
ISSN: 2455 – 5428 

International Journal of Current Research and Modern Education 
Impact Factor 6.725, Special Issue, July - 2017 

National Conference on Emerging Trends in Mathematics - 2017 
On 28th July 2017 - Organized by PG and Research Department of Mathematics,  

A. V. V. M. Sri Pushpam College (Autonomous), Poondi, Thanjavur (Dt.), Tamilnadu 

88 
 

A STUDY ON GEOMETRIC INEQUALITIES 

R. Elakkiya* & A. Panneer Selvam** 
* M.Phil., Scholar, Department of Mathematics, PRIST University, Vallam, Thanjavur, Tamilnadu 

** Associate Professor, Department of Mathematics, PRIST University, Vallam, Thanjavur, Tamilnadu 

Cite This Article: R. Elakkiya & A. Panneer Selvam, “A Study on Geometric Inequalities”, International 

Journal of Current Research and Modern Education, Special Issue, July, Page Number 88-89, 2017. 

Abstract: 
 In this paper, we present several inequalities among various elements of a triangle.  
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Introduction:  

 Many of the inequalities we have studied and the techniques we have learnt have their direct implications in a class of 

inequalities known as geometric inequalities.  These inequalities explore relations among various geometric elements.  When we 

consider a triangle, we can associate many things with it: angles, sides, area, medians altitudes, circum-radius, in-radius, ex-radii 

and so on.  The classic example is Euler’s inequality:  R > 2r.  Where R is the circum-radius and r is the in-radius.  

 We use the following standard notations for a triangle ABC:  

 a = |BC|, b = |CA|, c = |AB|. 

 S is the semi – perimeter of ABC : S = (a+b+c)/2  

 R is the circum – radius.  

 We prove the following theorems: 

Theorem 1: abc > 8 (s –a) (s- b) (s –c).  

Proof: We have a
2
 – (b –c)

2
 < a

2
 and equality holds if and only if b= c.  

 Similar inequalities hold : b
2
 – (c –a)

2
 < b

2
, c

2
 – (a –b)

2
 < c

2
.  

Hence, abc  >  
222222

b)(ac   a)(cb  c)(ba   

  =  (a + b –c) (b + c –a)  (c + a –b) 

  =  8 (s –a) (s –b) (s –c).  

Equality holds if and only if a =b = c.  

Theorem 2: abc  <  a
2
 (s –a) < 3/2 abc.   

Proof: We have 2  a
2
 (s –a) =   a

2
 ( b+c –a) + b

2
 (c + a –b) + c

2
 (a +b – c)  

     =   a
2
b +  ab

2
 -  a

3
 

On the other hand, we also see that  

(b + c –a)  (c +a –b) (a +b –c) = (c
2
 – a

2
 – b

2
 + 2ab) (a +b–c) = a

2
b + ab

2
 + b

2
c + bc

2
 + c

2
a + ca

2
 – a

3
 –b

3
 – c

3
 – 2abc 

Thus, we obtain 2  a
2
 (s –a) = (b +c –a) (c +a –b) (a +b –c) + 2abc.  

Since a, b, c are the sides of a triangle, we know that  b +c –a > 0, c +a –b > 0 and a + b –c >0.  

Hence, abc <  a
2
 (s –a). 

Now using (1), we get 2  a2 (s –a) < abc + 2abc = 3 abc,  

Which proves the right hand side inequality.   

Again, we may use stolarsky’s theorem.  

Considering P (x, y, z) =

cyclic
  x

2
 (y +z –x) – 2xyz,  

 We see that it is a homogeneous polynomial of degree 3 and  

 P (1, 1, 1) =1, P (1, 1, 0) = 0, P (2, 1, 1) =0.   

 Hence,  P (a, b, c) > 0, giving the left – side inequality.  On the other hand, the polynomial  

 Q (x, y, z) = 3xyz - 

cyclic
  x

2
 (y +z –x), 

Gives Q (1, 1, 1) =0, Q (1, 1, 0) = 0 and Q (2, 1, 1) =2.   

 Thus Q (a, b, c) >0, and we get the right – side inequality.  

Theorem 3: 
2

3
 < 

cb 


a
 < 2.  Equality holds on the left if and only if a=b=c.  

Proof:  The first part of the above inequality is equivalent to  

    1    
ba

c
   1  

ac

b
    1   

cb

a
    

2

9









  

= (a + b + c)  















  

ba

1
      

ac

1
    

cb

1
  

If we introduce a + b =x, b +c =y and c +a =z, this reduces to  9 < (x +y + z) 
                 









x

1

z

1

y

1  

Which is a consequence of the AM – GM inequality.  Suppose c is the largest among a, b, c.   
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By the symmetry, we may assume a < b < c.   In this case  

ba

c

ac

c

ca

a
       

ba

c
     

ac

b
       

cb

a

















 

= 1 + 
ba

c  

 
cb

a  < 2. 

Since c < a +b by the triangle inequality.   

Proof: The left hand side of the above inequality is generally known as Nesbitt’s inequality.  There are a variety of ways of 

proving this.  We give two such proofs.  

(i)  Using the Cauchy – Schwarz inequality, we have  

(a + b +c)
2
 = (a)

2
 

= 
2

















 c)a(b  

cb

a  

(a +b +c)
2
 < c)a(b  

cb

a











  

This gives  

c)a(b

c)b(a
     

cb

a
2






 
  

=  
)

c)b(a
 

2

cabcab(2 

  

2

3

(2










ca)  bc  ab

ca)  bc  3(ab
     

cb

a  

since (a + b + c)
2
 > 3 (ab + bc + ca).  

 (ii) we may assume a < b < c, since the inequality is symmetric in a, b, c.  

This implies that  

   
ba

1
      

ac

1
    

cb

1








 

Using rearrangement inequality, we obtain  

cb

c

a

b

ac

a
      

ba

c
      

ac

b
    

cb
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 b
, 

ac

cb
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a
      

ba

c
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b
    

cb
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 cb
 

Adding these two, we obtain  

2 3       
ba

c
      

ac

b
    

cb

a

















. 

This gives the desired inequality.  
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