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Introduction
Human Robot Interaction needs to be safe. In dealing with powerful vehicles as auto-
nomous cars, which are ever more like robots, ensuring safe interactions in both sce-
narios pose similar, yet daunting challenges[1]. For interaction with semi-autonomous
cars, use of sensors to monitor the driver’s behaviour could help to create new safety
mechanisms. This work explores the concept of using motion tracking (i.e skeletal
tracking) data to learn to classify drivers manoeuvres being performed.

Objectives

I To classify and later predict drivers behaviour, such that it can be used for
control policies that ensure safety (e.g. compliance or enhanced ADAS).

I To examine reliability of classification using motion tracking in a driving scenario.

Methods
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Figure 1: Wrist and hand movements (blue) and tracking drop (orange)

I High noise levels and occlusions make hand movements unpredictable, not
suitable for data-driven methods and other limbs data erratic.

I Studies around muscle activation and movement patterns whilst driving [2] point
towards the use of torso, shoulder and elbow data alone.

I Different pre-processing filtering techniques (i.e. Double Exponential Smoothing
Filter, hard whitening, soft whitening) were tried to further reduce noise.

Methods

Figure 2: State transition for modelled driving scheme Figure 3: Support Vector Machine (SVM)

I Sensor and driver input data-logging with on-screen status.
I Data-driven method modelling manoeuvre as a classification problem with

kernel-based method (SVM)([3]).
I Reduced state transition model.
I Granularity of state defined in modelling process.

Results
The proposed method is able to learn to classify 3 manoeuvres using a relatively
small dataset per test subject, exploiting the repeatability of arm movement whilst
performing a driving manoeuvre, with mean precision above 85%, including the F1
metric which is above 90% in all cases; the F1 metric shows a balanced performance
between missed classifications and true classifications, with low number of missed
classifications whilst discriminating between manoeuvres.

Figure 4: Simulator and Kinect V2 Integration

Conclusions

With a reliability of 80%, skeletal tracking data can be used to classify manoeuvres
in a non critical simulation and opens the possibility for further improvements, ot-
her sensors integration and controller synthesis based on these predictions to ensure
compliant performance.
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Figure 5: Results for real-time manoeuvre prediction during test drive, time-plot (up), confusion matrix (down)

Future Work
We will enhance our models by including eye gaze and heart rate measurements toget-
her with richer vehicle information (e.g. speed) and more complex driving scenarios
that allow to simulate different mental workloads or distraction levels, in order to know
how driver behaviour changes during manoeuvres when affected by different levels of
distractions.
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