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Abstract. As intelligent textbooks become more ubiquitous in classrooms and
educational settings, the need arises to automatically provide formative feedback
to written responses provided by students in response to readings. This study
develops models to automatically provide feedback to student summaries written
at the end of intelligent textbook sections. The study builds on Botarleanu et al.
(2022), who used the Longformer Large Language Model, a transformer Neural
Network, to build a summary grading model. Their model explains around 55%
of holistic summary score variance when compared to scores assigned by human
raters on an analytic rubric. This study uses a principal component analysis to
distill scores from the analytic rubric into two principal components — content
and wording. When training the models on the summaries and the sources using
these principal components, we explained 79% and 66% of the score variance for
content and wording, respectively. The developed models are freely available on
HuggingFace and will allow formative feedback to users of intelligent textbooks
to assess reading comprehension through summarization in real-time. The models
can also be used for other summarization applications in learning systems.
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1 Introduction

An essential component of intelligent textbooks is the capacity to provide formative
feedback to students in real time regarding text comprehension. Recent developments
in Natural Language Processing (NLP) allow more sophisticated feedback approaches
based on open-ended assessments like text summarization. For instance, Crossley et al.
[1] developed a summarization model to predict ratings of main idea integration in student
summaries using lexical diversity features, a word frequency metric, and word2vec
semantic similarity scores between summaries and source material. The model explained
53% of the variance in ratings. Botarleanu et al. [2] used large language models (LLMs)
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to predict overall student summarization scores and explained ~55% of score variance.
These NLP models show the potential for open-ended assessments of text comprehension
through summarization in intelligent textbooks.

The goal of this paper is to introduce more robust LLMs to provide formative assess-
ment for summaries written at the end of chapter sections within an intelligent textbook
framework. The models presented in this study are more robust in two ways. First, they
are trained on data developed specifically for the model. Second, instead of training them
to predict each scale of an analytic rubric for summarization, the analytic scores in a
rubric are aggregated into two criteria using a principal component analysis. This study
aims to develop summarization models that can be integrated into intelligent textbooks
to make them more interactive by providing actionable feedback to students about their
summaries to increase comprehension of course material. In doing so, we develop two
LLMs to provide formative assessment on summaries: 1) a model based on RoBERTa
to predict scores based on the summary itself, and 2) a model using Longformer to
predict summary scores while including text from the textbook as context. The research
questions that guide this study are

e Are more robust LLMs able to provide more accurate models that can be used to
guide student understanding as they read an intelligent textbook?
e Does the inclusion of text from the textbook improve the accuracy of the LLMs?

2 Methods
2.1 Data

Our summary corpus comprises 4,233 summaries of 101 source texts written by high
school, university, and adult writers recruited through Amazon’s Mechanical Turk ser-
vice between 2018 and 2021. Source texts were on a variety of different topics, including
the dangers of smoking, computer viruses, and the effect of UV radiation. The sources
had a mean word count of 308.5 (SD = 130.49), while the summaries had a mean
word count of 75.18 (SD = 50.51). Each summary was scored by expert raters using a
1-4 scaled analytic rubric to score 7 criteria important in understanding the quality of
summarizations. The criteria included the main point (i.e. to what extent the summary
captured the main idea of the source), details of language beyond the source (i.e. how
well all relevant details were included in the summary), paraphrasing (i.e. avoiding pla-
giarism by paraphrasing the original material), objective language use (i.e. reflecting the
point of view of the source), and cohesion (i.e. how well the summary was rationally and
logically organized). Inter-rater reliability showed acceptable agreement among raters (r
> .8 and k > .7). A subset of this data set was used in Crossley et al. [1] and Botarleanu
etal. [2].

A principal component analysis (PCA) was conducted to assess the potential for
dimension reduction for the analytic scores in the rubric. The PCA revealed strong
covariance allowing six of the scores to be combined into two principal components.
The analytic scales of details, main point, and cohesion were combined into a weighted
score designated as Content. The analytic scales for paraphrasing, objective language
use, and language beyond the source were combined into a weighted score designated as
Wording. The component scores were normalized to a scale from O to 1 using min-max
normalization and used as outcome variables in our large language models.
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2.2 Large Language Models

LLMs are neural network architectures for natural language processing which use the
principle of self-attention to generate large, pre-trained models which can then be further
finetuned for downstream tasks. These pre-trained models are trained on large corpora
using masked language modeling, in which the text is tokenized, but some tokens are
masked. The task of masked language modeling is to predict the masked tokens based
on all the tokens that come before and after the masked token. After many epochs of
training on very large corpora, the parameters of the model come to represent a general
knowledge of the language domain on which they were trained.

The pretrained model can be further refined in two ways. The primary method of
model refinement is through finetuning. The model is trained on the target task using
the training data and labels in finetuning. Encoder-only transformers, such as those used
in this study, include a special classification token at the beginning of the sequence. As
the model processes the language data, the embedding of the classification token comes
to represent semantic information about the text as a whole and can be used with the
labels supplied in the training data to train a traditional machine learning algorithm.
In finetuning, the model’s parameters and the machine learning classification head are
trained.

The other method, domain adaptation, is used when there is a large amount of unla-
beled data but a relatively small amount of labeled data. In this case, the model is trained
using a masked language model on language data from the target language domain
in order to allow the model greater familiarity with the target domain. After domain
adaptation, the resultant model is then finctuned on the labeled data for classification,
regression, or other specific tasks.

We used RoBERTa [3] as our initial LLM, which is an encoder-only transformer
model pretrained on the English Wikipedia corpus and Bookcorpus. The transformer
neural network architecture relies on attention mechanisms in which, at every layer,
each token embedding is modified by each other token embedding. As a result, the com-
putational requirements grow quadratically as a function of the input sequence length. In
RoBERTA,, the length of the input sequence is limited to 512 tokens to ensure computing
cfficiency. While this length is sufficient for many summaries, it is not long enough to
include text from the textbook in the model input.

The Longformer LLM [4] is capable of handling longer input sequences by utilizing
sparse attention, in which not all tokens are compared with every other token. Instead,
Longformer uses a sliding attention window so that each token only attends to the tokens
a certain number of positions to its left and right. Sparse attention mitigates the problem
of limited sequence length by reducing the computational complexity of the attention
mechanism. Additionally, Longformer utilizes global attention in which certain tokens
are attended to by every other token. Combining these two types of sparse attention allows
Longformer to increase the max sequence length from 512 tokens to 4,096 tokens while
remaining efficient. The Longformer max sequence length allows us to include both the
summary and text from the textbook into the input sequence.

We divided the summary corpus into training, validation, and test sets. To help
ensure generalizability across source texts and prompts, we selected 15 out of the 101
sources text to comprise the test set only (i.e., these source texts were not used in
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training or validation) After splitting the data in this way, the training, validation, and
test sets comprised 3,285, 703, and 702 summaries respectively. During finetuning,
each summary in ROBERTa was tokenized and fed into the model. For Longformer, the
summary and the source text for the summary were concatenated using a special separator
token and then tokenized together to generate the input sequences. These token sequences
were used as input data for their respective models, and the final classification token was
used to train a linear regression head. After training, we tested the performance of each
model by predicting the Content and Wording scores for the summaries. We evaluate
model performance in terms of correlation with the human rater judgments and explained
variance (R?).

In addition to the finetuning procedures described above, we also domain-adapted
the Longformer pre-trained model on a set of 93,484 summaries written by middle and
high-school students. The summaries were collected from six online sources through the
Commonlit platform (commonlit.org) [5]. This is a large, unlabeled dataset in the target
language domain, and we considered it a reasonable candidate for domain adaptation.
After constructing the domain-adapted model, we finetuned it using the same methods
described above and evaluated its performance by calculating the correlation between
predicted scores and human rater judgments.

3 Results

For Content scores, the Longformer model, in which both the summary and the source
were included in the input, achieved higher accuracy (r = .89, R?> = .79) than the
RoBERTa model, which only included the summary (r = .82, R? = .67). For Wording
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scores, the Longformer model outperformed (r = .81, R2 = .66) the RoBERTa model (r
= .60, R = .36) (see Fig. 1). The domain-adapted Longformer model performed worse
than the non-domain adapted model for both content (r = .85, R? =.72) and wording (r
= .78, R? = .60).

4 Discussion

The Longformer models developed in this study outperform RoBERTa models and pre-
vious LLM-based automatic summary evaluation models. For instance, previous NLP
models have achieved R? ~ 55% (citations). In addition, finetuning directly on the pre-
trained model produced better results than finetuning on the domain-adapted model. This
may be because the Commonlit dataset, which included many summaries, only included
six sources, which did not provide the variance needed for the problem space. The small
number of sources may have resulted in catastrophic forgetting [6], where the model
overfitted to those sources and forgot part of the parameters set during pretraining.

5 Conclusions and Future Work

Although the data used in the training and test sets for this model are not exactly the same
as the task of grading summaries of textbook sections, the accuracy rates for Content
scores (and likely Wording scores) are strong enough for inclusion into intelligent text-
books to provide students with opportunities for open-ended comprehension assessment
and interactive feedback. We plan to integrate this model into a prototype intelligent text-
book currently in development. Students will be required to write a short summary at the
end of each section before moving on to the next. After passing through a filter ensuring
that the summarics are more than fifty words, in English, not plagiarized, and on topic,
the summaries will be automatically graded on the two criteria, and students will receive
their grades instantly. We hope to demonstrate that providing students with feedback on
their summaries along with the revision process leads to a greater understanding of texts
within intelligent textbooks.
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