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Abstract—Today more than ever before, academia, manufacturers, and hyperscalers acknowledge the major challenge of silent data
corruptions (SDCs) and aim on solutions to minimize its impact by avoiding, detecting, and mitigating SDCs. Recent studies on large
scale datacenters conducted by Meta and Google report an unexpected rate of silent data corruption incidents that are attributed to
modern microprocessor generations. Despite the acknowledged severity of the phenomenon, particularly at the datacenter scale, there
is no in-depth analysis of the microarchitectural locations in a complex microprocessor that are more likely to generate an SDC at the
program outputs. In this paper, we present a detailed analysis of the faulty behavior of many critical microarchitectural structures of a
modern out-of-order microprocessor generating silent data corruptions. Our analysis unveils several observations, including: (i) the
magnitude of silent data corruptions attributed to different hardware structures, (ii) the instruction-related parameters that are more
likely to result in a silent data corruption, (iii) the extent to which the operating system affects the silent data corruption occurrences,
and (iv) the byte positions of a word which are more likely to result in silent data corruptions. Collectively, such findings can assist
decisions for hardware and software schemes for the reduction of the likelihood of silent data corruptions generation.

Index Terms—Silent data corruptions, faults, errors, microarchitecture, microprocessor, fault injection
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1 INTRODUCTION

THE extreme scaling of semiconductor devices and the
complexity of integrated circuits lead to less reliable mi-

croprocessors operation due to the continuously increased
error rates from transient faults [1]–[4]. Neutron and alpha
particle impacts, process variances, marginalities, environ-
mental factors, and low-voltage operation are the most com-
mon causes of such faults [5]–[7]. Such scenarios threaten
the system functionality and the output correctness. Faults,
such as transient or permanent faults, timing errors, design
bugs, and manufacturing defects, occur inside a micropro-
cessor chip and may cause silent errors in the program’s
output – known as Silent Data Corruption (SDC) – without
any indication of the output degradation in system events or
error logs. The data handled by the impacted devices may be
silently corrupted by errors brought on by transitory defects.
However, a single, hardware-induced fault can cascade into
a massive problem in modern large-scale infrastructures.
Recent studies on large datacenters conducted by Meta
and Google [8], [9] indicate that ephemeral computational
errors in CPUs, such as timing errors, design bugs, and
manufacturing defects, generate SDCs at a much higher
rate than the soft error-induced SDCs, while prior studies
attribute silent data corruptions mainly to soft errors due to
radiation and particle-strikes [1]–[4].

Although all studies in the literature stress that silent
data corruptions are real and severe phenomena, especially
in datacenter applications running at scale, interestingly,
there is no report on the criticality of hardware (microar-
chitectural) structures in reaching the software layer and
eventually generate silent data corruptions. Today more
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than ever, academia, manufactures, and hyperscalers ac-
knowledge the major challenge of silent data corruptions,
and try to propose solutions to measure and mitigate it.
We anticipate that only holistic, cross-layer solutions can
overcome this problem, based on the latest reports from
large-scale datacenter infrastructures. However, it would be
extremely difficult to deliver effective solutions to mitigate
the problem without understanding:

1. the exact way that faults in all major hardware struc-
tures propagate to the software and eventually result in
silent data corruptions, and

2. the scope of this challenging problem.

Understanding the faults behavior and cross-layer propaga-
tion statistics is an important step towards understanding
the problem of silent data corruptions.

To reduce the effects of on-chip memory faults, error
correcting codes (ECC) are deployed to detect and correct
faults when they occur [10]. However, ECC methods require
additional storage overheads and complexity, and cannot
detect or correct all hardware-induced faults [11]. The most
frequently used ECC methods can detect a small number
of faults and correct even smaller number of them. For
example, the most common ECC method (i.e., single error
correction, double error detection – SECDED) can detect up
to 2 flipped bits and correct 1 flipped bit per 64 bits and
requires storing an additional 12.5% of ECC information
[10] [11]. Diverse events can change the data stored in
on-chip memory structures, or even permanently damage
their bit-cells, and if left uncorrected, they can threaten the
program integrity. This phenomenon is amplified in newer
fabrication technologies, in which multiple-bit faults are
more likely to occur in on-chip memory structures [2],
[12]. Therefore, even if ECC can be beneficial for reducing
the failure rates in some on-chip memory structures, the
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entire microprocessor does not have similar protection in
all functional and memory blocks. It has been shown that
even using common ECC methods, silent data corruptions
are unavoidable, especially in large-scale datacenter infras-
tructures [8], [9], [13]. Therefore, it is essential to understand
what kind of faults and in which hardware structures are
more likely to propagate from the hardware all the way
to the software and silently affect the program’s execution.
Through such an analysis, we can build effective solutions
towards reliable modern systems, including new ECC mech-
anisms, or new software-based redundancy solutions that
tolerate silent data corruptions.

In this paper, we contribute with an in-depth microar-
chitectural analysis for the causes of SDCs: the distribution
of hardware corruptions that affect the software layers
and eventually result in corrupted program outputs. We
focus on hardware affected by transient faults, i.e., flipped
hardware bits, an assumption that models any failure with
transient behavior. It covers a broad variety of physical
mechanisms: cosmic radiation, alpha particles from pack-
aging, intentional low-voltage operation, circuit variability,
manufacturing defects, and ephemeral errors due to escaped
design bugs [5]–[7]. Using our simulation infrastructure in
a similar approach than the one described in this paper, the
same microarchitecture-level evaluation can be performed
for other types of hardware faults including permanent
faults (due to aging/wear-out), as well as hardware bugs.

For a complex RISC 64-bit out-of-order microprocessor
(modeling Arm’s Cortex-A72), we study the propagation of
faults from the locations (hardware structures) they origi-
nate at all the way through the microarchitecture and the
software levels to reach program output. For the first time,
we deliver the following information at the microarchitec-
tural detail: (i) the magnitude of silent data corruptions that
are attributed individually to 11 major hardware structures
of modern CPUs, (ii) the instruction-related parameters
that are more likely to result in a silent data corruption
(Section 2.3), (iii) the extent to which the operating system
affects the silent data corruption occurrences, and (iv) the
byte positions of a data or instruction word which are more
likely to result in silent data corruptions. Our entire analysis
is performed from a microarchitectural perspective (because
the faults of the hardware are the causes that generate the
SDCs) and provides insights across the layers of abstraction.

1. We extensively describe the critical problem of SDCs
and summarize the limitations of current well-
established methods that aim to harden the applications
to tolerate silent data corruptions.

2. We augment the description of this problem by examin-
ing the cross-layer propagation of a hardware-induced
fault and explain the sources of the problem from the
microarchitectural point of view. We show which on-
chip structures are more likely to result in silent data
corruptions and explain the reasons.

3. We explore the impact of user vs. kernel instructions
that result in silent data corruptions, separately for each
hardware structure. Our analysis reveals that although
the kernel instructions account for significantly lower
number compared to the total executed ones, for some
components they show extremely high probability to
get affected by a hardware-induced fault.

4. We study the likelihood of different byte positions to
generate silent data corruptions and present the differ-
ent probabilities that each byte position inside an 8-
byte word has, for the largest hardware structures, in
terms of the total bits they can store. These structures
are the data field of L1 instruction and data caches, the
L2 cache, and the Physical Register File.

2 UNDERSTANDING SILENT DATA CORRUPTIONS
& CROSS-LAYER FAULT PROPAGATION

2.1 Silent Data Corruptions (SDCs)
Large-scale infrastructure services may be negatively af-
fected by silent data corruption (SDC). Silent data cor-
ruption is a widespread problem that is now attributed
more than in the past to microprocessor chips in addition
to off-chip (main) memory, storage, and networking that
have been for long considered main contributors to the
problem [8], [9]. SDCs are not traceable at the hardware level
since error reporting systems in microprocessors cannot
keep record of such corruptions, and this is the reason that
they are called silent. The data corruptions, however, spread
throughout the system stack and show up as issues at the
application level, or worse, in large-scale datacenters the
issue may be distributed through several server locations.
These errors can lead to data loss and may take months to
correct them, because the detection of a silent data loss oc-
curs very late [8], [9]. A silent data corruption happens when
a microprocessor chip that is unintentionally affected (i.e.,
by soft errors, manufacturing defects, escaped design bugs,
etc.) corrupts the data it processes. For instance, a CPU with
a hardware fault or bug might compute data incorrectly
(e.g., 2 × 2 = 5), or load/store an incorrect value, which
is used for a subsequent computation. Unless the software
systematically checks for such kinds of corruptions, there
might not be any evidence of these computational problems.

Unlike other failures which are very visible, such as
an application crash, SDCs cannot be observed and in
most of the cases can get totally undetected. Software-
level redundancy methods (or software-based fault-tolerant
methods) can be implemented in applications for dealing
with SDCs and preventing software-level failures [14], [15].
These methods are based on the redundancy concept and
usually provide duplication or triplication of the applica-
tion’s resources. In such a way, the fault-tolerant application
can eliminate a potential data corruption, since redundant
copies can increase the probabilities for detecting and iso-
lating a potentially malfunctioning hardware resource. Al-
though software-based fault-tolerant methods can signifi-
cantly reduce the potential SDCs and guarantee the correct
execution, they have four major limitations:

1. The cost of redundancy in terms of performance and
power efficiency is excessive and imposes large per-
formance degradation and increased power consump-
tion. This performance reduction and increased power
consumption has direct impact on the end users. The
stronger the redundancy approach is (e.g., triplication
of the application’s resources), the higher the perfor-
mance degradation and the power consumption.

2. Since these methods aim to tolerate SDCs by provid-
ing computational and/or resources redundancy, the
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application’s code footprint is significantly increased.
Increasing the code (and data) size to implement re-
dundancy, the execution patterns of the fault-tolerant
program are changed compared to the initial, unpro-
tected version of a program. As a result, although the
SDCs may be reduced, the probability of the occurrence
of any other potential fault effect (i.e., a crash) may
be increased. It has been recently shown that software
redundancy methods may increase the vulnerability of
the hardened application to crashes [16].

3. Software redundancy methods are primarily applied
only to the application and not to the entire software
stack, i.e., libraries and operating system (unless these
are open source). Even if there have been some previous
studies that aim to tolerate well-known open-source
libraries (e.g., PyTorch [17]) and Linux kernel (e.g., FT-
Linux [18]) for hardware-induced faults, the fault cover-
age locations and the performance degradation remain
unsolved and severe issues. For example, FT-Linux [18]
is a Linux-based operating system that transparently
replicates race-free, multithreaded POSIX applications
on different hardware partitions of a single machine.
The slowdown of this method is measured to be up to
40% additional to the replication (which is attributed to
2× more resources usage). Moreover, from both the de-
velopment effort and performance degradation point of
view, it would be impractical, or even unfeasible, to add
redundancy to the full-software stack (i.e., applications,
libraries, operating system).

4. Hardening the full software stack could be considered
as a simplified solution for protecting the software-side
from the occurrences of hardware-induced corruptions
that result in SDCs. However, a recent study has shown
that there can be a relative high number of hardware-
induced faults that certainly result in SDCs in the
output of the program, but these faults are not visible to
the software or architecture layer [16] (see more details
in subsection 2.2 and subsection 4.1). Therefore, even
with a strong software-based protection through the
full software stack, a significant portion of hardware
faults that eventually lead to SDCs may remain unde-
tected, not only from SECDED ECC at the hardware
side (especially if the corruption is more than a single
bit), but also from the software protection, and slip into
the output without any indication.

For all these reasons, we believe that it is of paramount
importance to deeply understand how the faults propagate
from the hardware through the software and eventually to
the output and which cross-layer aspects (microarchitectural
components machine instructions, kernel operations, data
bit locations) are more likely to participate heavily in the
generation of SDCs. This is the first and most important
step towards building truly resilient and holistic solutions
to overcome the most challenging problem of SDCs.

2.2 Cross-Layer Fault Propagation

As a first step, it is important to model and understand the
way that hardware faults propagate through the hardware
layer, manifest to the software layer, and eventually affects
the output of a program as SDCs. The abstraction layers of

the computing stack include (among others) the microar-
chitecture, the architecture (or the ISA), and the software,
which consists of the operating system, the libraries, and the
application itself. As hardware-induced faults we mean any
corruption that can occur at a microarchitectural structure.
Consequently, a microarchitecture-level corruption may, or
may not, be architecturally visible (i.e., the fault becomes
visible to the ISA, and thus, to the application). If the
corruption gets architecturally visible (i.e., it touches the
software), it may or may not become visible to the output
of the program. This is the abstract way of the fault prop-
agation across different abstraction layers. However, this
propagation path consists of several aspects, that need to
be considered and completely understood:

• The propagation of a hardware-induced fault (i.e., a
fault that corrupts the microarchitectural layer) strongly
depends on (i) the microarchitecture, and (ii) the ex-
ecuted program. A fault occurrence is architecturally
visible, if and only if, it does not get masked at the
microarchitecture layer (i.e., hardware masking) due
to a microarchitectural operation (which is, of course,
agnostic to the ISA layer). Hardware masking can occur
in three different cases: (i) the fault affects an “invalid”
entry (e.g., a physical register which is not currently
mapped, or a prefetched cache line which is never
used, etc.), (ii) the fault in an entry gets overwritten
by another normal operation before it is used (read),
(iii) the fault affects a mis-speculated instruction (i.e.,
the fault is discarded due to a pipeline flush). In all
three cases the hardware fault is Benign because it
exists, but it never appears at the software layer (see
Figure 1 the “Benign” case in the top). In any other
case, a fault in a hardware structure or functional
block will eventually be architecturally visible (i.e.,
cases “Masked” and “SDC” in Figure 1 represent two
different cases of architecturally visible faults; the SDC
case means that the fault propagates to the output
while the Masked case means that the fault is soft-
ware masked and output is not affected). Consequently,
given a certain workload, different microarchitectures
can primarily affect the population (i.e., the absolute
number) of the Benign faults. The reason is that, for
a given workload, different microarchitectures can only
affect the hardware masking [19]. Assume, for example,
a microarchitecture M1 with different branch prediction
algorithm than microarchitecture M2, and M1’s branch
prediction is less accurate than M2’s (i.e., M1 has higher
misprediction rate than M2). For a given workload, M1
will lead to more Benign faults due to larger number
of mispredictions, and thus, M1 and M2 have different
hardware masking levels.

• On the other hand, an architecturally visible fault may

Fault propagates
to the software

Start
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Output
File
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Correct Output

Correct Output

Wrong OutputSDC

Fig. 1. Fault propagation from the injection of fault at any microarchitec-
tural structure all the way to the final output of the program.
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affect the program’s output, if and only if, it does not
get masked by the software (i.e., case “SDC” in Figure 1
represents an architecturally visible fault which does
not get masked at the software layer and eventually
affects the output of the program). Software/Logical
masking depends on the program’s flow and can occur
when a corrupted register content or memory word
do not affect the result of computations. Assume, for
example, the following instruction and x0, x1, #0.
If the content of register x1 was corrupted in any of the
32 least significant bits, the computation’s result will
be correct (i.e., masked). As another example, assume
that an architecturally visible corruption in a register’s
content, is not used by another program’s operation
(the register content is dead). In such a case, even if
the corruption is architecturally visible, the program’s
execution and the output will be correct due to software
masking effect. On the other hand, in any other case,
an architecturally visible corruption will affect either
the program’s execution (e.g., application crash) or the
output (i.e., the case “SDC” in Figure 1).

• However, as we briefly described in section 2.1, there
is also another important portion of hardware faults,
which although initially considered Benign, they will
certainly corrupt the output (i.e., SDC), without being
architecturally visible. This portion of faults was ini-
tially defined in [16] and determines the effect of a
group of faults that hit a part of the program’s output
which is exposed in any cache level (only the cache
arrays that store data) but will not pass again through
the program trace. Assume that a fault happens on a
modified cache line which contains data that are part of
the program output. If the data of the cache line are not
used again by the program (i.e., they are not read again
by an instruction), they will be eventually written back
without ever being read again by the microprocessor
(i.e., they will not pass again through the program trace)
and there is no further masking opportunity neither at
the microarchitecture nor at the software layer. Since
these data are part of the program output, the I/O
device accesses this chunk of data, through a DMA con-
troller, and thus, the program’s output will be certainly
corrupted (i.e., SDC). Such kind of faults determine the
effect of a group of faults that hit a part of the program’s
output which is exposed in any cache level (only the
cache arrays that store data) but will not pass again
through the program trace. Those faults (in a cache level
only) are impossible to be identified by any protection
method that aims to detect SDCs, because are initially
determined as Benign faults (since the fault occurrence
will not pass through the program trace, so there is no
detection capability at the hardware or software). We
explore this scenario in detail in subsection 4.1.

2.3 Classification of Corruptions at Software Layer

Since this study focuses on the propagation of hardware-
induced corruptions all the way to the output, it is necessary
to explore the anatomy of fault propagation by distinguish-
ing the final effects of a fault (i.e., the effect to the output)
to the fault effects at the time when they propagate from

the hardware to the software. Thus, we need to rely on a
solid observation point, that can provide this information
between the hardware and the software interface. From
the microarchitecture point of view, if the fault occurrence
passes the commit stage of an out-of-order (OoO) micro-
processor, the fault is considered architecturally visible (i.e.,
it passes to the software). Hence, the observation point
is the point where speculated instructions get committed.
The detailed methodology, we follow during simulations to
capture this, is shown in Figure 2.

Each instruction (for any ISA) is associated to the fol-
lowing parameters upon its commit (i.e., retirement): (i) the
cycle it commits, (ii) the Program Counter (PC), (iii) the
Opcode, (iv) the register operands and/or an immediate
field, and (v) the register contents. The instruction format
can be shown at the bottom of Figure 2. Any corruption at
the microarchitecture level can be considered architecturally
visible, if that corruption affects any of these instruction-
related parameters. For example, the third committed in-
struction at the bottom of Figure 2 is corrupted in its register
contents and shown with red color. To this end, we keep
track of the running trace of each committed instruction,
and if any of the instruction-related parameters is different
from the fault-free executions, we record it as a corruption
(see next section for the experimental infrastructure we
employ for the implementation of the method). This means
that the fault, in any microarchitectural structure, becomes
architecturally visible. Upon the corruption in the commit
stage, we classify the kind of corruption (similarly to [20])
to one of the following groups:

(a) Execution Time Error: The instruction, the operand
fields, the immediate value, and the contents of register
are correct, but the instruction was committed in wrong
cycle compared to the fault-free execution.

(b) Instruction Flow Change: A different instruction is exe-
cuted compared to the original flow due to an incorrect
instruction fetching (PC corruption).

(c) Instruction Replacement: A different instruction is ex-
ecuted compared to the original program flow due to a
corrupted Opcode.

(d) Operand Forced Switch: One or more instruction
operand fields are corrupted, or they are unknown to
the ISA. This includes register operands or immediate
values of the instruction format.

(e) Data Corruption: The correct resource is used, but
the content (i.e., the data) of the resource (register or
memory word) is corrupted.

The above five groups provide any manifestation of
a hardware fault at the software layer. Any corruption
at the microarchitecture-level (in any hardware structure)
may affect one and only one instruction-related parame-
ter, and thus, it will be categorized to one of these five
distinct groups. However, depending on the corruption,
the committed instruction may be different in more than
one instruction-related parameter. Assume that an executed
instruction has committed in the correct cycle, with a correct
PC, but due to the fault occurrence, the committed instruc-
tion is different from the fault-free case. Apparently, the
destination register contents will also be wrong, but this is
due to the execution of wrong instruction. In that case, this
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Fig. 2. Simulated microarchitecture model. The committed instructions are compared to the fault-free ones to recognize if there is a mismatch during
the commit stage. If so, the corrupted instruction is marked and is categorized depending on the instruction-related parameter.

corruption in the commit stage will be categorized as an
Instruction Replacement instead of Data Corruption, since
the primary reason of corruption is the wrong opcode (i.e.,
the hardware-induced fault affected the opcode). Therefore,
any corruption of the architectural state can be categorized
to one and only one group and uniquely determines the
kind of corruption.

3 EXPERIMENTAL SETUP

3.1 Infrastructure

Such a study should ideally be based on a real system
or a low-level simulator (e.g., RTL). Although low-level
simulators may provide accurate fault effects, their simu-
lation throughput is extremely low (3 to 5 orders of magni-
tude [21]) and cannot model long-running workloads with
OS activity. Therefore, we are based on microarchitecture-
level simulation using gem5 [22]. Gem5 allows determin-
istic end-to-end execution of large workloads on top of an
operating system, which is impossible at lower levels. But
even if an RTL model of a microprocessor was available
and full system fault injection on it was possible (our study
can be applied at this abstraction layer), it would only
marginally augment our analysis [21] with the vulnerability
of the combinational logic, which has very low raw failure
rates compared to storage elements on which we focus [23].
For this reason, we present our results harnessing the high
throughput of microarchitectural modeling in performance
simulators. To this end, we employ GeFIN [20], the state-
of-the-art microarchitecture-level fault injection framework
built on top of the gem5.

GeFIN consists of a modified gem5 version that allows
fault injection along with instrumentation for running and
controlling simulation campaigns on full-system setup [12].
In this study, we use GeFIN to inject transient faults (i.e.,
the fault model used in this study). GeFIN injects random
faults in different bits of the same entry of a hardware
structure and in different entries of a structure, for the

desired hardware structure, following the uniform distri-
bution as defined in [24]. The execution running trace of
GeFIN (see Figure 2) collects information from the entire
pipeline, stores several instruction-related parameters, and
can distinguish between architectural and physical maps,
among other features. These features are necessary for cat-
egorizing the fault occurrences into groups (as discussed in
Section 2.3). Of course, in a real microprocessor, there are
no data stored in commit stage. Since we are based on a
simulation environment (on which we can inject faults), we
can store and have access to any simulated resource. GeFIN
is generally well-instrumented and provides features that
can be found only in such a simulated environment.

3.2 Hardware Structures and Benchmarks
For this study, we employ a CPU from the 64-bit Armv8 ISA,
modeling an out-of-order microarchitecture, which is very
similar to the Arm Cortex-A72. For some experiments, we
also present results for another ISA, the Armv7, modeling a
Cortex-A15-like microprocessor in order to show that our
observations still exist in other ISAs. For a comprehen-
sive analysis, our evaluations target 11 important hardware
structures: L1 data and instruction caches (tags and data
fields), L2 cache (data field), the Physical Register File, the
Load Queue (LQ), the Store Queue (SQ), the Reorder Buffer
(ROB), and the Instruction and Data TLBs (Translation
Lookaside Buffers). The most important hardware param-
eters for the considered microprocessor model are shown
in Table 1. These hardware structures occupy most of the
chip’s area and are, therefore, the largest contributors to the
vulnerability of the entire chip. The only SRAM structures,
which have not been targeted in this study and are available
in the gem5, are the structures of prefetchers, branch predic-
tor units, and branch target buffers. The reason is that faults
in these structures cannot result in any kind of corruption
of the architectural state, let alone produce SDCs. Further,
the floating-point physical register file is not considered
because our benchmarks do not contain any FP operations.
We employ a diverse set of 10 workloads from the MiBench
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TABLE 1
Basic Simulated Hardware Architectures Parameters

for the Considered Microprocessor Models.

ISA Armv7 Armv8
Pipeline Out-of-Order / 15 stages

L1 Data Cache 32 KB (2-way)
L1 Instruction Cache 32 KB (2-way) 48 KB (3-way)

L2 Cache 1 MB (8-way) 2 MB (16-way)
Physical Register File 128 registers 192 registers

Instruction TLB 32 entries (fully associative)
Data TLB 32 entries (fully associative)

Issue Queue 32 entries x 32 bit 64 entries x 64 bit
Load / Store Queue 16 entries x 32 bit 16 entries x 64 bit

Reorder Buffer 40 entries 128 entries
Fetch/Execute/WB width 3 / 6 / 8

suite [25] using the largest possible input datasets for all
benchmarks. The execution times of the benchmarks range
from 100 million cycles to 1.4 billion cycles. Unlike some pre-
vious microarchitecture-level reliability studies that employ
SPEC benchmarks either considering only Simpoints of 10 to
100 million cycles (i.e., a very short part of the benchmark)
or interrupting the simulations during a few thousand of
cycles after the fault injection [19], [26]–[28], in this study,
we consider the end-to-end execution of benchmarks with
significantly higher number of cycles (up to 1.4 billion).

The MiBench suite is very commonly used in reliability
studies [29]–[35] as it combines realistic benchmarks with
reasonable execution (thus simulation) time and facilitates
complete end-to-end executions for the thousands of fault
injections required in such an analysis. For each of the
eleven on-chip hardware structures, 2,000 single-bit faults
(thus 2,000 fault injection runs) were randomly generated
following the uniform distribution as defined in [24] result-
ing in 220,000 faults for all ten benchmarks (22,000 for each
benchmark; in other words 22,000 simulation runs for each
benchmark) and the eleven different hardware components.
We follow the widely adopted formulation of [24] for the
statistical fault sampling calculations with 2.88% error mar-
gin and 99% confidence level.

3.3 Final Execution Fault Effect Identification

Any fault injection campaign, regardless of the abstraction
layer, assumes that the origin of faults may influence the
output of the program. Typically, the final fault effects
classification is performed based on the following effects:

Masked: Simulation finished with no deviations from a
fault-free execution, Thus, the fault did not affect the system
or the application in any observable way.

Silent Data Corruption (SDC): Simulation finished nor-
mally, but the program output was different from the fault-
free simulation, without any observable indication.

Crash: A simulation that neither reached the end of the
workload nor finished within a certain amount of time,
because it was disturbed by a catastrophic event. As a result,
no program output was produced. The crash may refer to
a process crash, a system crash (kernel panic), deadlock or
livelock situations.

However, since this study focus on the SDC effects, we
limited our observations into this fault effect class.

3.4 Evaluation Flow
For the needs of this study, our experiments need to be
performed in two distinct phases to evaluate the propaga-
tion of faults. The first phase considers those faults that
eventually reach the software layer, whereas the second
phase evaluates the effect of the architecturally visible faults
to the output of the program. The former can be evaluated
through the HVF (Hardware Vulnerability Factor [36]) as-
sessment, while the latter through the AVF (Architectural
Vulnerability Factor [37]) assessment. The HVF assessment
and the AVF assessment, providing the microarchitecture-
dependent vulnerability and the cross-layer (full stack)
vulnerability, respectively. The microarchitecture-dependent
evaluation (i.e., HVF) targets on the effects of hardware
faults until they “touch” the software layer (i.e., the fault
becomes architecturally visible). For the HVF analysis, we
consider as Benign faults, those faults that eventually get
masked by a microarchitectural operation (as described in
Section 2.2), and thus, the fault occurrence never reaches the
commit stage. Since the fault occurrence did not commit,
the fault is not architecturally visible, and it is categorized
as Benign. On the other hand, any fault that reaches the
commit stage (i.e., architecturally visible), is considered as a
Corruption. Each Corruption is categorized to one (and only
one) group presented in Section 2.3, depending on the type
of corruption.

From the AVF point of view, a Corruption (i.e., an archi-
tecturally visible fault) may or may not affect the program’s
execution, and thus, the output. A fault that either reaches
the software and gets masked by a program’s operation
(e.g., the corrupted register value is never be used) or it is
Benign (does not reach the software), it is a Masked fault for
the AVF classification since it does not affect the program.
On the other hand, if the fault reaches the software and
subsequently affects the program’s operation, it is classified
either as an SDC or as a Crash. However, for this study, we
consider only those faults that silently affect the execution of
the program, and in the following sections we provide the
correlation of architecturally visible faults to the SDC fault
effect.

4 CROSS-LAYER ANALYSIS OF SDCS

4.1 Correlation of SDCs to the Hardware Structures
In this subsection, we present the correlation of silent
data corruptions to each hardware structure considered
in this study. Before we discuss the distribution of the
architecturally-visible faults (see Section 4.2), it is essen-
tial to evaluate the percentage of faults in each hardware
structure that produces SDCs. In such a way, we can gain a
clearer view on the susceptibility of each individual struc-
ture to faults that eventually lead to SDCs. Figure 3 shows
the susceptibility of each structure to faults that eventually
lead to silent data corruptions for faults that did not get
masked at the hardware level (i.e., non-Benign faults), for
both Armv8 and Armv7 ISAs to present a comprehensive
comparison between different architectures. For complete-
ness, Figure 4 shows the remaining percentage, which is
covered by Masked and Crash fault effect for Armv8. The
percentages at the top of the bars show the sum of Masked
and Crash percentage for each structure.
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In Figure 3, the first and major observation is that the
Reorder Buffer (ROB), the Load Queue (LQ) and the Store
Queue (SQ) have zero probability to contain hardware faults
that can generate silent data corruptions. The reason is that
any fault occurrence in these hardware structures cannot be
architecturally visible, primarily due to dependence graph
checks failures before the commit stage. Hardware struc-
tures, such as ROB, LQ, and SQ, which are located deep
in the microprocessor’s pipeline, account for the correct
instruction ordering when instructions are ready to commit,
and their queue entries consist of the Program Counter
and the architectural or physical register specifiers. Any
corruption in those parameters can result in dependence
graph check failures before the commit stage, and thus, to
a visible crash. Assume, for example, that a fault corrupts
the physical register specifier of a certain ROB entry. The
correct register specifier was, for example, r9, whereas the
corrupted register specifier is r13. If the physical register
r13 is an available specifier, currently located in the free list,
a dependence failure occurs before commit. Therefore, the
related instruction will not commit, and the microprocessor
results in a crash. It is highly unlikely due to the operation
of these structures and their role in the microarchitecture to
result in an SDC due to a fault in them.

On the other hand, the data, and the tag field of L1
data cache, and the L2 cache are the most susceptible on-
chip hardware structures to faults that eventually result in
silent data corruptions. The probability of these hardware
structures to result in a silent data corruption due to a
fault is 53.4%, 38.0%, and 36.9%, respectively, as shown in
Figure 3, for Armv8. Interestingly, the same observations
hold true for the different ISA (i.e., the Armv7), in which we
can see that follows the same trends.
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L1 data cache stores data values that are usually used for
result or address calculations. Therefore, if a fault occurs in
the data field of L1 data cache, it is very likely to corrupt a
computation (i.e., the corrupted entry was read) or directly
the output (i.e., the corrupted entry is stored without being
read). Moreover, L2 cache also stores data values that are
usually used for result or address calculations, as well as
instructions and address translations in addition to data
values. Therefore, the probability that faults in this structure
can generate an SDC is, naturally, less than the correspond-
ing probability of the L1 data cache. The reason is that
it is more likely for a corrupted instruction or an address
translation to result in a Crash rather than in a silent data
corruption. However, as we can see in Figure 3, the L2 cache
provides higher SDC vulnerability for Armv7, in contrast to
Armv8. The reason is that Armv7 L2 cache is half the size of
Armv8 ISA, so the probability is getting higher. This cannot
affect the initial observations of SDC probabilities.

At this point, it is important to discuss in more detail
the case in which a fault directly affects the output (i.e., the
corrupted entry is stored without being read), because it is
the most interesting one in terms of reliability evaluation.
This can happen for both L1 and L2 caches (see Section 2.2).
Figure 5 presents the probability of hardware-induced faults
and for each program to result in silent data corruption, di-
rectly to the output, without be visible to the software layer.
It is clear in this graph, that the number of this kind of faults
is different for different programs. Moreover, such faults
are initially categorized as Benign Faults during the HVF
analysis, since they do not affect the architectural state [19].
However, it is necessary to correlate the results of HVF anal-
ysis to the output file in order to unveil such corruptions.
Interestingly, our analysis unveils a strong correlation of the
number of this kind of faults to the number of Benign Faults
and the output size of each program. Specifically, when the
program’s output is relatively small (e.g., bitcount has total
output size less than 1 KB), the probability of such a fault to
affect the program’s output is zero (as it is clearly shown in
Figure 5 for every hardware structure). On the other hand,
the probability of such a fault to affect the program’s output
is getting higher as the output size gets high (e.g., blowfish
has output data greater than 3 MB). The reason is that, for
programs with relatively small output size, a cache level
stores only a small part of the total output at every given
moment, so it is extremely unlikely for a fault to hit those
(few) words that are stored in cache just before they are
written to the output file. In contrast to program’s with large
output size, for which it is more likely for a fault to hit the
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part of the output data reside in a cache level before they
are written to the output.

The data TLB and the Physical Register File (RF) are also
susceptible to faults that result in silent data corruptions, as
shown in Figure 3. Their SDC probabilities are account for
22.2% and 15.8%, respectively, of the total vulnerability of
each structure. The reason that these structures are also sus-
ceptible to faults that lead to silent data corruptions, but less
than L1 data cache and L2 cache, is because these structures
are also attributed to interplay with data values, or memory
addresses that belong to data in memory. However, the
reason that the Physical Register File and the data TLB are
less susceptible to faults that result in silent data corruptions
than L1 data cache and L2 cache, is because the former
handles also memory addresses apart from data values, and
the latter has high probability to result in Masked or Crash.

Assume for example that a fault affects the physical
address part of an address translation that is stored in the
data TLB. Since this physical address aims to a data frame
in memory (not an instruction frame), it is likely due to the
wrong physical address to fetch a different word because,
due to the fault, the physical mapping is wrong. However,
it is also likely for the corrupted physical address to point
to an unmapped memory location, or an unprivileged one.
Therefore, due to the nature of this structure and its role in
the microarchitecture, the silent data corruption probability
occurs (and it is attributed to 22.2%), but at the same time
the probabilities for masking or crash are reasonably higher.

On the other hand, a fault in the instruction TLB or the
tag field of L1 instruction cache has nearly zero probability
to result in an SDC (the probability is 0.2%, as shown in
Figure 3). The reason is that both structures account for
memory addresses of instruction-related memory frames,
and thus it is more likely for these structures to generate
a crash due to a fault, rather than an SDC.

Interestingly, the data field of the L1 instruction cache
shows a non-negligible susceptibility to silent data cor-
ruptions. L1 instruction cache stores instructions, which
primarily consist of an opcode, register operands, and im-
mediate values. A corruption in the opcode field will most
likely result in a crash, and in very rare cases in an SDC.
Specifically, the most common scenario that a corruption in
the opcode could result in an SDC, is if the new opcode
is ISA-defined and the new executed instruction correlates
somehow its operation to the fault-free case. For example, if
the fault-free instruction is an add instruction and due to a
fault becomes an or instruction, it is likely to result in a silent
data corruption. However, this case is extremely rare. On the
other hand, if the corruption occurs in a register operand
or the immediate field of an instruction, the probability of
an SDC is higher compared to a corruption in the opcode.
The reason is that it is more likely for a corruption in
the operands or the immediate field to let the execution
normally proceed, but since the value which is used is
wrong, the execution could result in a silent data corruption.
Of course, this is not the most likely case, however, as we
discuss in the next section, it is likely to result in an SDC.

4.2 Exploring Architecturally-Visible Faults
As we discussed previously in subsection 2.3, any hardware
fault that affects the software (i.e., the fault is architecturally

visible), it may corrupt one and only one instruction-related
parameter: (i) the committed cycle, (ii) the Program Counter
(PC), (iii) the opcode, (iv) register operands and/or an
immediate field, and (v) the register contents. In this section,
we present the anatomy of the hardware-induced faults, by
exploring the propagation of faults from the hardware layer
to the software layer. Therefore, our experimental analysis
consists of a detailed HVF analysis, which can indicate
which faults affect the software layer.

During the HVF analysis, we categorized the archi-
tecturally visible faults into the five distinct groups, as
described in subsection 2.3, i.e., (a) Execution Time Error
(i.e., wrong committed cycle), (b) Instruction Flow Change
(i.e., program counter change), (c) Instruction replacement
(i.e., opcode corruption), (d) Operand Forced Switch (i.e.,
register operand or immediate field corruption), and (e)
Data Corruption (i.e., register content corruption). Once
we categorize the faults into these five distinct groups,
we continue running complete AVF experiments, to obtain
their final fault effect. In such a way, we can correlate each
hardware-induced fault in any on-chip hardware structure,
to its eventual final effect. Of course, since our study focuses
only on silent data corruptions, we consider only the prob-
ability of these faults to result in a silent data corruption,
and we study these probabilities, by breaking down the
architecturally visible faults into categories.

Figure 6 shows the silent data corruption probabili-
ties of all architecturally visible faults, for every hardware
structure, separately for each of the five groups of fault
manifestations at the software layer. It is clearly shown by
these graphs that faults that belong to the Data Corruption
group (i.e., faults that corrupt the register content) provide
the higher SDC rate among any other group. Note that faults
which directly corrupt the output without being software
visible are considered as Data Corruptions as well (the
reason is that this group of faults hit a part of the program’s
output which is exposed in any cache level, but only the
cache arrays that store data, as explained in section 2.2,
so the corruption can be only applied to data values.). Of
course, it can be intuitively seemed reasonable that faults in
the Data Corruption group provide the highest probability
to result in silent data corruptions, since it is very likely
for a fault that corrupts a data value to result in a silent
data corruption. Apparently, most (if not all) of the software-
based fault-tolerant methods exist in the literature, are pri-
marily based on this intuition. Software-based fault-tolerant
methods are primarily based on the redundant operations of
the application code and a comparison between the actual
and the redundant code to ensure that they both match.
In case of a difference, the detection of a potential data
corruption occurs, and the necessary actions are employed
depending on the method. However, a major insight of this
study is that, as we can see in Figure 6, all SDCs are not
due to value corruptions (i.e., Data Corruption group), and
thus, it is very difficult for some (if not all) software-based
fault-tolerant techniques to detect such kinds of corruptions.

Assume for example the faults that belong to the Instruc-
tion Flow Change group. As we can see in the correspond-
ing graph (the top-middle graph of Figure 6), nearly 10% of
the faults in the tag field of the L1 instruction cache may
result in silent data corruptions. Hardware-induced faults
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Fig. 6. SDC probabilities of non-Benign faults (i.e., faults visible to the software), for all five corruption groups. Each graph shows only those faults
that correspond to one group, for every hardware structure (x-axis) (notice the different scale of the y-axis across the graphs).

in the tag field of the L1 instruction cache are likely to
affect the instruction flow of the executed program, since
any corruption in it will affect the tag comparisons of the
next-executed instructions. In such a scenario, it is likely for
the execution to result in a false tag match, and a different
instruction will be executed. Of course, the instruction will
be correct, with the correct register operands, but it is not the
one that it was supposed to be executed at this cycle. Such
a case is very difficult to be detected by a software-based
redundancy technique, since there is a part of the code that
may be not executed at all (and thus neither the redundant
code that depends on it). Another example is the faults that
belong to the Execution Time Error. Faults in this group
affect the execution flow of the program, i.e., the instruction
will be committed in the correct order, but in the wrong
cycle. As we can see in the corresponding graph (the top-left
graph of Figure 6), the address-based memory structures,
which are strongly related to the data manipulation, may
result in silent data corruptions. Specifically, the tag field
of the L1 data cache and the data TLB provide the highest
probability to result in silent data corruptions (i.e., 13.1%
and 11.8%, respectively), compared to the data field of the
L1 instruction and data caches, and the physical register file
(0.5%, 0.2%, and 0.6%, respectively).

Note that as we discussed in subsection 4.1, Reorder
Buffer (ROB), the Load Queue (LQ) and the Store Queue
(SQ) show zero probability to silent data corruptions, pri-
marily due to dependence graph checks failures before the
commit stage. Therefore, the probability of faults that result
in SDCs for these structures for any group is zero.

4.3 Impact of Multi-bit Faults on SDCs
It has been observed through physical experiments of ac-
celerated beam testing [2] that on-chip storage arrays can
suffer multiple-bit flips in adjacent areas. Therefore, multi-
bit faults can affect neighboring bits of a hardware structure.
This means that, even if a multiple-bit flip occurs, it cannot
affect two different instructions at the same time. For exam-
ple, it is unlikely due to the geometry of multiple-bit faults
to affect both the content of a register (i.e., Data Corruption)
and the opcode of that instruction at the same time (i.e.,
Instruction Replacement). Therefore, the final estimation

results of SDC probabilities in the presence of multi-bit
faults could be, eventually, higher than the single-bit faults,
because the probability of a corruption is increased. This
is in line with previous studies that consider multiple-bit
faults [2], [12], [19].

5 INSTRUCTION-LEVEL ANALYSIS OF SDCS

Another major limitation of software-based fault tolerance
methods, which focus on protecting an application against
silent data corruptions, is that these methods are primarily
applied only to the application code and not to the entire
software stack, i.e., application, libraries, and operating sys-
tem. This means that from the cross-layer resiliency point of
view, hardware-induced faults that may corrupt the kernel
or libraries instructions, are practically unprotected and will
potentially result in silent data corruptions (or any other
fault effect depending on the corruption). However, in a
full-system setup (i.e., in real-life servers’ execution), sys-
tem calls and library calls occur hundreds or thousands of
times during the normal application’s execution, and thus,
kernel and libraries code are both executed along with the
application’s code. To this end, it is important to study the
frequency of corruptions during the execution of kernel and
libraries code and assess the impact of them on the final
estimated silent data corruptions of executed programs.

Since this work aims to study the SDCs from the mi-
croarchitectural perspective, we distinguish and present our
instruction-level analysis between user and kernel instruc-
tions. The reason is that from the microarchitecture-level
point of view, it is not possible to know which instruction
is related to the program and which instruction is related to
a library, since both are considered in user space. Thus, our
instruction-related study focuses on the differences between
user and kernel instructions.

5.1 User vs. Kernel Instructions Breakdown

As a first quantitative evaluation, we present the breakdown
of user and kernel instructions for all programs used in
this study. As shown in Figure 7, the percentage of kernel
instructions of each program is different and account for
the minority of the total executed instructions. Specifically,
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Fig. 7. Breakdown of user vs. kernel instructions for all programs con-
sidered in this study.

the benchmark that provides the most kernel instructions
during the entire program’s execution is rijndael. For rijn-
dael, 10.1% of the total executed instructions are related to
kernel instructions. Edge and patricia benchmarks constitute
nearly half of kernel instructions compared to rijndael, which
account for 6.3% and 5.8%, respectively. Moreover, as we
can see in Figure 7, the remaining benchmarks have less
than 3% of kernel instructions. Specifically, bitcount is the
benchmark with the least kernel instructions, which are
account for only 0.2% of the total executed instructions
of this benchmark. Overall, the total kernel instructions
executed for any program constitutes at most the 10% of
the total executed instructions, while the user instructions
constitute the remaining 90% (or more) of the total executed
instructions.

According to this breakdown, we can naively assume
that the impact of kernel instructions on the SDCs of each
program could be extremely low compared to the impact
of user instructions on the silent data corruptions of each
program. However, as we discuss in the next subsections,
the impact of kernel instructions on silent data corruptions
is not negligible and account for nearly half of the silent data
corruptions in some cases.

5.2 Impact of User vs. Kernel Instructions on SDCs
In this subsection, we present the impact of user vs. kernel
instructions that result in silent data corruptions, separately
for each hardware structure. Figure 8 shows the break-
down of user versus kernel instructions for the L1 data
cache (data field) structure, since it is the most vulnerable
structure to SDCs among the other structures. It is clearly
shown in this graph that each benchmark provides different
percentage of SDC probability between the executed user
and kernel instructions. More specifically, in Figure 9 we
can see the breakdown of user vs. kernel instructions for
every hardware structure that provide SDCs, consolidated
for all benchmarks used in this study. The percentages
at the top of each graph show the total probability of
silent data corruptions for each hardware structure. As we
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tions for the L1 data cache (data field).
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can see in this graph, hardware structures that primarily
account for data manipulation (i.e., L1 data cache and L2
cache), not only provide the highest probability of silent
data corruptions, but also, the kernel instructions contribute
significantly more to silent data corruptions compared to
any other hardware structure. Specifically, for the data field
of L1 data cache, we can see that 18.4% out of 53.4% of the
total silent data corruptions belong to kernel instructions.
For the tag field of the L1 data cache, 19.8% out of the
38% of the total silent data corruptions belong to kernel
instructions. For the L2 cache, 11.2% out of the 36.9% of the
total silent data corruptions belong to kernel instructions.

On the other hand, the impact of kernel instructions on
silent data corruptions for the other hardware structures
is lower compared to user instructions, but not negligible.
These hardware structures (i.e., the instructions and data
TLBs, the Physical Register File, and the tag and data
fields of L1 instruction cache) are primarily addressed-
based structures and account for instructions. Therefore,
they fundamentally provide lower SDC probability than
the structures that primarily account for data manipulation.
Specifically, for the data TLB, 2.3% out of the 22.2% of the
total SDCs belong to kernel instructions. For the Physical
Register File (RF), 0.9% out of the 15.8% of the total SDCs
belong to kernel instructions. For the data field of L1 in-
struction cache, 0.8% out of the 7.3% of the total silent data
corruptions belong to kernel instructions. For the instruction
TLB, there is no kernel instruction (i.e., 0%) that provides
SDCs, while for the tag filed of the L1 instruction cache
more than half of the total instructions that result in SDC
belong to kernel instructions (i.e., 0.14% out of 0.2% belong
to kernel instructions).

5.3 Kernel Instructions Contribution to the SDCs

Apart from the impact of user vs. kernel instructions on
the silent data corruptions for each structure, it is also
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essential to study the relative contribution of the kernel
instructions to the total silent data corruption rate of each
hardware structure. To this end, in this subsection, and
more specifically in Figure 8, we analyze the contribution
of kernel instruction to the total SDC rate. Specifically, in
Figure 10 we can see that a hardware-induced fault in the
tag field of the L1 instruction and data caches can severely
affect the kernel instructions compared to user instructions.
Specifically, for the L1 instruction cache (the tag field) the
contribution of affected kernel instructions that result in
silent data corruptions is nearly 77% of the total instructions
that result in silent data corruptions, while for the L1 data
cache (the tag field) the corresponding contribution is more
than 50%. Moreover, for the data field of L1 data cache and
for L2 cache, the contribution of kernel instructions to the
silent data corruptions compared to the total instructions
that result in silent data corruption is also non-negligible
and account for more than 30%. It is clear from this graph
that in these four hardware structures, there is significantly
higher probability for the kernel instructions to be affected
by a hardware-induced fault compared to user instructions.
This insight is exceptionally interesting, if we consider that
the total kernel executed instructions for all programs that
are used in this study, account for less than 10% of the total
executed instructions (both user and kernel instructions).

6 BYTE-LEVEL ANALYSIS OF SDCS

Although the analysis of the impact of user vs. kernel
instructions on the silent data corruptions is conceptually
essential for understanding the main sources of faults prop-
agation, it is also important to study the impact of byte
position on the SDCs. To this end, in this section we present
the different probabilities that each byte position inside an
8-byte word has, for the largest size hardware structures, in
terms of the total bytes they can store. These structures are
the data field of L1 instruction and data caches, the L2 cache,
and the Physical Register File.

Figure 11 presents the probability of different byte po-
sitions in an 8-byte word of the four different hardware
structures to result in silent data corruptions under the
occurrence of a single-bit flip. The x-axis shows the byte
positions, i.e., B0 label in the x-axis represents the least
significant byte of the word, whereas B7 label in the x-axis
represents the most significant byte of the word. Note that
exceptionally for the L1 instruction cache, the word size is
4 bytes and not 8 bytes as it is in all other structures. The
reason is that in Armv8 ISA, which is the architecture we
study in this paper, the instruction length is 4 bytes.

As we can see in Figure 11 for the L1 instruction cache
(i.e., the left-most graph of Figure 11), the probability of any

byte position is nearly the same for every byte. However,
this is not the case for the other three structures, which are
primarily account for data and address values. Specifically,
we can see that in L1 data cache, the probability of a byte
to result in an SDC under the occurrence of a single-bit flip
becomes lower as we move towards the most significant
bytes. The same observation holds also for the L2 cache, in
which, however, there are some exceptions regarding the
B6 and B2, which present a relatively larger probability to
result in silent data corruptions (i.e., nearly 15%). On the
other hand, the Physical Register File shows an extremely
unbalanced behavior (the rightmost graph of Figure 9).
As we can see in the rightmost graph of Figure 11, B2
and B3 provide the highest probability to result in silent
data corruption under the occurrence of a single-bit flip,
while this probability is getting lower as we move from B4
towards the most significant byte.

7 RELATED WORK
Several works have been presented in the literature regard-
ing silent data corruptions caused by transient faults [38]–
[41]. Although these studies can be conceptually useful,
the distribution of hardware-induced faults that eventu-
ally affect the software, and thus, may silently corrupt the
output, is completely different to what the software-level
studies consider [16]. More specifically, Fang et al. in [38]
presented a full-software stack study in respect to SDCs.
Guan et al. in [39] present an empirical study on three
sorting algorithms to determine the SDC vulnerability of
individual portions of an algorithm. Li et al. in [40] propose a
visualization tool, named SpotSDC, to facilitate the analysis
of a program’s resilience to silent data corruptions. Xu et
al. in [41] propose CriticalFault, which is a vulnerability-
driven framework that instructs the fault injection locations
towards likely non-derated faults. However, these studies
focus only on the software or ISA layer, and they primarily
evaluate the effects of applications to the SDCs, without
considering the microarchitecture. In this study, we consider
the way that faults, whose origin is a hardware (microar-
chitectural) structure, propagate from the hardware to the
software and eventually result in silent data corruptions.
To our knowledge, this is the first study that shows the
anatomy of faults at the microarchitecture-level all the way
to the software-level.

Hari et al. in [42] present low-cost program-level detec-
tors for reducing SDCs. This study focuses on identifying
and understanding the program portions, which may cause
SDCs, and reducing them in a cost-effective manner. This
study is also software-oriented and assumes that the origin
of the faults are only the architectural registers (i.e., microar-
chitecture agnostic study). Duan et al. in [43] propose the
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use of boosted regression trees as a predictive model for
AVF using ACE analysis, which cannot distinguish among
SDCs and other fault effects, and thus, no essential outcomes
can occur for any correlation. There are also similar studies
that focus on the microarchitecture-level fault occurrences,
and thus, consider the hardware masking, however, to the
best of our knowledge, none of them focus on exploring
the propagation of hardware-induced faults and investigate
the correlation of several microarchitectural structures to the
silent data corruption distribution. For example, Li et al.
in [27] and [44] study the propagation of permanent faults
to the software considering functional blocks, the register
file, the register alias table, and the reorder buffer. In [44] the
authors introduce the SWAT-Sim, which is a fault injection
tool to study the system-level manifestations of permanent
faults. Sangchoolie et al. in [45] present a recent ISA-level
fault injection study, in which they present approaches that
improve the controllability and efficiency of ISA-level fault
injection techniques. [45] is completely in line with this
study, as it concludes that address- and instruction-related
injections are more likely to result in a crash, while injec-
tions in data variables are more likely to result in an SDC.
Although all these studies provide meaningful results and
insights, none of them explicitly studies the anatomy of the
silent data corruptions in a cross-layer manner, as this study
does. Moreover, a recent study [16] has demonstrated the
diverging reliability evaluation results and the significant
error margin that software-level studies can introduce. To
this end, this study considers hardware-induced faults and
presents, for the first time, the anatomy of these faults with
respect to silent data corruptions.

8 CONCLUSION

In this paper we presented, for the first time, an in-depth
analysis of the behavior and the cross-layer propagation of
hardware faults. Our work focuses on eleven major microar-
chitectural structures of an out-of-order microprocessor that
result in SDCs. Our analysis revealed several important
insights, including: (i) the portion of SDCs that can be
attributed exclusively to eleven different hardware struc-
tures, (ii) the instruction-related parameters that are more
likely to result in a silent data corruption, (iii) the extent to
which the operating system affects the silent data corruption
rate, and (iv) the byte positions of a word stored in a
hardware structure which are more likely to result in SDCs.
All these insights that this study provides, advocate that
chip manufacturers can take several steps to improve their
next-generation microprocessors. They need to: (i) enhance
the error detection and correction capabilities; (ii) introduce
sophisticated redundancy and fault tolerance techniques to
mitigate the impact of silent data corruptions; (iii) imple-
ment error logging and monitoring mechanisms to allow for
better visibility into the occurrence and patterns of data cor-
ruptions; and (iv) refine their testing and validation process
to include specific scenarios that emulate data corruptions
and hardware faults. Further, our insights of single event
upsets (transient faults) can be similarly extended to multi-
bit upsets, and to design bugs, permanent and intermittent
faults and explore the differences and similarities that all
these kinds of corruptions provide to the SDCs.
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