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Abstract: 
This paper concerns with the problem of obtaining solutions of some linear Diophantine equations. 

Key Words: Diophantine Equation & Euclidean Algorithm 

1. Introduction: 

 The linear Diophantine equations and their solutions are one of the well-known results in number theory.  Study of these 

equations can be found in many works such as Dickson [2], Gallian [3], and so on.  A Linear Diophantine equation with two 

variables x and y has the form  

      𝑎𝑥 + 𝑏𝑦 = 𝑐      -------- (1) 

Where a, b and c are all integers.  We are interested in integer solutions, that is integers x and y that satisfy equation (1).  In 

Dickson it is stated that if a and b are relatively prime and if (u,v) is an integer solution of (1), then the whole set of integer 

solutions of (1) can be expressed as 

 𝑥 = 𝑢 + 𝑏𝑤
𝑦 = 𝑣 − 𝑎𝑤

              --------- (2) 

Where w is an arbitrary integer.  In other words, the whole set of integer solutions of (1) is  

𝑆 =  (𝑢 + 𝑏𝑤, 𝑣 − 𝑎𝑤)  𝑤 = 0, ±1, ±2 … .   
2. Preliminaries: 

Theorem 2.1:  

The equation 𝑎1𝑥1 + ⋯ + 𝑎𝑛𝑥𝑛 = 𝐶   is solvable if and only if   gcd 𝑎1 , … , 𝑎𝑛 |𝑐,  In case of solvability, one can choose  

𝑛 − 1 solutions such that each solution is an integer linear combination of those  𝑛 − 1 solutions. 

Proof:  

Let  𝑑 = gcd⁡ 𝑎1 , … , 𝑎𝑛 .  If C is not divisible by d, then the equation  𝑎1𝑥1 + ⋯ + 𝑎𝑛𝑥𝑛 = 𝐶  is not solvable, since for 

any integers   𝑥1 , … , 𝑥𝑛,  the left hand side is divisible by d and the right – hand side is not. 

 Actually, we need to prove that   gcd⁡ 𝑥1, 𝑥2 … , 𝑥𝑛   is a linear combination with integer coefficients of  𝑥1 , 𝑥2 … , 𝑥𝑛 .  

Since,   

gcd 𝑥1 , … , 𝑥𝑛 = gcd gcd 𝑥1 , … , 𝑥𝑛−1 , 𝑥𝑛 . 
gcd 𝑥1 , … , 𝑥𝑛  is a linear combination of  𝑥𝑛   and  gcd 𝑥1 , … , 𝑥𝑛−1 .  Then inductively  gcd 𝑥1 , … , 𝑥𝑛  is a linear combination of   

𝑥1 , … , 𝑥𝑛−1, 𝑥𝑛  

3. Results: 

Example 3.1: Find the solution of the linear Diophantine Equation   60𝑥 + 33𝑦 = 9. 
Solution: Let  𝑎 = 60, 𝑏 = 33,   𝑐 = 9  and   60, 33 = 3,  we can see  3/9.   

By using Euclidean Algorithm 

60 = 1.33 + 27 

33 = 1.27 + 6 

27 = 4.6 + 3 

6 = 2.3 + 0 

The last non zero remainder is 3.  So   60,33 = 3 

3 = 27 − 4.6 

                     = 27 − 4. (33 − 27) 

         = 5.27 − 4.33 

                      = 5 60 − 33 − 4.33 

                                                                                                 = 5.60 − 9.33 

We take 𝑢 = 5  and 𝑣 = −9.  One solution is then  

𝑥0 = 5.9/3 = 15 

        𝑦0 = −9.9/3 = −27 

All the solutions are given by 

      𝑥 = 15 +
33. 𝑛

3
 

⇒ 𝑥 = 15 + 11𝑛 

         𝑦 = −27 −
60𝑛

3
 

                                                     ⇒ 𝑦 = −27 − 20𝑛  Where  𝑛 𝑧 

Example 3.2: Find the solution of the linear Diophantine Equation   442𝑚 + 255𝑛 = 17. 
Solution: Let  𝑎 = 442,   𝑏 = 255, 𝑐 = 17  and   442, 255 = 17.    

By using Euclidean Algorithm 
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442 = 1.255 + 187 

255 = 1.187 + 68 

187 = 2.68 + 51 

68 = 1.51 + 17 

51 = 3.17 + 0 

The last non zero remainder is 17.  So 

 442, 255 = 17. 
                                                                       17 = 68 − (51 × 1) 

                                                                            = 68 − [(187 −  68 × 2 ) × 1] 
                                                                            =  68 × 3 − 187 

                                                                        =   255 −  187 × 1  × 3 − 187 

                                                                            =  255 × 3 − (187 × 4) 

                                                                                    =  255 × 3 −   442 −  255 × 1  × 4  

                                                                           =  255 × 7 −  442 × 4  

We take  𝑢 = 7  and  𝑣 = −4  one solution is then  

                                𝑥0 = 7. 17
17 = 7  and   𝑦0 = −4. 17

17 = −4 

All the solutions are given by  

𝑥 = 7 +
442

17
𝑡 = 7 + 26𝑡 

𝑦 = −4 −
255

17
𝑡 = −4 − 15𝑡    Where   𝑡  𝑧 

Conclusion:  

 In this paper, we have obtained solutions of some Linear Diophantine equation one may attempt to find integer solutions 

to other choices of multivariate linear Diophantine equation. 
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