cosmic bodies, caused by gravitation, using 

simple formulas. Equations (22) allow us to find the gravitational field strength and the 

solenoidal vector of the torsion field in the covariant theory of gravitation. The knowledge of 

field strengths and solenoidal vectors is sufficient for the analysis of the equations of motion 

of matter (26) and for construction of the model basis. In particular, the equation of motion 
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leads to correlation (31) between the coefficients of the acceleration field and the pressure 

field, and in (47) these coefficients are expressed in terms of the thermodynamic parameter 

 . Using the values of these coefficients, we determine the temperature and pressure at the 

center of various objects – in Bok globules, inside the Earth, the Sun, in a white dwarf and a 

neutron star. In addition, we obtain the estimates of the heat flux and the thermal conductivity 

coefficient, which characterizes this or that object, and we also estimate the entropy of a 

neutron star and a gas planet. The analysis of the results shows that they agree well with the 

data provided by other authors.  

Based on the significantly higher thermal conductivity of the core and crust as compared 

to the shell, some authors in a number of studies suggest the existence in a typical neutron star 

(and a white dwarf) of an almost isothermal core with a small temperature gradient. In our 

approach, the temperature distribution inside a star is associated with dependence (37) for the 

Lorentz factor, while the high value of thermal conductivity does not play an essential role 

and cannot lead to the isothermal core. In turn, relation (37) follows from the wave equation 

of the acceleration field (7) and is determined only by the matter density distribution and the 

matter motion.  

From the physical standpoint, (37) and the similar dependence for the pressure field 

potential (40) are associated with the energy distribution between the gravitational field, 

acceleration field and pressure field. The result of this energy distribution is a certain state of 

equilibrium and certain distribution of physical parameters, depending on the current radius, 

inside of the object under consideration. If we proceed from the Le Sage's theory of 

gravitation, then the actual agents, performing the gravitational contraction and equilibrium 

heating of matter of cosmic objects, are the fluxes of gravitons. The energy density, the cross-

section of interaction between the graviton field and the nucleon matter, as well as other 

parameters can be calculated based on the fact that the action of graviton fluxes should lead to 

the Newton's law of universal gravitation [40-41]. 
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The universality of the gravitational equilibrium model is ensured by the fact that the field 

equations can be applied to any objects, regardless of their state of matter. A certain 

restriction is the need for a detailed representation of the mass density distribution in order to 

obtain accurate results, however the same is required in any other approaches, including the 

commonly used polytropic model. As a rule, to estimate the mass density distribution the 

measurement of the velocities of longitudinal and transverse seismic waves is used, as well as 

the correspondence between the radial distribution of mass density and the total body mass 

and its moment of inertia. 

Another restriction is the use in formula (42) of the atomic mass unit as um , which is 

permissible for the hydrogen gas and the uniform nuclear matter of nucleons. Meanwhile, in 

previously derived correlations (11) and (38) um  has the meaning of the mass of one gas 

particle, which can be different from the atomic mass unit. Thus, in white dwarfs a significant 

contribution into the state of matter is made by electrons, the relativistic masses of which 

depend on the temperature. In stars and planets there are both neutral and ionized atoms with 

the masses of the order of uAm , where A  is the mass number of the corresponding chemical 

isotope. Due to the complex composition of particles in the matter, formulas (42) for the 

temperature and (52) for the specific entropy need to be specified for each type of cosmic 

objects. 
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