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Abstract

This Diploma thesis summarizes the development, verification and appli-
cation of three different parallel codes for computing electromagnetic fields
generated by particles moving at relativistic velocities. The codes are based
on the classical Liénard-Wiechert potential formalism. Highly efficient nu-
merical solutions for modeling the radiation emitted by millions to billions of
particles are introduced and implemented for parallel compute architectures.
The first code allows to simulate the electromagnetic near and far field at
arbitrary spatial and temporal resolution. The numerical solution of the
Liénard-Wiechert potentials in the time domain used in this code is especially
suited to compute strongly varying electromagnetic fields in space and time
as they occur in coherent synchrotron radiation.
The second code computes the angularly resolved radiation spectrum emit-
ted in the far field. It simply requires electron trajectories as provided by
many particle simulations as an input. Due to its open structure its applica-
tions ranges from determining the beam emittance of an electron beam via
Thomson scattering to predicting radiation produced in laser-plasma inter-
actions. It is however limited by file system size and bandwidth and cannot
be applied to large-scale plasma simulations.
Large-scale plasma simulations are the domain of the third code. Similarly
to the second code it computes the radiation intensity per unit solid angle
and unit frequency. The code is implemented for use on graphics processing
units (GPUs) and integrated into the particle in cell code PIConGPU. It
thus provides a highly-efficient, strongly-scalable method to compute the
complete radiation spectrum emitted over the full solid angle by all particles
in a laser plasma simulation. The range of frequencies spans from the infrared
to the X-ray region. This allows to directly links spectral signatures to
specific plasma dynamics such as electron injection and betatron oscillations
occurring in laser wakefield acceleration. Such spectra can be compared
to experimental measurements and can thus help to better understand the
femtosecond particle dynamics in laser plasma interactions.



Zusammenfassung

Diese Diplomarbeit beschreibt die Entwicklung, Verifizierung und Anwen-
dung von drei unterschiedlichen Programmen zur Berechnung von elektro-
magnetischen Feldern relativistisch bewegter Ladungen. Die entwickelten Al-
gorithmen basieren auf den klassischen Liénard-Wiechert Potentialen. Hoch
effiziente numerische Lösungen zur Simulation der Abstrahlung von Millio-
nen bis Milliarden Teilchen wurden entwickelt und für parallele Rechnerar-
chitekturen implementiert.
Das erste Programm ermöglicht es, elektromagnetische Nah- und Fernfelder
mit beliebiger örtlicher und zeitlicher Auflösung zu bestimmen. Das auf
Lösungen der Liénard-Wiechert Potentiale basierende numerische Verfahren
ist speziell dazu geeignet, örtlich und zeitlich stark veränderliche Felder zu
bestimmen, wie sie beispielsweise bei kohärenter Synchrotronstrahlung auf-
treten.
Das zweite Programm gestattet es, Abstrahlungsspektren im Fernfeld in
beliebige Richtungen zu berechnen. Dazu werden Elektronentrajektorien
benötigt, die von gängigen Teilchensimulationen zur Verfügung gestellt wer-
den können. Aufgrund der Unabhängigkeit von speziellen Simulationspro-
grammen reicht der Anwendungsbereich von der Bestimmung der Emittanz
von Elektronenstrahlen mittels Thomson-Streuung bis zur Vorhersage der
elektromagnetischen Emissionen in Laser-Plasma-Interaktionen. Speicher-
platz- und Bandbreitenlimitierungen erlauben es diesem Programm aber
nicht, die Abstrahlung großskaliger Plasmasimulationen zu berechnen.
Dies ist aber mit dem dritten entwickelten Programm möglich. Ähnlich
dem zweiten berechnet es die Strahlungsintensität pro Raumwinkel und Fre-
quenz. Es wurde für die Anwendung auf Graphikkarten (GPUs) konzipiert
und in die Particle-in-Cell Simulation PIConGPU integriert. Dies erlaubt es,
die Abstrahlungsspektren auf einer kompletten Raumkugel für alle Teilchen
einer Laser-Plasma-Simulation höchst effizient zu bestimmen. Dabei kann
ein Frequenzbereich von Infrarot- bis zur Röntgenstrahlung gleichzeitig abge-
tastet werden. Ein Vergleich solcher Spektren mit experimentellen Beobach-
tungen hilft, das Verständnis der in Laser-Plasma-Interaktionen auftretenden
Teilchenbewegung im Femtosekundenbereich zu erweitern.
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1 | Introduction

Particle accelerators have started as small-scale devices accelerating electrons
in vacuum tubes. Most prominently known today are the large-scale accel-
erators, like LHC at CERN, used as research tools in high energy physics.
But accelerators also have wide industrial and medical applications. Their
use ranges from particle physics to material science, from cancer treatment
to ion implantation for semiconductor production and metal finishing.
The first particle accelerators used static electric fields to accelerate charged
particles. This concept allows to use the accelerator structure only once,
limiting the effectiveness of such accelerators.
The next generation of accelerators used oscillating fields to enable the reuse
of the provided voltage, allowing to build these new type of machines more
compactly.
Both concepts are limited since the structures providing the voltage can
only generate field strengths of up to ⇠ 100MV/m [1, 2]. Otherwise, elec-
trons from the acceleration cavities itself would leave the structure creating
field emissions. This strongly limits the energy gained per length even if
reusing the accelerator structure. In order to exploit the same accelerating
cavity several times, circular accelerators and storage rings bend the path of
the particles, guiding them on a circular orbit. Bending the path causes the
particle to emit energy by radiation. In order to cope with the energy lost
in this way, large bending radii are required. Independent of using static
or dynamic fields in accelerators, it is necessary to build large accelerator
structures to reach high particle energies.
Today, there are around a total of 26.000 accelerators of which 44% are used
for radiotherapy [3]. However, hospitals as well as factories and research
institutes cannot always provide the infrastructure to house a large parti-
cle accelerator. Alternatives for small-scaled accelerators are needed. Those
could be provided by laser plasma accelerators. Here, the laser field causes
charge imbalances in the plasma leading to high field gradients which can
accelerate charged particles. These high field strength can be achieved with-
out the risk of vacuum breakdown, because the plasma is completely ionized
already.
The research field of high-intensity laser interaction with matter is fast grow-
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1. Introduction

ing. It promises applications not only for compact accelerator structures but
also as ignitors for nuclear fusion and drivers for novel light sources.
Since the development of chirped pulse amplification, the laser intensity
reached in experiments has grown rapidly. Nowadays, about 1021 W

cm3 are
achieved [4]. Such high laser intensities force electrons to move at relativis-
tic velocities. Describing their non-linear dynamics is quite difficult, thus
making simulations the only feasible way to predict all details of the com-
plex plasma dynamics.
Today’s laser-plasma simulations are capable of modeling processes ranging
from low energetic wakefield acceleration to the highly non-linear blow-out
regime [5]. However, particle dynamics within a plasma are usually not di-
rectly accessible to experiments and it proves difficult to compare theoretical
predictions with experiments.
One way to solve this problem is to observe the radiation emanating from
the interaction zone. This provides an indirect look into the plasma since in-
formation about the dynamics of the laser particle interaction are contained
in the radiation.
There exist several analytical solutions for radiation emitted by particles in
strong laser fields. However, they only cover very special cases and are only
valid for single particles. A complete analytical description taking into ac-
count ponderomotive and collective effects does not yet exist.
Thus, simulating the electromagnetic emissions from both relativistic and
sub-relativistic plasma electrons is essential to better understand the im-
print of electron dynamics on this radiation. [5]. This might provide new
means of diagnostics if it could be achieved to link the particle dynamics in
the plasma to a characteristic photon emission which would be easily observ-
able in experiments.
Another application of such a code would be simulating novel light sources.
Using Thomson scattered radiation from a laser interacting with an elec-
tron beam, one can obtain a brilliant high-energetic source of light. The
mechanisms are understood quite well in analytical theory. However, when
considering real laser pulses and realistic electron beams, beam emittance
and pulse shapes need to be taken into account which can only be done by
simulations. Modeling the radiation is essential for optimizing such light
sources with respect to brightness.
Finally, such a code would have applications in simulations themselves, al-
lowing to take electromagnetic fields into account that might not have been
considered so far.

For this Diploma thesis three codes were developed and extensively tested.
One is able to compute the electric and magnetic fields at arbitrary positions
and times based on given electron dynamics. It allows to resolve fine field
structures precisely and outperforms for such cases standard mesh-based field
solvers. This program was applied to simulate influences of the electromag-

2



netic fields occurring in coherent synchrotron radiation.
The other two codes, one CPU the other GPU based, allow to calculate
the emitted electromagnetic intensity in arbitrary directions, resolved with
respect to the emitted frequencies. Computing the radiation based on sim-
ulated electron dynamics provides a way to compare particle simulations
with electromagnetic emissions observed in experiments. The CPU based
program CLARA 2.0 is used to simulate Thomson scattering for beam emit-
tance scans and laser plasma interactions. The GPU based radiation code is
combined with a particle-in-cell code in order to speed up computing the ra-
diation. This approach allows, for the first time, to simulate electromagnetic
emission for laser plasma simulations at full scale.

3



1. Introduction
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2 | Theoretical Prerequisites

2.1 Radiation from accelerated charges

The fact that particles carrying an electric charge emit electromagnetic ra-
diation when accelerated is one of the fundamental results of Maxwell’s the-
ory of electrodynamics. The emission can be described accurately by the
Liénard-Wiechert Potentials [6]. Their derivation is rather complicated with
respect to the needed mathematics, but the basic concept of radiation can
be understood without deriving the formulae.
This section will introduce an example to illustrate, without too many equa-
tions, the origin of emitted radiation, while the next sections will concentrate
on the exact derivation of all formulae used in the thesis.
To demonstrate the origin of electromagnetic radiation, a single particle with
an electric charge moving at constant speed in one direction is assumed. This
is equivalent to the situation at time t1 illustrated in figure 2.1. The particle
generates an electric field filling the space around it. Assuming the particle
moves at a speed close the speed of light, the electric field surrounding the
particle, which would be spherical in its rest frame, becomes Lorentz con-
tracted and has an oblate shape in the lab frame. For simplicity, only fields
perpendicular to the particle path will be considered. For this perpendicular
plane, the electric field strength simply follows Coulombs law without the
need to consider the Lorentz contraction.

~E =
q

4⇡"0

~e
r

r2
(2.1)

In Fig. 2.1, the electric field is represented by an orange curve. For a charge
moving along a straight line, the surrounding field keeps its oblate shape and
sticks to the charge.
A more interesting case is a charge following a curved trajectory as it could
be caused by an external magnetic field. Assuming the electric field to have
the same shape as at t1 leads to a problem: If the particle moves along a
circle with radius r at a speed v, the electric field would have to travel at an
angular speed ! = v/r to keep its prior oblate shape. But this would mean
that the electric field outside of r  c/! travels faster than light to keep up
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Figure 2.1: Illustrating the origin of radiation from an accelerated
charge: At time t1 a single electron moves at a constant speed in x-
direction. The perpendicular field is shown. It does not differ from the
static case (Coulomb field). Following that, the electron starts moving
along a circular path. At time t2 the electron’s path is already bent.
Assuming a field similar to t1 here would require a field moving faster
than the speed of light. This is impossible and the electric field needs to
detach from the charge. This results in radiation. (As the fields diverge
at the position of the charge, they are cut off.)

with the charge. This, of course, is impossible and causes the electric field
to be distorted. The electric field is no longer able to stick to the particle
and “radiates” away. If the exchange of information would not be limited by
the finite speed of light, radiation effects could not occur. However, this is
just an illustration; in the formulae field and charge are still connected as
we will see in the next paragraph.
Similar explanations apply to magnetic fields. A moving charge causes a cur-
rent which induces a magnetic field around its path as described by Ampère’s
circuital law. The magnetic field outside the r ·!  c zone will apparently
be distorted.

2.1.1 Maxwell’s Equations and the generation of electromag-
netic radiation

The fundamental achievement of Maxwell’s work on electrodynamics was the
synthesis of optics with electromagnetism, which were two completely sepa-
rate topics prior to his work. Based on his theory, Helmholtz and Hertz could
show that electric and magnetic fields can form waves behaving like light.
More importantly, they also showed that one could generate such waves by
accelerating electric charges.
There is a variety of ways to solve Maxwell’s equations for the most general
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2.1 Radiation from accelerated charges

case of charges moving at relativistic speeds. The mathematically more ele-
gant solutions use the four-vector notation (see for example [6]) and derive
the solution quickly but without much insight into the physics behind it.
The more lengthy approaches (for example found in [7] and [8]) do not use
relativistic notations but thereby clarify the physical origin of the solutions’s
mathematical structure.
This section will outline how electromagnetic radiation is generated by elec-
tric charges and concentrate on the relationship between the motion of the
particles and the resulting radiation. It follows the basic concept presented
in [7]. Not all formulae will be derived in detail, this can be found in the
works mentioned above, but steps that will give physical insight to this prob-
lem will be presented.
When investigating Maxwell’s equations

~r · ~E =
⇢

"0
(2.2)

~r · ~B = 0 (2.3)

~r⇥ ~E = �@
~B

@t
(2.4)

~r⇥ ~B =
1

c2"0
~j +

1

c2
@ ~E

@t
(2.5)

in vacuum with charge density ⇢ and current density ~j equalling 0, combining
the curl of Eq. 2.4 with Eq. 2.5 results in a differential equation describing
a wave equation for the electric field ~E.

~r2 ~E � 1

c2
@2 ~E

@t2
= 0 (2.6)

A similar wave equation can be derived for the magnetic field ~B. These
equations describe the well known electromagnetic waves explaining every-
thing from radio waves to optics and X-ray scattering.
However, when trying to find a solution to these fields for any non-vacuum
case, one encounters a system of coupled partial differential equations. A
way to solve these is to introduce potentials describing the electric and mag-
netic fields. Because the divergence of the magnetic field needs to be zero
everywhere (Eq. 2.3), it turns out to be useful to describe the magnetic field
~B as a curl of a differentiable vector field ~A, the vector potential. This can
be done since ~r · (~r⇥ ~�) is zero for any differentiable vector field ~�.

~B = ~r⇥ ~A (2.7)
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2. Theoretical Prerequisites

This definition results in a ~B field satisfying Eq. 2.3 automatically. Applying
it to Eq. 2.4 leads to

~r⇥
 
~E +

@ ~A

@t

!
= 0 . (2.8)

Similarly, one usually defines a scalar potential � as

~E +
@ ~A

@t
= �~r ·� . (2.9)

This allows to calculate the electric field using both potentials by

~E = �~r�� @ ~A

@t
. (2.10)

Having a second look at the vector potential, the choice of ~A is arbitrary. A
transformation ~A0 = ~A+ ~r↵ would not change the magnetic field ~B because
the curl of a divergence equals zero. However, applying this change requires
to adjust the scalar potential as well. Otherwise the electric field would
change. Using �0 = �� @↵

@t

instead of � compensates for this. This optional
transformation is called a gauge transform. Having a gauge freedom in the
definition of the potentials allows to simplify the coupled system of partial
differential equations. By substituting the definitions of the potentials in
Eq. 2.5 and simplifying the formula, one obtains:

� c2~r2 ~A+ c2~r
⇣
~r · ~A

⌘
+
@

@t
~r�+

@2 ~A

@t2
=
~j

"0
. (2.11)

This does not look like a simplification of the initial set of equations. How-
ever, by using the gauge freedom and setting ~r ·A = ~r2↵ = � 1

c

2
@�
@t

, the
following set of equations is derived from Eq. 2.2 and Eq. 2.5:

~r2�� 1

c2
@2�

@t2
= � ⇢

"0
(2.12)

~r2 ~A� 1

c2
@2 ~A

@t2
= �µ0

~j . (2.13)

These four independent partial differential equations, three from the vector
potential and one from the scalar potential, are separated and have a similar
form. Finding a solution to their general form

~r2 � 1

c2
@2 

@t2
= �s (2.14)

with a non-zero source density s allows to solve Maxwell’s equation for any
charge density ⇢ and current density ~j. There exist several well-known an-
alytical solutions of the wave equation for s = 0: plane waves, cylindrical

8



2.1 Radiation from accelerated charges

waves and spherical waves. The latter are solutions of Eq. 2.14 everywhere
except at their centers. The solution for a spherical wave propagating out-
wards can be written as:

 =
1

r
f(r � ct) , (2.15)

with f being a smooth scalar field, r being the distance from the origin of
the spherical wave and t being the time. This solution diverges for r !
0. However, by analyzing how fast both second derivatives in the partial
differential equation (Eq. 2.14) diverge, one finds:

1

c2
@2 

@t2
⇠ 1

c2
1

r

@2f(r � ct)

@t2
(2.16)

@2 

@r2
⇠ f(r � ct)

r3
+O

✓
1

r2

◆
(2.17)

That means that the spatial derivative diverges much faster than the tem-
poral derivative. In the limit r ! 0, Eq. 2.14 takes the form:

~r2 = �s . (2.18)

From the derivation of Coulomb’s law (Eq. 2.1) from Poisson’s equation
(Eq. 2.2), it is known that a small charge (Q/"0 = S) at r = 0 results in an
equation equivalent to Eq. 2.18. By following these principles of electrostatics
and assuming a fairly localized charge distribution, one obtains the relation
between f and the source density s to describe the general field  (Eq. 2.15):

f =

R
s dV

4⇡
=

S

4⇡
. (2.19)

Here, S is the total charge equal to the integration of the charge density over
the volume V. For r ! 0, f also satisfies the full differential equation 2.14.
For field values farther away from the source, the only effect caused by the
neglected time derivative is a retardation [7]. The source distribution needs
to be considered at a past time taking into account that the information
about the source’s position ~r

s

can only propagate with the speed of light
c. This former time is called retarded time t

ret

and fulfills the condition
|~r
s

(t
ret

)�~r
f

| = c · (t
f

�t
ret

) for the field values at ~r
f

and time t
f

. Therefore, a
general form with a time depended source S(t) =

R
s(t) dV has the solution:

 =
1

4⇡

S(t� r/c)

r
. (2.20)

So far, no assumption on the potentials was made and it is easy to extend
the small charge to a charge density in an arbitrary region. For all cases, a
single integration over the volume encompassing all charges at the correct
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retarded time is required. This leads to the general solution of Maxwells’s
equations, with r12 = |~r1 � ~r2| :

�(~r1, t) =
1

4⇡"0

Z
⇢(r2, t� r12/c)

r12
dV2 (2.21)

~A(~r1, t) =
µ0

4⇡

Z ~j(r2, t� r12/c)

r12
dV2 . (2.22)

These equations describe the potentials ~A and � at an arbitrary position ~r1
and time t. The sole contribution to the potentials at ~r = ~r1 are the charge
or current densities at ~r2 if they are non-zero at the retarded time t� r12/c.
By integrating over the entire volume all contributions in space and time are
covered.

2.1.2 Liénard-Wiechert Potentials

Applying Eq. 2.21 and Eq. 2.22 to a point charge causes some problems first
investigated independently by Liénard and Wiechert. In the above equa-
tions, integrating over a point charge has to be carried out carefully because
the resulting changes are easily overlooked and hold an important physical
interpretation. The correct evaluation of the limit of a point-like charge dis-
tribution is presented in the following.
To simplify the derivation, a small cube comprising a homogeneously dis-
tributed charge with an edge length x, moving at a speed of v towards the
point ~r1 where one wants to evaluate the potential � at time t, is assumed.
This point ~r1 is called the point of interest or the observation point. The
situation is illustrated in Fig. 2.2. In this picture, a blue dot represents the
observation point ~r1. Integration over the charge distribution at the retarded
time is required when applying Eq. 2.21. To illustrate this integration, one
can discretize it and split up the volume surrounding the observation point
~r1 in several spherical shells, each with a thickness �t0 in retarded time.
The surface of each shell represents an area of equal retarded time. A shell
farther away from the observation point represents a prior time compared to
the inner shells. If two emitters on the same shell’s surface emit an electro-
magnetic wave at the same time, these waves will arrive simultaneously at
the observation point ~r1. As an approximation for further derivations, the
volume between two shell surfaces will be attributed to the retarded time
associated with the outer of the two shell surfaces. This allows to simplify
the Riemann integral over the volume (Eq. 2.21 and Eq. 2.22) to a sum over
each shell’s volume V

i

.

�(~r1, t) =
1

4⇡"0

NX

i=1

R
Vi
⇢(t� r0

i

/c,~r) dV

r0
i

=
1

4⇡"0

NX

i=1

Q
i

r0
i

. (2.23)
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2.1 Radiation from accelerated charges

~r1

t01 t02 t03 t04 t05

t01 = t� r01/c
r01

~r1

t01 t02 t03 t04 t05

t02 = t� r02/c
r02

Figure 2.2: Illustrating the correct integration over retarded time: Both
pictures show the contribution of a small cubic charge drawn in green or
red to the potential � at the time t and at the location ~r1 marked by a
blue dot. The first picture shows the charge density at t01, the second at
t02. The charge is moving directly towards the observation point (~r1, blue
dot). The charge density at t01 inside the shell with the distance r01 around
the observation point (blue dot) is drawn in red and will contribute to the
potentials �(~r1, t) at time t. The contributing non-zero charge density
is drawn in red while the rest of the non-zero charge density is drawn
in green. For the charge density at t02, only non-zero values inside the
shell with radius r02 contribute to the potential of interest and are again
drawn in red.

The sum depends only on the total charge Q
i

=
R
Vi
⇢(t � r0

i

/c,~r) dV com-
prised in each shell’s volume V

i

and the radius r
i

of each shell.
In the top of Fig. 2.2, the outermost shell comprising a non-zero charge at
its retarded time t01 is illustrated. Its contributing charge Q1 can be calcu-
lated by integrating the charge density ⇢(t01,~r) at the time t01 over the entire
volume of the shell. Then, one would add the contribution of t02, comprised
in the next inner shell (illustrated at the bottom of Fig. 2.2). This goes on
until the innermost shell is reached. If one compares two consecutive time
steps, one sees that the charge has moved and part of the charge density
counted at e. g. t01 needs to be recounted at t02.
By assuming that the charge density is very localized compared to the ex-
tent of the shells, any effects by the spherical form of the surfaces can be
ignored and a planar integration volume can be assumed. It is possible to
approximate the radius of each shell r0

i

by a constant radius r0 if assuming
that the charge is located far away from the observation point ~r1 compared
to its extent. These approximations allow to calculate the scalar potential

11
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(Eq. 2.23),

�(~r1, t) =
1

4⇡"0
N ·

⇢ ·x2

r0
�t0 · c| {z }
�x

0

=
q

4⇡"0r0
N�x0

x
=

q

4⇡"0r0
x0

x
, (2.24)

with x the width of the cube charge and N the number of discrete shells
that contribute to the scalar potential �. The length x0 is the total distance
one needs to integrate over to derive the scalar potential from the charge
distribution and can be calculated by:

x0 = x+ v ·N ·�t0 = x+
v

c
x0 (2.25)

x0 =
x

1� �
. (2.26)

All the assumptions made above remain valid in the limit of a point charge.
If a charge does not move directly towards ~r1, the projection of its motion
vector towards the point at which one wants to compute the potential needs
to bee considered, �

r

= ~� ·~r12/ |~r12| = ~� ·~n, with ~n = (~r2 � ~r1)/ |~r2 � ~r1|
being a unit vector pointing from the charge towards this point. Now the
solutions to Maxwells’s equations (Eq. 2.21 and Eq. 2.22) can be rewritten
for a point charge. These are the well known Liénard-Wiechert potentials:

� (~r1, t) =
1

4⇡"0

"
q

(1� ~� ·~n)|~r12|

#

ret

(2.27)

~A (~r1, t) =
µ0

4⇡

"
q · ~�

(1� ~� ·~n)|~r12|

#

ret

(2.28)

The brackets with the index “ret” mean that the inner part has to be evalu-
ated at the retarded time t

ret

= t� |~r12(tret)|/c. This evaluation of the inner
part is the only effect caused by the limited speed of light. An approaching
charge causes the potential to appear stronger by a factor 1

1��r
. On the

other hand, a charge moving away seems to be reduced by a factor 1
1+�r

.
These effects are negligible for any motion at velocities far smaller than the
speed of light and the known static solutions are reproduced in this limit.

2.1.3 Results of the Liénard-Wiechert Potentials

With the Liénard-Wiechert potentials, the electric and magnetic fields radi-
ated by an arbitrarily moving electric charge can be calculated by applying
the conversion Eq. 2.7 and Eq. 2.9 to the scalar and vector potential. This
calculation is cumbersome and does not lead to any insight considering the
physics. A detailed derivation can be found in [8]. Here, only the results will
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2.1 Radiation from accelerated charges

be presented.

~E (~r, t) =
q

4⇡"0

8
><

>:

"
(~n� ~�)

R2�2(1� ~� ·~n)3

#
+

2

64
~n⇥

h
(~n� ~�)⇥ ~̇�

i

cR(1� ~� ·~n)3

3

75

9
>=

>;
ret

(2.29)

~B(~r, t) =
1

c
·
h
~n

ret

⇥ ~E(~r, t)
i

(2.30)

The above equations allow to calculate the electromagnetic fields everywhere
and at every time for a know particle trajectory. In these equations R is the
distance between the point of interest ~r and the position of the charge and
needs to be evaluated at the retarded time. The particle’s charge is q, while
� is its velocity normalized to the speed of light c. The electric field consists
of two parts. One decreases inversely with the square of the distance ⇠ R�2

and is called velocity or near field ~Evel, the other one decreases only inversely
with the distance and is usually referred to as far or radiation field ~Erad.

~Evel =
q

4⇡"0
·

 
(~n� ~�)

R2�2(1� ~� ·~n)3

!

ret

(2.31)

~Erad =
q

4⇡"0c
·

0

B@
~n⇥

h
(~n� ~�)⇥ ~̇�

i

R(1� ~� ·~n)3

1

CA

ret

(2.32)

The far field component will not disappear in the infinite, causing the charged
particle to lose energy by electromagnetic radiation. In practice, the effects
of this energy loss can often be neglected. A more detailed discussion will
be postponed until chapter 7.

Using the equations 2.29 and 2.30, the first example (Fig. 2.1) can now be
revisited rigorously. The results are shown in Fig 2.3. The field during the
constant motion of the electron was described correctly while the field of the
electron moving along the bent path differs as predicted. Part of the electric
field is no longer able to follow the electron and stays behind.
The field changes over time need to be analyzed to better understand the
emitted electromagnetic fields. This can be done by calculating the spectrally
resolved electromagnetic intensity far away from the particle. Such spectra
are easily understandable and can be compared to experimental results since
detectors are usually placed at a much larger distance compared to the spatial
extent of the emission region.
In order to calculate the spectrally resolved radiated intensity d I

2

d⌦ d!

, one can
start off from the Poynting vector ~S. It describes the instantaneous energy
flux at a certain point in space. Its direction shows the direction of the flux,
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t1

t2
x

| ~E| y

Figure 2.3: This graph illustrates the electric field strength | ~E| occur-
ring in the example discussed in the introduction to this chapter. At t1
the electron moves with a constant velocity close to the speed of light.
The electric field has an oblate shape. At t2, the electron moves with
the same velocity on a circular path and the oblate shape of the electric
field is distorted and a wavefront is generated.

its magnitude is the strength of the energy flux [6].

~S =
1

µ0

~E ⇥ ~B =
1

cµ0

~E ⇥
⇣
~E ⇥ ~n

⌘
=

1

cµ0
E2~n (2.33)

A large sphere containing all charges close to its center is considered to
compute the radiated energy per unit solid angle. The power P per unit
solid angle d⌦ on the surface of this sphere is then:

dP

d⌦
= ~S · |~r2 � ~r1|2 = 1

cµ0
|R · ~E|2 . (2.34)

For large distances only the part proportional to R�1 in Eq. 2.29, the far
field ~Erad, does not vanish. Therefore, the calculation can be executed by
only considering the far field. In order to calculate the entire energy radiated
in a certain direction, one needs to integrate over all times.

dW

d⌦
=

Z +1

�1

dP

d⌦
d t =

Z +1

�1

1

cµ0
|R · ~E|2 d t (2.35)
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2.1 Radiation from accelerated charges

The Fourier transform of (cµ0)
�1/2R ~E can be calculated by:

~E(!) = 1p
2⇡cµ0

Z +1

�1
R · ~E(t)e+i!t d t (2.36)

Rewriting Eq. 2.35 leads to:

dW

d⌦
=

1

2⇡

Z +1

�1
d t

Z +1

�1
d!1

Z +1

�1
d!2

~E⇤(!2)~E(!1)ei(!2�!1)t (2.37)

The time integral is simplified to
R +1
�1 e�i(!2�!1)t d t = �(!2 � !1) and thus

the entire formula results in

dW

d⌦
=

Z +1

�1

���~E(!)
���
2
d! =

Z 1

0

d2 I

d⌦ d!
d! . (2.38)

The last step uses Parseval’s theorem (Eq. A.3). It is treated in more detail
in the appendix. The last part of the equation is simply a more intuitive
way to describe the radiated energy. It is defined by

d2 I

d⌦ d!
=
���~E(!)

���
2
+
���~E(�!)

���
2
= 2 ·

���~E(!)
���
2
. (2.39)

Considering only positive frequencies is possible because ~E(t) is real and
therefore ~E(!) = ~E⇤(�!). To calculate ~E(!), one needs to apply Eq. 2.36 to
the ⇠ 1/R part of Eq. 2.29, leading to

~E(!) =
q

4⇡"
p
cµ02⇡

Z +1

�1
e+i!t

2

64
~n⇥

⇣h
~n� ~�

i
⇥ ~̇�

⌘

⇣
1� ~� ·~n

⌘3

3

75

ret

d t . (2.40)

The central term in Eq. 2.40 has to be evaluated at the correct retarded time
t0 = t � R(t0)/c. By substituting t by t0 and integrating over the retarded
time, one arrives at

~E(!) =
q

4⇡"
p
cµ02⇡

Z +1

�1
e+i!(t0+R(t0)/c)

~n⇥
⇣h
~n� ~�

i
⇥ ~̇�

⌘

⇣
1� ~� ·~n

⌘2 d t0 .(2.41)

Now, one can approximate R by assuming that the entire particle motion
at any time is close to a point considered to be the origin of the coordinate
system for simplicity (see figure 2.4). This is always possible if the entire
particle trajectory can be contained in a sphere, since when increasing the
radius of the sphere all particle can be considered close the center of the
sphere. Using this, one can describe the distances between a point of interest
at ~x and the particle at retarded time ~r(t0) as ~R(t0) = �~r(t0) + ~x, with
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~x

~r

~

R

Figure 2.4: Simplification of the retarded distance: This illustrates
a common simplification applied in the far field approximation. When
assuming that acceleration just occurs around the origin of the coordinate
system (black dot) and that the observation point (blue dot) is far away
|~r| ⌧ |~x|, the distance R = |~R| between the particle and the observation
point can be approximated by R ⇡ |~x|� ~n ·~r(t0).

~n = ~R/R ⇡ ~x/x for |x| � |r|.

R(t0) = |~R(t0)| = |~x� ~r(t0)| ⇡ x� ~n ·~r(t0) (2.42)

By ignoring the constant offset in time x/c, which will only result in a con-
stant phase shift of the result (see appendix A), one can simplify ~E to:

~E(!) = q

4⇡"
p
cµ02⇡

Z +1

�1
ei!(t0�~n ·~r(t0)/c)~n⇥

⇣h
~n� ~�

i
⇥ ~̇�

⌘

⇣
1� ~� ·~n

⌘2 d t0 (2.43)

Inserting this approximation in the definition of Eq. 2.38 results in:

d2 I

d⌦ d!
=

q2

16⇡2"0c

�������

Z +1

�1

~n⇥
h⇣
~n� ~�

⌘
⇥ ~̇�

i

⇣
1� ~� ·~n

⌘2 · ei!(t�~n ·~r(t)/c) d t

�������

2

(2.44)

This formula allows to calculate the spectra seen at any point far away from
the particle. It consists of a real vector part

~A =
~n⇥

h⇣
~n� ~�

⌘
⇥ ~̇�

i

⇣
1� ~� ·~n

⌘2 2 R3 (2.45)

and a complex phase determined by a simplified retarded time

t
ret

= t� ~n ·~r(t)/c . (2.46)

It is important to note that the integrand only contributes to the spectra if
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2.2 Introductory Example: Nonlinear Thomson scattering

the particle is accelerated, ~̇� 6= 0.

2.2 Introductory Example: Nonlinear Thomson scat-
tering

Thomson scattering is the elastic scattering of electromagnetic radiation by
free moving charges as for example electrons in a plasma or outer electrons of
an atom. It occurs when the energy of the scattered photons is low compared
to the energy associated with the rest mass of the electron and the energy
transfer between the photon and the electron is negligible. If a significant
amount of energy is transferred, one speaks about Compton scattering.
From a quantum field theoretical viewpoint, Thomson scattering is the ab-
sorption of a photon and the emittance of a photon of the same energy
(Fig 2.5 (a)). When the intensity of the light striking the electron increases,
the probability of interacting with more than one photon rises. This allows
the electron to absorb several photons before emitting a single photon of
higher energy (Fig. 2.5 (b)). A correct quantum-mechanical description of
these multi photon interactions requires a strong-field QED approach [9].

!0

e

e

!0

(a)

!0

e

!0
e

n ·!0

(b)

Figure 2.5: Feynman graph of Thomson scattering: (a) tree-level
Thomson scattering, absorbing a photon and emitting a photon of same
energy. (b) higher order diagram, absorbing n photons of same energy
!0 and emitting a single photon of energy n ·!0

From a classical viewpoint, linear Thomson scattering is just an electromag-
netic wave, for example light from a laser, interacting with a charged particle
and causing it to oscillate. This oscillation again causes the emission of ra-
diation at the oscillation frequency which is equal to the frequency of the
incident radiation.
The results of both the classical and the quantum theory describing electron-
photon interaction agree for low photon energies and electron energies below
� < 104 [10]. For multi-photon interactions at low photon energies it is
convenient to describe the scattered light classically, to avoid the complex
strong-field QED calculations [11]. Nonetheless, if the momentum transfer
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between photons and electrons can no longer be neglected or if the multi-
photon interaction becomes dominant, a classical approach fails and a field
theoretical treatment is required [10, 12]. Since the focus of the simulations
presented here is on laser plasma interactions, a classical treatment is cur-
rently adequate.
In the classical model, one speaks of nonlinear Thomson scattering if the in-
tensity of the incident radiation is becoming large enough so that the charged
particles reach relativistic energies during the interaction. In this regime, the
particle’s mass can no longer be considered constant. This and the force on
the electron due to the motion in the (no longer negligible) magnetic field of
the electromagnetic wave change the formerly simple differential equations
describing the particle’s motion during this interaction to a coupled system
of differential equations [4]. The particle’s motion is no longer sinusoidal
and the emitted radiation now also carries higher harmonics of the incident
electromagnetic radiation. It is important to note that this is not considered
to be Compton scattering because the anharmonic electron motion is not
caused by the high photon energy but by the large number of low energy
photons interacting with the charged particle.
A laser is considered to be intense enough to cause nonlinear effects for
electrons if its dimensionless field strength parameter a0 = eEL

mec!0
is unity

or larger, with E
L

the maximum electric field of the laser and !0 the fre-
quency of the laser. At such intensities, the no longer negligible B-field
causes the electrons to oscillate in longitudinal direction at twice the laser
frequency [13]. This causes a particle to have a figure-eight kind of motion in
its average rest frame. This is illustrated by Fig. 2.6. An electron initially at
rest was assumed. Due to an average force caused by the electron’s oscillation
along a non-zero gradient of the electric fields envelope, called ponderomotive
force, the electron gets pushed forward into the direction of laser propaga-
tion. Fig. 2.6 (a) shows the electron’s trajectory in the lab frame assuming
constant intensities of a0 = 0.5 (red) and a0 = 1.5 (blue). It is important
to note, that the x-axis is normalized to a20, which illustrates that higher
laser intensities cause faster drift velocities. Fig. 2.6 (b) shows the electron
trajectory in the electron’s average rest frame. A detailed description of the
electron’s motion can be found in [4].
The radiation caused by this relativistic Thomson scattering was investigated
by Esarey et al. [14]. The paper presents two cases where analytical solutions
of the scattered radiation can be found. One assumes a single electron with
high energy moving towards a plane electromagnetic wave as can be found
in so called optical undulators (see chapter 2.3). The other case assumes
the electron to be, on average, at rest. This is an idealized case of a dense
plasma. Both cases assume a constant field strength and ignore effects caused
by ponderomotive forces.
Here, only the resulting spectra are presented and their typical structure is
discussed.

18



2.2 Introductory Example: Nonlinear Thomson scattering

(a) (b)

Figure 2.6: Electron trajectory for nonlinear Thomson scattering: Pic-
ture (a) illustrates the electron’s trajectory for a plane laser wave of
constant intensity a0 = 0.5 (red) and a0 = 1.5 (blue) in the lab frame
while plot (b) shows the same case in the electron’s average rest frame.
x is the location along the laser propagation while y is the location in
the direction of the laser’s polarization. k = 2⇡

�0
is the wave number of

the laser with wavelength �0.

The emitted radiation of an electron moving at a relativistic velocity towards
a laser is shown for several laser strengths in Fig. 2.7. In all cases, an electron
with a Lorentz factor of � = 5 is assumed which travels through N = 7
laser periods. The plotted angle ✓ describes the angle between the point
of observation and the direction of the laser propagation ~k, and is confined
to the polarization plane. With higher laser intensities, higher harmonics
become more dominant. As can be seen in Fig. 2.7, even harmonics do not
contribute on the laser propagation axis ✓ = 0 [14]. Because of the electron’s
relativistic velocity, the emitted frequencies are Doppler shifted compared
to the initial laser frequency. This relativistic effect strongly depends on
the observer’s viewing angle ✓ and causes the typical u-shaped curves of the
harmonic intensities. It is also the reason for the confinement of the radiation
to a narrow cone around the axis of propagation of the electron. The cone’s
opening angle scales with ⇠ 1

�

and leads to a search-light-like behavior of
radiation emitted by electrons with relativistic energies. The harmonic’s
peak frequencies become smaller for higher laser intensities due to the photon
drag, a reduction of the Doppler shift of the emitted radiation caused by the
electron’s strong transversal motion which reduces the electron’s velocity in
longitudinal direction.
The radiation in the case of electrons being, on average, at rest is shown in
Fig. 2.8. Here, the photon drag plays no role. Again, higher harmonics are
stronger for higher laser power and even harmonics do not contribute on axis.
All spectral peaks are located at multiples of the incident laser frequency,
and even if substructures are visible for different directions, the peak of the
nth harmonic stays at n ·!0.
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(a) (b)

(c)

Figure 2.7: Nonlinear Thomson scattering: Analytical solution of the
radiation emitted by an electron � = 5 moving towards a laser. En-
ergy deposition per unit frequency and unit solid angle for different laser
strength are shown: (a) laser with a0 = 0.5, (b) laser with a0 = 1.0, (c)
laser with a0 = 1.5. ✓ is the angle in the polarization plane of the laser,
with ✓ = 0 the opposite direction of the laser.

All spectra presented are calculated from the analytical solution presented by
Esarey et al. [14] and are not based on simulated data. Therefore nonlinear
Thomson scattering is an ideal test case for any radiation code targeting at
laser-particle interactions.

2.3 Undulator radiation

Undulators and wigglers are arrays of paired permanent magnets causing
electrons passing through them to undergo a transverse oscillation which
causes the electrons to emit radiation. For undulators the amplitude of the
transverse motion is small. These devices can for example be inserted in
electron storage rings and can provide a source of bright and mono-energetic
electromagnetic radiation for a multitude of research applications like solid
state physics and biology [15,16].
A detailed analysis of undulators and wigglers can be found in [17]. This
section will just briefly go over the particle’s kinematics and concentrate
on the resulting radiation. An illustration of an undulator can be found
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(a) (b)

(c)

Figure 2.8: Nonlinear Thomson scattering with electron of vanishing
average velocity: Energy deposition per unit frequency and unit solid
angle for various laser strengths are presented: (a) laser with a0 = 0.5,
(b) laser with a0 = 1.0, (c) laser with a0 = 2.0 emitted by a single
electron with average speed of zero

D
~�(t)

E
= 0. ✓ is the angle in the

polarization plane of the laser, with ✓ = 0 the opposite direction of the
laser.

in Fig. 2.9. By switching the orientation of the magnets surrounding the
particles’ paths, illustrated in red and blue, after a certain fixed distance �

u

,
the electrons follow an approximately sinusoidal trajectory, drawn in green.
The electron enters the undulator with a velocity of � in z direction. Because
of the magnetic field in y direction, the electrons are bent in x direction. Since
particles cannot gain energy in magnetic fields their absolute velocities stay
constant, consequently their velocities in z direction are reduced. This effect
is equivalent to the photon drag in laser-electron interactions [18].
The motion of an electron inside an undulator can be described by:

x =
Kc

�W
· sin (Wt) (2.47)

y = 0 (2.48)

z = c�
s

t� K2c

8�2W
· sin (2Wt) (2.49)
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Here, �
s

is the average velocity in the original direction of flight:

�
s

= 1� 1

2�2
� K2

4�2
(2.50)

The values K = eB�u
2⇡mec

and W = 2⇡c�s
�u

describe the undulator parameter giv-
ing the amplitude of the electrons’ oscillation and the oscillation frequency,
respectively. The electron mass is m

e

and the relativistic energy factor of
the electron is �. These formulae are only valid for particles moving close to
the speed of light, since the approximation � . 1 was used to derive them.
The electromagnetic radiation emitted is characterized by a single spectral
line at:

!
peak

⇡ 2�2

1 + �2✓2

✓
2⇡c

�
u

◆
(2.51)

In deriving this formula a � close to 1 and a small angle ✓ were assumed [6].
If the electrons pass N periods of alternating magnets in the undulator the
emitted energy is N2 times as strong as if only a single undulator period
would have been passed. This can be derived easily from Eq. 2.44 and the
linearity of Fourier transform (see chapter A.1). Furthermore, the relative

z

x

y

e

�

u

Figure 2.9: Schematic sketch of an undulator: An undulator consists
of magnets with alternating polarization. This causes the magnetic field
to be periodic with a period length of �

u

. The periodic magnetic field
causes an electron to undergo a sinusoidal motion (bold green line).

22



2.3 Undulator radiation

frequency spread decreases with every magnetic period passed (see Fig. 2.10).

�!

!
⇠ 1

N
(2.52)

A complete description of undulator radiation can be found in the literature
[17]. Here, the results for the radiated energy per unit frequency and unit
solid angle are shown.

(a) (b)

Figure 2.10: Undulator spectra: Both pictures show an analytically
calculated spectrum from a single electron in an undulator. The electron
has an energy of � = 100. The x-axis shows the frequency ! normalized
to the peak frequency !

peak

(see Eq. 2.51). The y-axis shows the angle
✓ between the electron’s direction of flight and the observer’s position in
the polarization plane, normalized by the electrons energy. (a) is a 10
periods �

u

long undulator, while (b) is an undulator of 50 periods length.

The spectra shown in Fig. 2.10 both result from an electron with energy
� = 100. The first picture exhibits the radiation from an undulator of 10
periods length while the second spectrum shows the radiation from a 50
period long undulator. To calculate these results, the analytical solution
presented in [17] could not be used because it is only valid for small angles
✓. Instead, the equivalence of undulators and laser particle interactions [18]
were combined with the analytical solution for Thomson scattering [14] to
calculate the spectra. The equivalence is best for high energy electrons � �
1. In such a case, the electromagnetic fields of an undulator in the rest
frame of an electron are very similar to those of a laser field. The strength
parameter of the undulator K is then equivalent to the unitless laser strength
parameter a0. The laser wavelength �

L

, however, relates to the undulator
period length �

u

as follows:

�
u

=
�
L

1� �0 cos'
(2.53)

In this equation, the electron’s velocity is �0, while the angle between the
laser propagation and the electron propagation is ' = 180� for a head-on
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2. Theoretical Prerequisites

collision.
The physics of undulators can be described completely analytically. This
makes them perfectly suited to be used as test cases for simulations.
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3 | Numerical solutions for elec-
tromagnetic emissions

In this chapter, three different programs, developed as part of the Diploma
thesis, are presented. The first provides a numerical solution for calculat-
ing the electric and magnetic fields of electrons with relativistic energies
(Eq. 2.29 and Eq. 2.30) at any point in space and time, ~E(~r, t) and ~B(~r, t).
It is able to compute fields for different time steps, therefore it is called a
time domain code. It is especially useful to determine the electromagnetic
fields close to the position of the charge as it is required for simulating co-
herent synchrotron radiation (see chapter 5.1.3).
The other two programs developed are able to predict the spectrally resolved
emission intensity d I

2

d⌦ d!

(~n,!) in arbitrary directions ~n far away from the
particle based on Eq. 2.44. These are considered frequency domain codes.
They are particularly interesting for comparing experimental results with
simulations as physical detectors that record this radiation are usually placed
at a much larger distance compared to the spatial extent of the emission
region (see chapter 5.2.3 to 5.2.4). The first of the frequency domain simu-
lations is designed for running independent of a specific particle simulation,
while the second is directly combined with a particle-in-cell simulation to
speed up the radiation calculation.
A summary of all codes developed is given in table 3.1.

3.1 Simulating electromagnetic fields in the time
domain

The time domain code calculates electric and magnetic fields, ~E(~r
obs

, t
obs

)
and ~B(~r

obs

, t
obs

), of point-like charges at user-defined positions ~r
obs

and times
t
obs

. The program developed just needs to be provided with discretized par-
ticle trajectories. It is especially useful in physics simulations where narrow
field peaks need to be considered, but where resolving these details with a
standard particle-mesh codes [19] would be too time-consuming.
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3. Numerical solutions for electromagnetic emissions
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3.1 Simulating electromagnetic fields in the time domain

3.1.1 Motivation and basic concept

The electromagnetic fields at arbitrary positions generated by charged parti-
cles are of interest when computing particle-particle interactions [19]. Most
codes consider these interactions indirectly by investigating the evolution of
electromagnetic fields on a grid separate from the charges and then let these
fields act on the particles. These particle-mesh methods have several disad-
vantages: they require knowledge of the electromagnetic fields at the start
of the simulation, then they need to simulate the field evolution until the
situation one is interested in is reached, and finally they cannot resolve fea-
tures of the field on scales shorter than the grid size. Additionally, resolving
an electromagnetic field in detail for a certain volume of interest requires a
huge number of grid points. For example, resolving an electromagnetic wave
with a wavelength of � = 0.1µm requires a grid spacing of about half the
wavelength. For a simulation volume of V = 1 cm ⇥ 1 cm ⇥ 1cm this would
result in approximately 1015 grid points which have to be calculated for every
time step. Such an approach for simulating electromagnetic fields would be
infeasible considering the time required for such a simulation. Nonetheless,
in cases for which one can neglect short-range interactions, this algorithm is
convenient and is used in particle-in-cell simulations (see section 3.3.2).
Particle-particle codes on the other hand usually consider the interaction
between particles directly by applying instantaneous Coulomb fields to com-
pute the forces of particle interactions. This is an appropriate approximation
in the case of particle velocities far below the speed of light, but fails for rel-
ativistic particle velocities.
The newly developed program is able to correctly obtain the electric and
magnetic fields by relativistically moving charges using Eq. 2.29 and Eq. 2.30.
It can compute the electromagnetic fields at any detail without costly simu-
lating the fields beforehand or requiring the fields to be known at a previous
time step. However, it shall be emphasized that this code computes electro-
magnetic fields from known particle trajectories and does not simulate the
resulting influence of the fields back onto the particles.

3.1.2 Determine the retarded and advanced time

Due to the limited speed of light, the fields at a certain time are determined
by a charge at a previous time, the retarded time. One needs to solve Eq. 3.1
for the retarded time t

ret

to calculate the electromagnetic field at a position
~r
obs

at time t
obs

,

t
obs

� t
ret

=
|~r

obs

� ~r
e

(t
ret

)|
c

, (3.1)

with ~r
e

(t
ret

) denoting the position of the charge at the retarded time. In
most cases, this can be solved only numerically.
In order to compute the fields at a position ~r

obs

and a time t
obs

, the particle
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3. Numerical solutions for electromagnetic emissions

position ~r
e

(t
ret

) at the retarded time need to be determined numerically.
Therefore, one either needs to keep track of the position of every particle
for all relevant time steps or compute all field values for future time steps
in advance. The first option is the more flexible one. By knowing the entire
discrete trajectory ~r

e

(t) prior to t
obs

, the fields at any arbitrary point ~r
obs

can
be calculated, even if the position of the point ~r

obs

is not known prior to the
current time step. This allows to calculate electromagnetic fields of particles
at the exact position of other particles. However, running through entire
trajectories of N

t

time steps to find the valid retarded time t
ret

and position
~r
e

(t
ret

) needs an algorithm requiring ⇠ lgN
t

computations for every point
of interest ~r

obs

. The computational cost of this algorithm is proportional to
lgN

t

⇥N
obs

per time step, with N
obs

the number of positions the user wants
to observe the field at. Additionally, keeping entire trajectories requires a
large amount of memory for every particle. This is a problem if considering
many charges.
On the other hand, an algorithm calculating the field in advance just needs
memory to store the field values for the future time steps of interest t

obs

.
In order to determine the advanced time t

adv

at which a field arrives at a
position ~r

obs

, the following equation needs to be solved

t
adv

= t+
|~r

obs

� ~r
e

(t)|
c

, (3.2)

with t the current time step. This can be done analytically. If t
obs

equals t
adv

the field can be computed. For a single particle, this method might not be
of advantage, but for several particles, the memory needed by this algorithm
stays constant. More importantly, computing fields at equidistantly spaced
advanced time steps t

obs

allows to use an algorithm of constant complexity for
every point of interest. With such an algorithm, only about N

obs

calculations
per time step are needed. The disadvantage of this method is that one usually
cannot predict a particle’s position beforehand and therefore one is not able
to calculate the fields at the exact position another charge will be located at
at a future time step.
For the program developed the second algorithm was chosen.

3.1.3 Implementation

In order to calculate the electric and magnetic fields for an arbitrary position
and time based on Eq. 2.29 and Eq. 2.30, ~E(~r

obs

, t
obs

) and ~B(~r
obs

, t
obs

),
the program loads the particle trajectories and converts them into suitable
units. The values needed by default are time, location, and momentum.
The particle-handling algorithm implemented, the particle handler for short,
can work with a variety of unit systems and physical quantities and convert
between them, e. g. converting momentum to speed and vice versa.
The discrete trajectory leads to discrete times at which the field arrives at
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3.1 Simulating electromagnetic fields in the time domain

a certain point in space. These times will probably not coincide with the
user-defined times t

obs

at which the fields shall be calculated. By using two
time steps, “past” and “now”, to calculate the advanced fields,

~E (~r
obs

, t
adv

) =
q

4⇡"0

2

64
(~n� ~�)

R2�2(1� ~� ·~n)3
+
~n⇥

h
(~n� ~�)⇥ ~̇�

i

cR(1� ~� ·~n)3

3

75 (3.3)

~B(~r
obs

, t
adv

) =
1

c
·
h
~n⇥ ~E(~r

obs

, t
adv

)
i

(3.4)

~R(t) = ~r
obs

� ~r
e

(t) ~n =
~R

|~R| , (3.5)

it is possible to interpolate the field values onto the time steps of interest
t
obs

as illustrated in Fig. 3.1. This allows to calculate the field values for the
user-defined observation times t

obs

, lying between “past” and “now”.
The execution of the program is relatively simple and is shown as a flow chart
in Fig. 3.2. First of all, the program loads particle trajectories created by an
external program. Then, all points of interest, called observers, are set up by

e

tpast
tnow

Observer at ~robs: Array of

~

E(t) and

~

B(t)

t

obs

:

t

left

obs

= t

adv

(t
past

,~r

past

)
t

right

obs

= t

adv

(t
now

,~r

now

)

Figure 3.1: Calculating fields at the observer’s position (blue dot) to
an advanced time step t

obs

: Using two consecutive time steps t
past

and
t
now

(red dots) of the trajectory (drawn in red), it is possible to fill
the observer’s field array (time domain) by interpolating between the
two advanced time steps t

adv

(t
past

,~r
past

) and t
adv

(t
now

,~r
now

), but less
or more time steps must be calculated depending on the projection of
advanced time onto observer time t

obs

. In this example field data of four
time steps will be calculated and stored in memory (green).
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3. Numerical solutions for electromagnetic emissions

load particle data

Time domaine code

create observers

run through particle trajectory

run over all observers

Fill relevant time
steps with future fields

more
observers?

next
observer

final
time step?

next
time step

store all fields

no

yes

no

yes

Figure 3.2: Flow chart of the time domain code

the program, following a user-given setup for locations and times at which
to compute the fields. These two steps need adjustment for every particular
physics case. To ensure for such flexibility, the code can be easily adjusted by
a parameter file and a general input routine. This allows to handle different
input formats and quickly adjust the positions of the observers.
Following the setup, the routine will go through the entire trajectory of a
particle, calculating at each time step the future field values of all observers,
~E(~r

obs

, t
obs

) and ~B(~r
obs

, t
obs

). The algorithm uses two nested loops, the outer
is running over the time steps of the particle trajectory, the inner runs over
all observers. The calculation for each observer is independent. This part can
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3.1 Simulating electromagnetic fields in the time domain

be easily parallelized using data parallelism (see chapter B.1). However, since
the implemented algorithm is already quite fast, a massive parallelization did
not seem necessary and instead a more simple parallelization using OpenMP
(see chapter B.2) was used. This allowed to execute the code on different
cores of a CPU resulting in a speedup of approximately ⇠ 60 on the fastest
CPU available at HZDR.
It is also possible to parallelize the loop over time. This would require to
calculate all unit conversions and derivatives independently by all threads or
to calculate and store these values in advance. This was not done yet but it
could be implemented to further speed up the code.
Since the acceleration of the particle is needed to calculate the electric and
magnetic field (Eq. 3.3 and Eq. 3.4) but is usually not included in the particle
files, the accelerations needs to be computed by differentiating the velocity.
Therefore, the particle handler also comprises code to calculate numerical
derivatives for all stored continuous sets of values. By default, a second order
centered derivative (Eq. 3.6) is implemented [20], but any other numerical
differential scheme can easily be included.

d f

d t
(t0) =

f(t0 +�t)� f(t0 ��t)

2 ·�t
+O(�t2) (3.6)

t � 3�t t � 2�t t � �t t

“long ago” “past” “now” “future”

d

d t

����
past

d

d t

����
now

Figure 3.3: Illustration of the differentiation algorithm implemented:
A second order numeric differentiation scheme accesses trajectory points
at four consecutive time steps to calculate derivatives at two time steps.

In order to calculate the numerical derivatives, the trajectory is stored at
discrete points referring to the last four time steps, thus allowing to calculate
the derivatives at two of these time steps as illustrated by Fig. 3.3. For
simplicity, these two time steps are called “past” and “now” in agreement
with the method names used in the source code to work with these time
steps.
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3. Numerical solutions for electromagnetic emissions

3.2 Simulating energy deposition in frequency do-
main

This section presents a code called CLARA 2.0, standing for classical
radiation program version two. It allows to calculate the radiated energy
per unit frequency and unit solid angle far away from the particle d I

2

d⌦ d!

(~n,!)
based on Eq. 2.44. For simplicity, this term will be referred to as the spec-
trally resolved emission intensity or simply the spectrum.

3.2.1 Introduction to CLARA 2.0

Calculating the spectrally resolved radiation at a large distance from the
charged particle dynamics provides means to compare particle simulations
with experiments. CLARA 2.0 is able to compute the spectra d I

2

d⌦ d!

(~n,!)
of a variety of particles for arbitrary directions ~n and a user-defined set of
frequencies !. For each particle, it requests a trajectory and momenta for
consecutive time steps from an external source, such as a data file. This
separation of the analyzing tool from the actual particle simulation permits
to use this code independently of the particular simulation providing the
data on the particle dynamics. However, this separation comes at the cost
of a strongly reduced efficiency due to the overload produced by data input
and output.
The code was developed independently from the CLARA 1.0 code, designed
by A. Debus [18]. CLARA 2.0 works efficiently on high performance clusters
by exploiting their parallel architecture. Thereby, it allows to retrieve results
much faster, enabling e. g. more parameter scans in the same time.

3.2.2 Implementation

The spectrum d I

2

d⌦ d!

(~n,!) calculated for a single particle and a single direc-
tion ~n is needed in order to compute the total spectrally resolved emission
intensity for all particles and various directions (Eq. 2.44). This offers means
to parallelize the computation, which will be covered at the end of this sec-
tion. First, calculating a spectra for a single particle and a single direction
is discussed (blue part of Fig. 3.5).
Calculating d I

2

d⌦ d!

(~n,!) means an integration of radiation amplitudes ~A

(Eq. 2.45) over time. These amplitudes ~A(~�(t), ~̇�(t),~n) can be calculated
using the particle trajectory. Since the integration is similar to a Fourier
transform, it is possible to use a fast Fourier transform (FFT) to speed up
the calculation. The required derivations are described in section 4.1.2. One
consequence of using a fast Fourier transform is the need for equidistantly
sampled time steps in retarded time.
If the particle trajectories are sampled equidistantly in simulation time, the
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3.2 Simulating energy deposition in frequency domain

resulting retarded time will not be equidistant since it depends both on the
time t and the position of the particle ~r

e

(t). Therefore, the retarded time is
not suited to perform a fast Fourier transform directly.
In order to overcome this problem, the algorithm iterates over the trajectory
calculating a real-valued radiation amplitude ~AFFT and the associated re-
tarded time t

ret

for each time step of the trajectory and storing these paired
values for later.

~AFFT =
~n⇥

h⇣
~n� ~�

⌘
⇥ ~̇�

i

⇣
1� ~� ·~n

⌘3 (3.7)

t
ret

= t� ~n~R

c
(3.8)

The amplitudes ~AFFT are equidistant in time but not yet equidistant in
retarded time as needed for the FFT (Fig. 3.4a). In order to obtain an
equidistant sampling in retarded time, the stored amplitudes ~AFFT are in-
terpolated onto an equidistant grid in retarded time. This is done by using
a linear interpolation between two consecutive retarded time steps. The
grid in retarded time is generated with N

FFT

= 2n � N
time steps

points in
time, placed equidistantly between the first and last stored retarded time
(Fig. 3.4b). After interpolating onto the grid, the spectrum is calculated
using a fast Fourier transform (Fig. 3.4c).

d2I

d⌦d!
=

q2

16 ·⇡3 · "0 · c
t
end

� t
start

N
FFT

����������

tendX

tret=tstart

~AFFT(t
ret

) · ei!tret

| {z }
Fourier transform

����������

2

(3.9)

Using the fast Fourier transform can cause a variety of issues concerning
the resolution of the computed spectra. These are covered in section 4.1.3
and 4.1.5. In order to ensure that the interpolation is able to resolve all
details of the amplitude changes over retarded time, ~AFFT(t

ret

), it is neces-
sary to set N

FFT

larger than the number of time steps N
time steps

(sampling -
section 4.1.3). Additionally, zeros can be added to the end of the amplitudes
to improve the spectral resolution (zero-padding - section 4.1.5).
As mentioned in appendix A.3, the implemented fast Fourier transform
closely follows the code described in [21] but was written in a more gen-
eral form.

After performing the Fourier transform, the resulting electromagnetic spec-
tra, being calculated for frequencies depending on the equidistant grid, need
to be mapped to predefined frequencies of interest, specified by the user
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3. Numerical solutions for electromagnetic emissions
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Figure 3.4: In order to process the non-equidistant radiation signal (a),
the signal is first interpolated onto an equidistant grid in t

ret

(b). With
this equidistant signal, a FFT can be applied. The resulting spectrum (c)
contains as many frequency values as the grid contains t

ret

. Half of the
spectrum is considered for spectral analysis, the other half is a reflection
at ⌦

Nyquist

.
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3.2 Simulating energy deposition in frequency domain

before starting the simulation. Two methods are available to map the calcu-
lated spectra onto the predefined grid of frequencies: A simple interpolation
between the two neighbouring frequencies surrounding the frequency of inter-
est and an averaging scheme over several frequencies in a pre-defined range
around the frequency of interest. The first method works best if the fre-
quencies calculated using the FFT are spaced similarly to the frequencies
of interest. However, if the frequencies returned by the FFT algorithm are
very dense, spectral peaks might be omitted by sampling too roughly with
the interpolation method. Here, the averaging approach works better.

After performing all these calculations, one spectrum for a user-defined set
of frequencies and for a single particle has been calculated. This is repeated
for all directions the user wants to observe and for all particles he wants to
cover. In order to do this efficiently, CLARA 2.0 exploits the parallel archi-
tecture of computer clusters to run these tasks in parallel. Calculating these
spectra is an independent task for each direction and each particle trajectory,
allowing to parallelize the procedure over these quantities.

The basic procedural structure of CLARA 2.0 is designed similarly to the
time domain code described in section 3.1. The main difference is due to the
parallelization of the program.
The parallelization scheme implemented assumes a separate calculation on
independent computer nodes. Sharing memory or communication is just
rudimentarily necessary because the problem is “embarrassingly parallel”.
This allows to use the code with the already available job submission system
or by running it using MPI (for details on both methods see appendix B.2).
Additionally, a many-core parallelization using OpenMP (see appendix B.2)
might be used if needed.
Computing a spectrum d I

2

d⌦ d!

(~n,!) for one particle and one direction ~n is
a single tasks. Tasks can be distributed among different nodes (computers)
according to a parallelization scheme.
If this user-defined parallelization scheme distributes the calculation for par-
ticles among several nodes, each trajectory file will be loaded just once by a
single node. This reduces the load on the network connecting the file system
with the individual nodes. On the downside, each node needs to store spec-
tra for several directions at the end of the simulation, giving rise to a high
network load.
Another parallelization scheme would be that each node calculates the spec-
tra of all particles for a single direction. This requires all nodes to each
load all trajectory files, resulting in a high network load. When saving the
results, the spectra from different particles are combined in order to reduce
the network load. This reduction, however, leads to the loss of individual
spectra associated with single particles. If this reduction is not performed,
the network load while saving will be comparable to the former paralleliza-
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3. Numerical solutions for electromagnetic emissions

tion scheme.
The first parallelization scheme is implemented by default to prevent this
loss of information and because of the fact that for trajectories of more than
⇠ 20.000 time steps the network load of the second scheme always outweighs
that of the first one. However, the parallelization can easily be modified by
switching the schemes, for example in case of short trajectories but detailed
spectra where the second scheme is more efficient.
As previously mentioned, the parallelization can be implemented using ei-
ther the job submission system of the cluster or MPI. The first version of
the program was designed to work with the job submission system. It cre-
ates an array of jobs differing only by a unique ID. This ID is used to load
a specific trajectory (or choose a certain direction in case of parallelization
over directions) and to give the output stored on disk a unique identifier.
The starting and handling of the individual jobs is carried out by the job
submission system. Since job handlers are known to not scale well for large
numbers of jobs, an MPI based version was developed as well. It emulates
a basic job handling routine calling tasks by a unique ID. This framework
allows to submit large numbers of independent but similar tasks.
In order to analyze the radiation of a set of moving charges, their trajectories
and momenta need to be available as ASCII files on disk. The storage format
of the trajectory is arbitrarily chosen and can be modified if appropriate in
analogy to the time domain code.
The locations of all trajectory files on disk need to be assigned to a unique
ID number in order to run the analysis in parallel. With that ID, all tasks
load their associated trajectory and allocate memory for all spectra to be
calculated (Fig. 3.5). Then, the routine iterates through all directions previ-
ously specified to be of interest. Each iteration calculates the spectrum for
a single direction using the FFT algorithm as described at the beginning of
this section. After having calculated the spectra d I

2

d⌦ d!

(~n,!) for all direc-
tions ~n, the data created is stored on disk and the next trajectory can be
analyzed.
Spectra can be stored as ASCII files or as binary files. ASCII files have the
advantage of being human readable and easier to handle by data analysis
and plotting tools, however, they are usually about three times larger than
a binary file containing the same information. In addition, interpreting text
requires a considerable amount of computation if compared to reading files
written directly in a machine-compatible way.
Another routine was implemented to combine all created spectra stored on
disk. It combines the spectra of all particles, assuming that the phase re-
lation between the radiation of the particles is not important. This is the
so called incoherent radiation method covered in section 4.2.1. It is a valid
approximation if the average distance between particles exceeds the wave-
length of the emitted radiation.
For visualization and post-processing a separate program was implemented
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3.2 Simulating energy deposition in frequency domain

for all particle trajectories do:

CLARA 2.0

for all directions do:

calculate ~A and t
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FFT

= 2n points
and

interpolate ~AFFT(t
ret

) onto it

FFT on every ~AFFT-component�
AFFT

x

+ i · 0
 

FFT���! F
x

(!) 2 C

Interpolate ~F(!) onto
grid of ! to observe

calculate energy per
unit frequency and unit
solid angle from ~F(!)

more
directions?

next
direction

collect spectra for all directions and save them

yes

no

Figure 3.5: Flow chart of the inner part of the frequency domain code
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3. Numerical solutions for electromagnetic emissions

using the programming language Python.

3.3 Radiation code working within particle-in-cell
codes

The third code is also able to compute the spectrally resolved intensity emit-
ted by electrons d I

2

d⌦ d!

(~n,!), but in contrast to CLARA 2.0, the direct im-
plementation in the particle simulation PIConGPU allows to analyze much
larger particle systems in a much shorter time. The code is named Radiation
Analyzer. In combination with PIConGPU, it is able to predict radiation
emanating from a variety of plasma processes, e. g. from laser wakefield ac-
celeration [5].

3.3.1 Idea behind this approach

Even on large compute clusters, it has several disadvantages to separately
calculate the particle motion and the resulting radiation. First of all, tra-
jectories of particles need to be stored on hard drives. However, for plasma
simulations with billions of macro particles involved the disk space available
is easily filled.
In order to illustrate this, let us assume that trajectories are stored with dou-
ble precision, causing every floating point value to use 8 bytes of memory.
One needs to store a location and a momentum vector per particle and time
step, as well as a particle ID or a time, requiring another 8 bytes. Hence,
the total disk space required is:

M = Ntime ·Nparticle · (3 + 3 + 1) · 8 byte (3.10)

This limits the number of particles to be considered for an exemplary sim-
ulation with Ntime = 50, 000 time steps to one hundred millions, assuming
one could use the M = 256TB of available disk space at HZDR solely for
this simulation.
A laser wakefield simulation typically requires a gas density of ⇢ = 1019 cm�3

in a volume of V = 0.6 cm · 80µm · 80µm. With a moderate macro particle
weighting of w = 1000 real particles per simulated macro particle one would
end up with

Nparticles =
⇢ ·V
w

⇡ 3.8 · 1011macroparticles. (3.11)

The number of macro particles used by this typical particle-in-cell simulation
is about three orders of magnitude larger than the limit derived above.
However, this is not even the major problem with that kind of approach.
More importantly, writing to and reading from a hard drive is relatively slow
compared to analog operations on random-access memory (RAM), even on
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3.3 Radiation code working within particle-in-cell codes

parallel file systems. The hypnos cluster at HZDR can read files at about 250
MB/s if reading is distributed over several nodes. About two weeks would
be needed to read the above 256 TB of data at this speed. Writing would
be even slower. In contrast, a CPU can transfer data from and to the RAM
with a bandwidth of around ⇠ 50GB

s

. Modern GPUs are distinguished by a
bandwidth of up to ⇠ 200GB

s

to its global memory [22]. This is about 200
to 800 times faster than data transfer from disk.
Another problem is that particle-in-cell simulations cannot store entire tra-
jectories at once because of memory (RAM) limitations. Therefore, particle
data are usually stored in several files per time step. In order to calculate
the radiation, one needs at least a partial history of the particle motion
to compute derivatives. This means one has to rearrange all particle data
prior to calculating the radiation. This requires at least two steps of sorting
and matching which have to be performed thus loosing several weeks before
starting with the actual analysis.

One way to overcome these problems is to calculate the radiation directly
within the particle simulation. This eliminates the problem of storing tra-
jectories on disk as the radiation code can obtain all particle data within
the simulation. However, RAM is also limited. This means one cannot keep
entire trajectories but only short parts of it. The length of these sections is
determined by the number of time steps that can be held in memory at the
same time.
Only if a specific part of the trajectory is simulated and accessible in mem-
ory, the associated radiation can be calculated. Consequently, calculating
every particle’s radiation needs to be carried out in parts.
Radiation data for every particle in several directions cannot be held in mem-
ory because of the limited memory of the GPU. Therefore, a reduction of
data is essential. To emphasize this, radiation can be associated with the
acceleration of a particle and therefore can be seen as a property of the par-
ticle. This means that even if one is normally interested in the collective
radiation, it would be possible to view every single particle as a separate
emitter and to keep track of its radiation. This associates radiation prop-
erties with a single particle and is exactly what the CLARA 2.0 code does.
Nevertheless, this requires every particle “keeping track” of its radiation in
every direction one is interested in. This increases the amount of data kept
in memory tremendously. If one considers just a few particles, this might
not be a problem. With millions to billions of particles one would quickly
reach any memory limitation.
Reduction can be achieved by adding the complex amplitudes ( ~A · ei!tret)
(Eq. 2.45 and Eq. 2.46) of all particles for each time step. This is the so called
coherent radiation method that will be covered in section 4.2.1. Mathemati-
cally, this can be correctly done by interchanging the sum over all particles in
Eq. 4.12 with the integral over retarded time. Using the coherent radiation
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method allows to combine the radiation data of several particles while still
running through the simulation. This method considers the phase relation
of the emitted radiation, which is physically correct and allows to correctly
simulate coherent radiation. Numerically, it needs to be demonstrated that
the random interferences caused by the macro particle approach do not alter
the final spectrum and the results still comprise all significant physics (see
appendix C).
The approach of replacing large disk space by small RAM seems counterin-
tuitive since one of the reasons against the CPU-based code was its limited
memory in form of the available disk space. However, the new approach
does not need to store entire trajectories and, by using the coherent radia-
tion method, it efficiently combines radiation data by summing over many
particles. This allows to analyze radiation without being held back by band-
width limitations.
In order to realize all those ideas, they have been implemented in the particle-
in-cell Code PIConGPU [23] developed at the HZDR.

3.3.2 Particle-in-cell codes

There are three common ways to simulate a plasma. The first regards the
plasma as a fluid and uses a fluid dynamic approach. This is only correct if
the plasma particles can be described by ensemble-averaged variables such
as density and temperature. In the other extreme all particles are treated in-
dividually and molecular dynamics techniques can be employed. This again
turns out to be an impossible task for large-scale systems with many par-
ticles, because the sheer number of particles and the fact that all particles
interact with all other particles via the Coulomb force demands computa-
tional power not available even with the utmost supercomputers. Simplifi-
cations are necessary to overcome these problems. The particle-in-cell (PIC)
approach is a mean field model [19]. It computes the electric and magnetic
fields on a grid of cells and then calculates how the particles interact with
these fields. Any short-range interactions below the cell size are neglected.
Additionally, non-point-like but macro particles are considered, which resem-
ble symmetric particle distribution functions of hundreds of real particles.
The PIC algorithm is illustrated in Fig. 3.6. For the sake of simplicity, the
starting conditions of the simulation are left out. Every step in the algo-
rithm updates a specific set of values which influences the next set of values.
Assuming the electric and magnetic fields are linearized on the grid (yellow
box), the Lorentz force acting on each macro particle in each grid cell can
be computed by interpolating the fields on the grid (blue box). This force is
then used to compute the change in position and momentum of all particles
by solving the equation of motion (green box). This is called the particle
push. There are several algorithms to efficiently combine these two steps.
They are, however, in principle two separate calculations and thus are pre-
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Compute Lorentz force
~F = q

⇣
~E + ~v ⇥ ~B

⌘ Integrate equation of motion
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Figure 3.6: Particle-in-cell algorithm

sented individually. Since the particles move in each time step, they also
induce a current, which needs to be computed (red box). It is modeled as
a field linearized on the grid. With the new current, the electric and the
magnetic fields can be updated (again yellow box). Using Ampere’s and
Faraday’s laws (Eq. 2.4 and Eq. 2.5), the changes of the fields are super-
imposed onto the fields on the grid. Now, the electromagnetic fields are
updated and one can start over with the algorithm. As with the particle
pusher all steps mentioned can be implemented with a variety of algorithms
which differ in speed, complexity and numerical accuracy. Since these details
are not of importance to understand the Radiation Analyzer, the interested
reader is referred to [19]. Using a grid to describe the fields not only has the
advantage of reducing the computational cost of the algorithm but also to
make the algorithm only act on local values in the simulation domain. Par-
ticles in a cell are only influenced by fields on the surrounding grid points
and vice versa. Combining several cells locally allows to calculate the plasma
in this region except for a small boundary region. This property allows to
spreading the calculation on several computing nodes and to broadcast only
a relatively small set of values. This so-called domain decomposition method
has to be considered when calculating radiation.

3.3.3 Implementation

In order to calculate the radiation using the discretely sampled trajectories
from PIConGPU, Eq. 2.44 needs to be adjusted. The integral over the time
can be replaced by a sum over all time steps. Furthermore, the radiation
from all particles needs to be considered with their phase. This can be done
by adding all particle contributions before calculating the absolute square of
the integrals [6]. It is no problem to interchange the sum over all particles
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with the sum over time.
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A total of N

p

macro particles is considered. The index k describes a sin-
gle macro particle with position ~R

k

, velocity ~�
k

and acceleration ~̇�
k

. Since
macro particles can describe a variety of particles, the total charge of a macro
particle q

k

can differ and needs to be considered before adding the ampli-
tudes of all particles. The total energy emitted per unit solid angle and unit
frequency can be calculated for arbitrary directions of the observer ~n and for
arbitrary frequencies !. This offers a means to parallelize the computation
if considering several directions and frequencies.
The positions and momenta of all marco-particles are calculated by PIConGPU
and can be accessed for calculating the radiation. For each time step the
sum over all particles needs to be evaluated for each direction ~n and fre-
quency !. The result can be added to the previous results until the end of
the simulation. After the final time step of the PIC simulation, the total
energy emitted per unit frequency and unit solid angle can be calculated
using Eq. 3.12.
This sketch of the algorithm implemented hides many details of the calcula-
tions, the concrete implementation in PIConGPU is more difficult. In order
to compute the emitted radiation directly in PIConGPU, the radiation code
was implemented as a so-called Analyzer. The Analyzer is a module that can
be executed after one PIC cycle. It is used to analyse the simulated plasma.
Analyzers come with a variety of predefined methods to permit standard-
ized configuration and invocations by the Analyzer Controller as shown in
Fig. 3.7. Before the startup of the PIC simulation, PIConGPU calls the
Analyzer Controller to check which analyzers have been activated and to
load the user-defined start parameters. These are then handed over to the
Analyzers which allocate enough memory on all computer nodes and GPUs
and set up all necessary parameters. The Radiation analyzer also extends
the particle properties by adding a previous momentum. This is necessary to
numerically differentiate the momentum and requires to extend the particle
pusher algorithm at compile time.
During the simulation run and if the GPU based PIC-algorithm has com-
pleted one cycle, the CPU-based part of PIConGPU handles all necessary
communications with other computer nodes, but also starts the Analyzer
Controller routine. This scheduler calls sequentially all activated analyzers.
This includes, if activated, the Radiation Analyzer. It starts the Radiation
Kernel, which performs all necessary calculations on the GPUs and will be
described later. If asked for by the user, the Radiation Analyzer collects the
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CPU GPU

PIConGPU
• node communication

• memory managment

• kernel calls

• force calculation

• particle pusher

• field solver

• current solver

Analyzer controller
starts and calls all analyzers

Radiation analyzer

• prepare data

• configure analyzer

• combine data from different
nodes

• handle results

Radiation kernel
calculates emitted radiation

data

Figure 3.7: Flow chart of PIConGPU and the radiation kernel

results of the calculations from the GPUs, merges them on a single node and
stores them on disk.
After the termination of the PIC simulation, again all data are collected and
stored. Finally all allocated memory is freed and PIConGPU can terminate.
Before discussing the algorithm which calculates the radiation for every par-
ticle, the Radiation Kernel, it is important to think about how to parallelize
this computation for a highly parallel architecture as the GPU. The com-
putation itself is parallel over all particles, all directions and - if one uses
a discrete Fourier transform method (DFT, see appendix A.2) - even over
all frequencies. However, not all possible parallelization schemes can be ex-
ploited efficiently on the GPU. One way to parallelize the problem is shown
in Fig. 3.8. This is the first scheme implemented with a high efficiency. It
is no longer used since there is a slightly faster scheme which relies on more
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Figure 3.8: Parallelization over all particles and directions

communication to speed up the calculation by a few percent. Nevertheless,
this example nicely illustrates how to exploit the parallel architecture and
how the basic idea of the new scheme works. It utilizes the independence of
frequencies and directions and uses a two dimensional CUDA-grid to account
for that.
A CUDA-grid is the overall structure that describes all calculations needed
to be computed in parallel. It contains several blocks that group several of
these calculations, named threads, together. All threads can access the same
global memory, while only threads in one block share data with each other via
the fast shared memory. A grid can describe blocks in several dimensions to
facilitate the parallelization. In the following parallelization schemes, blocks
are marked with Bx

i

, representing the ith block in dimension x, and threads
with T x

j

, with j the ID of the thread and x its dimension. For details on
terms used in parallel programming based on GPUs see appendix B.3.
One grid dimension is associated with the direction ~n(✓). It just consists of
one block (By

0 ) of as many threads as are needed for all directions. These
can point towards any direction but are usually described by a single angle
✓. The second dimension relates to frequencies. For 2048 frequencies it is
divided up into 8 blocks each comprising 256 threads.
Every thread is associated with one and only one independent task, which
can be interpreted as one pixel in graphs like Fig. 2.7. The parallelism in par-
ticle data is exploited by letting each thread in a frequency block load data
of a single particle, then calculate the current amplitude vector ~A (Eq. 2.45)
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and the retarded time t
ret

(Eq. 2.46), and finally share them with all other
threads in the block. This tremendously reduces the amount of communica-
tion compared to a version where every thread has to load the entire particle
data on its own. Finally, every thread still has to iterate over all particles
to calculate the contribution of all shared ~A and t

ret

to its final result. This
algorithm is still sequential for particles on a GPU, even if the load process
was parallelized, but it is parallel in directions and frequencies.
Since there are usually several GPUs used for a simulation, work is divided
among them. A parallel execution with regard to the particles is achieved
and the contributions from all particles on all GPUs have to be combined
by the Radiation Analyzer. At the end of each calculation on the GPU, the
Radiation Analyzer is responsible to combine all results from the different
nodes.
The second scheme uses a simple one-dimensional parallelization as illus-
trated in Fig. 3.9. There is just a one-dimensional grid with a block for
each direction. For better illustration, the treads contained in a block are
drawn on a different axis. Every block consists of 256 threads, which can be
associated with different tasks during the execution of the kernel. All tasks

Block 0

Block 1

...

Block N
✓

Thread 0 Thread 1 ... Thread 255

(0, 0) (0, 1) ... (0, 255)

(1, 0) (1, 1) ... (1, 255)

... ... ... ...

(127, 0) (127, 1) ... (127, 255)

!j

~n(✓i)

(7, 10) thread 10 of block 7

! direction: ~n(✓7) and frequencies !10, !256+10, !512+10, !678+10 . . .

Figure 3.9: Current parallelization scheme

associated with the individual threads are shown in a flow chart depicting
the Radiation Kernel (Fig. 3.10). Every block runs sequentially over all su-
per cells, a collection of individual cells which was created to better handle
data in PIConGPU, on the GPU. Every super cell is associated with several
particle frames, which is just a list of at most 256 particles. The frame’s size
is determined by the PIC algorithm on the GPU, which needs to switch the
association of threads between particles and cells. Therefore, the number of
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Figure 3.10: Flow chart of radiation kernel
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cells equals the number of particle frames in a supercell. Usually more than
one frame per super cell is required since there can be more than 256 parti-
cles in a super cell. The super cell contains a reference to the last particle
frame, which might contain less then 256 particles that are located in the
super cell. This frame points to its fully filled predecessor, and that to its
predecessor, until the first frame points to an invalid frame, which represents
the end of the list of particle frames. By iterating over all frames, one can
thus iterate over all particles located in a super cell.
In order to process these frames in parallel, each thread must first determine
its thread ID in the block. If it is the first thread, it determines at start the
last frame of the super cell and later the predecessors. It shares the location
of the particle list with all other threads but is not loading the data. Now,
all threads check if the current frame is valid, or if they already dealt with
all frames and are now finished with all particles of that specific super cell.
Since all threads are checking the same frame, they will either jump to the
next super cell until no super cell is left on the GPU or start with loading
particle data.
Every thread loads one particle of the 256 particles in the frame to its own
register. Then, it calculates the real amplitude ~A (Eq. 2.45) and the retarded
time t

ret

(Eq. 2.46) for this particle for a direction determined by the block
ID of the thread. As an example thread (7, 10) in Fig. 3.9 computes both
values using the direction ~n(✓7), with ✓7 a user-defined angle. The real am-
plitude and retarded time are shared with all other threads in that block.
If the frame was the last frame, not all threads might end up with a particle
or in some cases not all particles are selected for the radiation calculation.
In those cases, only those threads with valid data share it. Since the data
is needed by all threads in the next phase of the kernel, the threads need
to wait until the last of them is finished. Then, each thread computes a
frequency ! by its thread ID j and its direction ✓ by its block ID i. The
specific implementation of calculating the frequency and direction can be
defined by the user. Using a logarithmic frequency range or calculating the
radiation observed on an entire sphere surrounding the plasma (sky map) is
possible. An example of a simple linear frequency and direction mapping is
given below.

! = !
start

+ j ·�! (3.13)
✓ = ✓

start

+ i ·�✓ (3.14)
~n = ~n(✓) = (sin ✓, cos ✓, 0) (3.15)

Here, !
start

and ✓
start

are the offsets of the frequency and angle; �! and
�✓ are their step width. The direction is computed by means of trigono-
metric functions that can be set at compile time. All threads in the block
then use the shared real amplitudes ~A and retarded times t

ret

to calculate
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the complex amplitudes ~A · e�i!jtret of each particle for their frequency and
for the direction of their block. All complex amplitudes a thread computes
are added up and the result is kept in each threads’ register memory. Af-
ter the threads have finished iterating over all particles in the frame, they
store the calculated radiation amplitudes in global memory by adding the
new amplitudes to the already existing ones. If the number of frequencies
to calculate is larger than the number of threads in a block, all threads will
repeat this last procedure until the radiation amplitudes for all frequencies
have been calculated. If this is the case, the next frame will be determined
and the procedure starts over again as illustrated in the flow chart (Fig. 3.10).

The Radiation Kernel comprises also a Nyquist limiter algorithm (section 4.2.2)
to correctly calculate the radiation of particles with a widely spread energy
distribution. The Nyquist limit of each particle is calculated by the thread
loading the particle and shared additionally with the other threads. Each
thread then decides according to its assigned frequency whether an ampli-
tude is added to the total sum or not. Since the Nyquist limiter needs more
shared memory, it can optionally be excluded by the user.

3.3.4 Discrete versus fast Fourier transform

The above scheme describes a calculation of the radiation using a discrete
Fourier transform (DFT, see appendix A.2) scheme with a non-equidistantly
sampled retarded time. It needs N

!

·N
t

calculations for just one particle
and one direction, with N

!

being the number of frequencies to calculate and
N

t

the number of time steps of the PIC simulation. This is a huge amount
of calculations and it comes to mind to use the fast Fourier transformation
(FFT, see appendix A.3) instead. Another Radiation Analyzer has been
implemented based on the FFT algorithm. In order to use the FFT, an
equidistantly sampled signal in retarded time is required. Due to the limited
memory available on a GPU, it is not possible to keep entire trajectories
of all particles. Therefore, the method used in the CPU-based frequency
domain code, CLARA 2.0, is not an option. However, it is possible to predict
and thus to limit the range in retarded time for an arbitrary direction. For
simplicity, a spherical shape of the simulated region is assumed instead of the
cuboid shape used in the simulation (see Fig. 3.11). The range in retarded
time thus might be longer than actually necessary, but calculating the ranges
is so quite easy and less error prone.

An equidistant grid between the lower and upper limit can be created. The
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are calculated using the central position ~R0 of the simulated region and the
radius r of the surrounding sphere. The spacing between the grid points is
defined by the maximum frequency one wants to observe and can be calcu-
lated by using the Nyquist-Shannon sampling theorem (Eq. A.12). In order
to sum up the real amplitudes on this grid, one needs to keep track of the
particles’ trajectories for a short period of time, so it is possible to recon-
struct the particle’s motion for at least two time steps t

now

and t
old

. This can
be done by extending the particle pusher and the particle data class again.
With these two times in lab frame, two points in retarded time, tret

now

and
tret
old

, are calculated. For those, it is possible to compute the real amplitudes
and interpolate between them onto the equidistant grid in retarded time as
illustrated in Fig. 3.12. It is possible that during one PIC-cycle several or
none of the grid points are filled by a particle. In one PIC cycle several
particles might contribute to different grid points because they are spatially
separated. It is not unlikely that different particles contribute to the same
grid point. Therefore addition to the same space in memory by different
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Figure 3.12: Adding amplitudes to a grid in retarded time

threads at the same time needs to be handled sequentially. This makes this
procedure inefficient on GPUs. Another possibility would be to keep several
grids on the GPU and add onto these grids in parallel. However, this is not
an option because of the limited memory of a GPU. Thus, only the calcula-
tion of the real amplitude but not the summation of real amplitudes can be
efficiently implemented on GPUs. The computation of the real amplitudes
only makes up for 90% of the computation time, the rest is needed for inter-
polating onto the grid. By Amdahl’s law (Eq. B.3, [24]), putting parts of the
FFT version of the radiation analyzer onto the GPUs will maximally result
in a speedup of 10. Comparing the time for such an FFT implementation
with the time needed for the DFT shows that the FFT is clearly slower than
the DFT. Therefore, the FFT version has not been developed further.
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4 | Fourier transform and ra-
diation spectra

Two different programs were developed which simulate the electromagnetic
intensity spectra detectable far away from the corresponding particle dynam-
ics (section 3.2 and 3.3). This included developing several algorithms that
have been tested and applied to well-known physical problems. This chapter
focuses on these algorithms and on some pitfalls one might encounter when
using these numerical solutions.

4.1 Investigating different aspects of calculating ra-
diation spectra numerically

4.1.1 Simplifying the calculation of radiation spectra by par-
tial integration

The equation 2.44 allows to calculate the spectrally resolved radiation inten-
sity d I

2

d⌦ d!

(~n,!) far away from an accelerated charge. There exist a number
of equivalent equations used to simplify calculations, or adopt Eq. 2.44 to a
particular algorithm.
Quite often, a trick presented in [6] is used. By
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applying an integration by parts to Eq. 2.44 one arrives at
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4. Fourier transform and radiation spectra

The result is a formula consisting of two parts, one describing the endpoints
of the integrated temporal window, the other the simplified temporal inte-
gration. The actual integration consists of a vector part which is easier to
handle. The endpoints can often be ignored [6], but are necessary for a cor-
rect general description.
This formalism is often used in theoretical calculations. Trying this approach
showed that it is numerically unstable and is therefore not well suited for
simulations. This instability arises from the integral kernel’s independence
of the acceleration. The kernel function can consist of a large constant part.
In order to illustrate this, an electron with a high energy moving in an un-
dulator is considered. It wiggles just a little bit but mainly keeps its high
original velocity ~�(t) ⇡ ~�0 + ~�

u

(t), with |~�
u

| ⌧ |~�0| along the undulator
axis. Using the linearity of the Fourier transform, it is obvious that �0 will
only contribute to ! = 0 and together with the multiplication with !, the
contribution of ~�0 to the radiation will result to zero. As expected, only
the acceleration will contribute to the radiated energy. However, this is only
true if staying outside the realms of numerical calculations. A numerical ap-
proach sums up samples of the integration kernel at discrete points in time.
But this is always flawed by errors caused by the sampling rate, the limited
precision of floating point numbers, and the non-commutative properties of
floating point arithmetics. The resulting error is proportional to the integra-
tion kernel and can be large compared to the contribution of the acceleration.
It is however possible to circumvent these problems for special cases. If one
knows a priori that a particle has a nearly constant velocity, this constant
part can be subtracted beforehand when calculating the radiation. Never-
theless, this is not applicable to a case with strong acceleration or to any
general situation.

4.1.2 Speeding up the calculation of radiation spectra by fast
Fourier transform

A brief look at Eq. 2.44 reveals a similarity to a Fourier transform (see Ap-
pendix A) except that one integrates over simulation or lab time t, while the
complex phase depends on the retarded time t

ret

(t,~r). This leads to two op-
tions. The integral can be solved by using either a discrete Fourier transform
(DFT, see A.2) with a non-equidistant sampling rate, or by integrating over
an equidistantly sampled signal in t

ret

and using a fast Fourier transform
(FFT, see A.3). The first option is a straightforward approach replacing the
integral over time by a sum.
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52



4.1 Investigating different aspects of calculating radiation spectra

The second option requires more effort. In order to integrate over t
ret

, it is
necessary to substitute t by t

ret

in Eq. 2.44. It can be shown [6] that

d t
ret

d t
= 1� ~� ·~n . (4.4)

Using this relation leads to an integration over retarded time.
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This is a Fourier transform over retarded time t
ret

. The FFT algorithm
requires an equidistant sampling. Equidistant step width in t can be achieved
by most simulations. However, an equidistant sampling in t will rarely result
in an equidistant sampling in t

ret

since the retarded time t
ret

depends on both
the time t and the location of a charge ~r(t). There are two ways to obtain
an equidistant sampling in t

ret

: The first assumes that it is possible to store
all real amplitudes ~A (Eq. 2.45) with their associated t

ret

(Eq. 2.46). After
having calculated and saved all values, they can be interpolated onto an
equidistant grid. The additional computation needed for the interpolation
scales linearly with the number of grid points and is less time-consuming
than the Fourier transform.
The second way is to construct a suitable, equidistant grid in retarded time
before calculating every value. If such a grid is available, only two adjacent
values in t

ret

need to be kept in memory. Between these two time steps,
an interpolation can be performed to fill any grid points in between. Both
methods create an equidistantly sampled signal in retarded time, allowing
to compute spectra by means of the highly efficient FFT algorithm.

4.1.3 Equidistant and non-equidistant sampling of retarded
time

The sampling rate, or equivalently the spacing of the calculated amplitudes
~A in t

ret

, leads directly to the sampling problem covered by the Nyquist-
Shannon sampling theorem (see A.2). It states that for a signal sampled at
a fixed rate 1/�t there exists a highest detectable frequency ⌦

Nyquist

, the
Nyquist frequency. If a signals contains a frequency !0 above ⌦

Nyquist

, the
Fourier transform F(!0) cannot be reconstructed.
By choosing a discrete Fourier transform over a fast Fourier transform, one
can use Eq. 4.3 together with a varying sampling rate in t

ret

. It is known
from [25] that the average sampling period h�t

ret

i needs to be below a critical
value defined by the band limitation, or highest contained frequency of the
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radiation !
max

, to reconstruct the signal.

h�t
ret

i  ⇡

⌦
Nyquist

⌧ ⇡

!
max

(4.6)

It still needs to be shown that it is always possible to find a suitable time
step �t for the particle simulation, such that the Nyquist frequency ⌦

Nyquist

is greater than the maximum frequency !
max

of a band-limited radiation
signal: Since the differentials d t and d t

ret

are related by Eq. 4.4, this is also
true for any finite time step.

�t
ret

�t
⇡ 1� ~� ·~n (4.7)

By using the definition of the Nyquist frequency (Eq. A.12), one obtains the
relation between the maximum frequency that can be correctly calculated,
⌦

Nyquist

, and the time step of the simulation �t.

�t =
⇡

⌦
Nyquist

·
⇣
1� ~� ·~n

⌘ (4.8)

As always, higher frequencies require a finer sampling rate. However, the
relativistic effect caused by a charge moving towards an observer positioned
in direction ~n reduces the required sampling rate since (1� ~� ·~n) is getting
small and therefore the necessary sampling step width �t is increased. Vice
versa, a particle moving away from an observer located in the direction of
~n needs a higher sampling rate for keeping the same maximally resolvable
frequency ⌦

Nyquist

. But this relativistic effect on the minimal sampling rate
is not linear. To resolve the same frequency !, a particle moving towards
an observer at a speed close to the speed of light, c, demands just a long
simulation step width �t, while a particle moving away from an observer
with a velocity of approximately c requires a sampling rate of twice that of
the stationary charge 1/�t = 2 · ⇡

!

, because 0 < 1� ~n · ~� < 2. Therefore, it
is always possible to find a particle-simulation step-width �t to resolve any
contributions at frequency !.
Radiation at high frequencies is commonly caused by particles moving at a
high velocity and is only emitted in a narrow cone in the direction of the
particles motion. Therefore, a moderate sampling rate is usually enough
to evaluate the spectrum at high frequencies correctly. Experience shows
that the DFT algorithm can display even frequencies beyond ⌦expected

Nyquist

= ⇡

�t

but not above ⌦relativistic

Nyquist

= ⇡

�t · (1�~

� ·~n) as long as the sampling due to the
simulation time step is precise enough to smoothly sample all particle tra-
jectories.
A problem arises when considering several particles. Some may contribute to
high frequencies which might be above the Nyquist frequency for other par-
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ticles, thus causing a mix of real signals and signals reflected at the Nyquist
frequency (see section A.2 for more details on Nyquist reflection). This can
be overcome by a method called Nyquist limiter, which will be discussed later
in section 4.2.2.
The equidistant sampling of the FFT algorithm contrasts with the adaptive
sampling in t

ret

of the DFT algorithm. This can cause problems illustrated
in Fig. 4.1. The advantage of an adaptive sampling step width �t

ret

, which
decreases when the particle moves at high speeds towards the observer and
radiates at higher frequencies, is lost when fixing the sampling rate before-
hand. In case of a later interpolation using the entire trajectory, a fixed
number of sampling points might not sample the actual radiation signal pre-
cise enough, therefore resulting in a noisy signal. To illustrate this problem
Fig. 4.1 shows actual samplings using CLARA 2.0 (see section 3.2) and the
corresponding radiation spectra. It exhibits the radiation of a single electron
initially at rest interacting with a short and highly intense laser pulse with
intensity a0 = 4.4.
The red dots represent the non-equidistant signal calculated, while the blue
dots depict the interpolation onto an equidistant grid. The upper example
uses as many grid points for the equidistant sampling of the retarded time
as for the non-equidistant signal, while the lower plot is calculated using ten
times more equidistant interpolation points. The non-equidistant sampling
can resolve the fast change of the real amplitude by decreasing the step width
locally, while the first equidistant sampling is not able to resolve the peak.
In the case of a posterior interpolation onto an equidistant grid, the sampling
step width can be set to

�t
ret

=
tlast

ret

� tfirst

ret

N
FFT

=
⇡

⌦
Nyquist

. (4.9)

If the band limitation of the emitted radiation is below the Nyquist frequency,
!

max

 ⌦
Nyquist

, the signal can be reproduced, if not, the spectra will contain
Nyquist-reflected noise as in Fig.4.1 (1b).
With a predefined grid in t

ret

, estimates about the first and last retarded time
are additionally needed. An implementation of an algorithm to determine
the upper and lower limits is described in section 3.3.4. The same problems
of resolving frequencies occur for predefined grids in t

ret

and need to be
considered before stetting up any simulation.

4.1.4 Heuristic arguments on the band-limitation of classical
radiation

Discrete sampling can only resolve frequencies up to ⌦
Nyquist

. Therefore,
a band-limited radiation needs to be assumed, when doing any numerical
Fourier transform. The question is whether this is a legitimate assumption
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(1a) (1b)

(2a) (2b)

Figure 4.1: Illustration of numerical problems occurring when using
equidistant sampling in t

ret

: Picture (1a) and (2a) show part of the
signal at ✓ = 30� plotted over the retarded time. The red dots illustrate
the original signal. The blue dots represent the signal after interpolation
onto an equidistant grid. The original data samples peaks with a smaller
step width than used by the interpolation while resolving the rest of
the signal less precise (not shown). The equidistant sampling (1a) has
the same number of sampling points as the original signal but is not
able to describe the original signal correctly. (1b) consists of 10 times
more sampling points and can replicate the original signal. The resulting
spectra are shown in (1b) and (2b). In (1b) a noise signal is clearly visible
right where the sampling rate is too low. With a higher sampling rate,
the noise disappears (2b).
It is important to mention that this example was created with a too large
simulation time step in order to demonstrate the problem.

for arbitrary cases. The emitted electromagnetic waves are caused by accel-
erated charges and are carrying away energy from the charge and thereby de-
celerating it. Since the energy of the particle is limited, the emitted radiation
is limited in energy as well. Heuristically, the signal must be band-limited
since following the Planck-Einstein-equation,

E
photon

= ~ ·! < E
electron

, (4.10)
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there exists a maximum frequency an emitted photon can assume. This
argument has to be handled with care. Up to this point, all calculations have
been based on classical electrodynamics. In classical electrodynamics, the
energy of an electromagnetic wave only depends on its amplitude and not on
its frequency. Radiation can in principle assume infinitely high frequencies.
An example of classically non-band-limited radiation is the Rayleigh-Jeans
description of black-body radiation which results in a diverging spectrum for
high frequencies [26] even if the energy of the emitter is limited. This is of
course a case where the classical approach fails.
Despite that, in a case correctly described by classical electrodynamics, the
quantum mechanical picture is also valid. Therefore, the main peaks of the
radiation spectrum need to be band-limited. This does not mean that all
classical spectra will drop off above a certain frequency. A spectrum will
most likely drop off smoothly around the actual peaks in frequency space.
Therefore, the classically calculated radiation is, strictly speaking, not band-
limited. Signals above ⌦

Nyquist

will be back-reflected to lower frequencies.
As the drop-off is usually fast, these reflected signals, being several orders of
magnitudes weaker than the main signals, will only contribute insignificantly
to the correct signal and can be ignored.
When entering the realms of quantum physics, not only the band-limiting
arguments falls but also all equations used here are invalid. This needs to
be kept in mind when using the codes presented.

4.1.5 Increasing spectral resolution by zero-padding

It is not only important to ensure that the highest frequencies can be an-
alyzed correctly by choosing a high sampling rate, but it is also necessary
to resolve the calculated spectra with sufficient sampling points to repre-
sent the structure of the spectra in detail. When using a DFT method, any
frequency can be analyzed. Therefore, the resolution of the spectra can be
chosen by the user. When using the FFT method, the spectral resolution �!
depends on the numbers of sampling points of the original time-domain sig-
nal N

FFT

and the highest frequency calculated in the fast Fourier algorithm,
2 ·⌦

Nyquist

(see appendix A.3). Since the maximally resolvable frequency de-
pends inversely on the sampling period of the time domain �t, the spectral
resolution scales inversely with the total signal time T .

�! =
2⌦

Nyquist

N
FFT

=
2⇡

�t ·N
FFT

=
2⇡

T
(4.11)

This causes short signals to have a low frequency resolution and can cause
peaks or sidelobes to not be resolved correctly. This is illustrated in Fig. 4.2.
In this plot, the spectrum of an undulator with only 10 periods of length and
a sampling of 40 sampling points per oscillation period is shown in red. No
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sidelobes are resolved. This problem can be solved correctly by convolving

Figure 4.2: Results of zero-padding: undulator spectrum for 10 period
long undulator, electron energy of � = 100 and 400 sampling points. In
red the original spectra calculated using a FFT algorithm is shown. In
blue, the spectra of the same signal, but 20 times longer and filled with
zeros (“zero-padded”) is plotted. The sidelobes could not be resolved
correctly with the unmodified signal.

the spectrum with a sinc function [27]. An alternative numerical method is
the so-called zero-padding. By adding zero-values to the end of the original
time-domain signal, the resolution increases, while the added zeros do not
contribute to the Fourier transform. This increases N

FFT

without effecting
the spectral amplitudes F(!). In Fig. 4.2, the zero-padded signal is plotted
with a blue line. The modified time domain signal is 20 times longer and
filled with zeros at the end. This allows to resolve the sidelobes of the main
peak correctly.

4.2 Algorithms for many-particle radiation calcula-
tions

This section will cover different aspects of calculating the total radiation
of multiple particles. It will describe the differences between coherent and
incoherent radiation and will discuss the resulting consequences for numerical
solutions.

4.2.1 Aspects of coherent and incoherent radiation

When considering the radiation emitted from multiple particles, Eq. 2.44
needs to be adjusted. The phase relation between the emitted radiation needs
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4.2 Algorithms for many-particle radiation calculations

to be taken into account in order to combine spectra from N
p

particles [6].
This can be achieved by adding all complex amplitudes before calculating
the square of the absolute values in Eq. 2.44.
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The sum over all particles and the integration over time can be interchanged.
This is especially useful in case there is not enough memory to store the val-
ues of all integrals for every single particle.
However, phase differences lead to complicated interference effects if they
vary strongly between all particles. On the other hand, particles oscillating
similarly with only small phase differences, cause homogeneous and intense
radiation. In the latter case, the total emitted intensity scales with ⇠ N2

p

.
In electrodynamics, the first case is usually refereed to be incoherent while
the second is called coherent radiation.
It is important to notice the difference between this definition and the one
usually found in optics. There, one considers two light beams as coherent if
they have a fixed phase relation and can create interference patterns if they
overlap, and as incoherent if they have no such relation. This definition is
less strict than the former and mixing both definitions can lead to confusion.
To avoid this, only the electrodynamics convention will be used in this text.
Most natural radiation sources are incoherent. There are usually many in-
dividual emitters involved and the interference patterns smooth out sta-
tistically. But when simulating radiation from particles, one usually can
only consider a small sample of all emitters. Therefore, incoherent radiation
simulated using only a few particles will result in an overestimation of the
interference pattern caused by the random sample of emitters.

Having as many simulated particles as real particles would avoid this prob-
lem, but this is computationally not feasible. To circumvent this problem,
Eq. 4.13 was used for obviously incoherent radiation sources. It is similar to
Eq. 4.12 except that the sum over all particles and calculating the absolute
square have been interchanged. Thus, the phase relation between different
particles is ignored which is a good approximation for incoherent radiation.
The following section shall motivate this choice.
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For incoherent radiation, the phase relation between all particles differs
largely. If the number of particles is huge, the actual phase relation should
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play no role anymore.
This can be illustrated easily by assuming there are N

p

particles radiating
similarly except for an individual phase shift '

k

, which could be caused by a
local displacement of the particles. The radiation spectra can be calculated
using the following equations.
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In these formulae, ~A(t) describes the complex radiation amplitude in the time
domain (Eq. 2.45). This would be equal to the vector part in Eq. 4.3. By
assuming the phase shift to be constant over time, it can be separated from
the Fourier transform. After calculating the spectra F

k

(!) for every particle
via Fourier transform, a phase shift for every particle’s spectra remains (see
also translation in time in appendix A.1). Suppose the spectra of all particles
are similar F

k

⇡ F , which is true in the case of spatial displacement, they can
be separated from the summation over all particles, leaving only a sum over
the complex unit circle. The phase of the complex exponential function still
depends on !, but the frequency ! can be considered a constant parameter
for this calculation. By substituting !'

k

! �
k

, the sum
������

NpX

k=1

ei�k

������

2

(4.17)

remains to be solved in Eq. 4.16. For simplicity, the phase difference �
k

can be assumed to follow a Gaussian distribution with a standard deviation
of �

�

. When evaluating the expression in Eq. 4.17, the sum results to N2
p

for standard deviations smaller than �
�

< 2⇡, equal to a spatial standard
deviation smaller than the emitted wavelength. On the other hand, the sum
results to N

p

for standard deviations larger than �
�

> 2⇡, meaning a spatial
distribution larger than the emitted wavelength.
To illustrate these findings, the results of the sum are plotted over different
standard deviations �

�

in Fig. 4.3 for different particle numbers.
For � < 2⇡, the sum evaluates to N2

p

. The error of this mean value as well
as the standard deviation are small. This means that a single evaluation
of the sum will most likely result in N2

p

. In contrast, for � > 2⇡ the sum
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Figure 4.3: Monte Carlo simulation of the complex sum (Eq. 4.17): the
complex phase � follows a normal distribution with standard deviation
�. The average result (avg) of the sum (over 1000 simulations) is drawn
as line for three different numbers of particles N

p

, including error bars
for the mean values. The errors of the mean values �/N are small and
not visible in the plot. The visible bars represent the standard deviation
(std) � of the result of the sum. The y-axis is normalized to N

p

.

will in average evaluate to N
p

. The error of this mean value is small but
the standard deviation is relatively large. That means that the results of a
single evaluation of the sum, as in the case of a single radiation simulation,
have a wide spread.
For broad particle distributions, the total intensity is on average proportional
to the number of particles N

p

. This scaling is exactly represented by Eq. 4.13.
Particle distributions with a spatial extent greater than a wavelength are
common in experiments, which justifies the use of this formula. However,
if a large number of particles radiates coherently, Eq. 4.13 will result in an
intensity scaling proportional to N

p

and therefore will underestimate the
radiated energy. But using this equation is often the only feasible way to
calculate radiation spectra without over evaluating the effects of interference.
In laser particle interactions, both coherent and incoherent radiation play a
role [28]. Simulating these cases with Eq. 4.13, referred to as incoherent
radiation method from now on, will cause the coherent part of the radiation
to be too low, while using Eq. 4.12, the coherent radiation method for short,
will be influenced by the random particle selection. The influence of choosing
a small subset of random particles representing all particles can be seen in
the large “error bars” in Fig. 4.3 representing the standard deviation of the
1000 samples used to calculate the average. Even if the standard deviation
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of the average result of Eq. 4.17 converges to N
p

, a single evaluation of the
sum can have a wide spread. This spread is not decreased by increasing
the number of particles. The simulated spectra will always look noisy for
incoherent radiation. In appendix C, it is shown that it is still possible to
regain all informations from the noisy spectral signal.

4.2.2 The Nyquist limiter

The Nyquist limiter, introduced in this section, solves the problem of mixing
low and high energy spectra in many-particle simulations.
On the one hand, a simulation contains electrons with � ⇡ 1. Following
Eq. 4.8, their radiation amplitudes are sampled approximately with the step
width of the simulation �t

sim

. On the other hand, there are electrons with
velocities close to the speed of light. They radiate mainly into their direction
of flight. Towards this direction, the sampling rate is increased, allowing to
resolve higher radiation frequencies. A problem arises, if these fast electrons
radiate at a frequency above ⇡

�tsim
. It is easy to resolve this frequency for the

fast electrons, but for the other electrons such a frequency lies above their
Nyquist frequency ⌦

Nyquist

. Therefore, their spectral values at this frequency
are wrong and only consists of reflections of the low frequency spectrum (see
section A.2). Now, the radiation spectra of all electrons need to be combined.
When calculating the total spectrum, the result will be disturbed at higher
frequencies by the erroneous contributions of the low-energy electrons. It is
not possible to know each particle’s trajectory beforehand. Therefore, one
cannot exclude the low energy electrons at the initialization of the simulation.
It is necessary to reduce the step width of the simulation, �t, until the
Nyquist frequency of all particles is higher than the frequencies to observe
in order to avoid the wrong contributions. This approach, however, would
be not feasible with regard to the time required by the particle simulation.
In order to solve this problem, an algorithm named Nyquist limiter was
developed to filter out reflections. Before adding any complex amplitudes
to the total spectrum at frequency !, the following equation needs to be
checked

! <
⇡ ·

⇣
1� ~� ·~n

⌘

�t
, (4.18)

with � the normalized speed of the electron and ~n the normalized vector
pointing in the direction of observation. If the inequality is true, the parti-
cle’s amplitude will be added to the sum over all particles contributing the
frequency !. If not, the calculated contribution to the spectra is discarded.
The algorithm uses the limit on reproducible frequencies given by the Nyquist-
Shannon theorem (Eq. A.12) and combines it with the restrictions on non-
equidistant sampling [25]. It requires that the particle’s current sampling in
retarded time �tp

ret

is precise enough to resolve the frequency contribution
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to compute F(!). By only letting those amplitudes contribute which have a
sampling rate high enough for a certain frequency !, the average sampling
rate will always be high enough to correctly sample !. This is a simple but
efficient method to calculate spectra with many particles which have a wide
range of energies. It is not suitable for signals close to the Nyquist frequency,
but such cases can be avoided in any case by reducing the time step of the
simulation.
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5 | Code verification and re-
sults

All codes developed for this thesis have been verified by comparing their re-
sults with well-known analytical solutions. This rigorous testing was needed
in order to gain confidence in the results of future simulations using these
codes. All tests have proven that the codes produce correct results. There-
fore, the time domain code and CLARA 2.0 are now applied by different re-
search groups and the Radiation Analyzer is going to simulate the emissions
of a full scale plasma simulation. The tests and applications are presented
in this subsequent chapter.

5.1 Verification of the time domain code

The time domain code computes the electric and magnetic fields at arbitrary
positions and times. This is especially useful for simulating electromagnetic
fields at a high spatial resolution and has applications in simulating the
influence of the field on surrounding particles.

5.1.1 Verification by simulating fields of non-accelerated charges

The most simple test regards the electric field of a particle at rest. The
simulated electric field on a spatial grid agrees very well with the analyti-
cal Coulomb field (Eq. 2.1). Since the simulated charge does not move, the
magnetic field should be zero everywhere. However, the simulated magnetic
field does not vanish on all grid points. The magnetic field values fluctuate
around zero but their magnitude always stays more than fifteen orders of
magnitude below | ~E|/c. These nonzero magnetic field values are caused by
numerical errors attributed to the limited precision of floating point num-
bers. When calculating ~E ⇥ ~n, this product should vanish for non-moving
particles because ~E k ~n and therefore ~E ⇥ ~n = 0. The cross product imple-
mented in the simulation relies on floating point arithmetics and therefore
the result being zero is not guaranteed. Since the occurring numerical errors
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(a) (b)

Figure 5.1: The physical case investigated is an electron at rest centered
at x = 0, y = 0. Plot (a) shows the difference between the analytical
solution and the simulated electric field. The relative error is in the order
of 10�10 (color values · 10�15 + 1.1 · 10�10). The numerical errors of the
magnetic field are depicted in (b). Since the electron is not moving,
the magnetic field should be zero but floating point arithmetics causes
magnetic field values in the order of double precision 10�15 compared to
~E/c.

are extremely small they can certainly be ignored (Fig. 5.1).
Further tests include a particle moving at constant speed. The resulting
electric and magnetic fields agree well with the Lorentz-boosted Coulomb
field [7] calculated by Eq. 5.1 to Eq. 5.3. For simplicity, the following formu-
lae assume that the fields are evaluated at t = 0 and the particle is located
at the origin of the coordinate system at that time.

~E =
q

4⇡"0
p

1� �2
·

~r
h

x

2

1��

2 + y2 + z2
i3/2 (5.1)
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B
z

=
�

c
·E

y

(5.3)

These formulae can be derived from Eq. 2.29 and Eq. 2.30 when assuming
a charge moving at constant velocity in x-direction. The relative difference
between analytical solution and simulated values stays below 10�3 (Fig. 5.2).
This is quite good for this more complex case.

5.1.2 Verification by simulating synchrotron radiation

Above tests do not include any effects scaling with ~E ⇠ 1
r

caused by an
acceleration of the charge. In order to test these influences, a particle moving
in a circle, similarly to the particle motion in a synchrotron [8], is a good test
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Figure 5.2: The physical case investigated is an electron moving with
� = 0.8 in x-direction. It is centered at x = 0, y = 0. The plot depicts
the relative difference between the analytical solution and the simulated
electric fields. Even close to the electron, the relative numerical error of
the electric field stays below 10�3.

case since it includes both near and far field and it can be checked against
an analytical solution. The resulting fields of the simulation were checked
against a semi-analytical solution developed in Mathematica and against an
analytical results from [29]. In contrast to the simulation, the semi-analytical
solution uses Eq. 2.29 and solves for the retarded time by using the particle’s
equation of motion. A numerical solver was used to determine t

ret

for the
synchrotron-like motion. This is necessary, since the retarded time can only
be described by a transcendental equation [29]. The simulated fields agree
perfectly with both the semi-analytical and analytical solution.
A test was performed by assuming a particle following a circular track at
velocity v = � · c = 0.9 · c. Fig. 5.3 depicts the logarithmic magnitude of the
electric field with the circular trajectory of the electron drawn as green dots.
To quantitatively examine the resulting electric fields, cuts were performed,
drawn as blue line in Fig. 5.3 for the data presented in Fig. 5.4. These data
cuts were performed for the far ( ~Erad ⇠ r�1, Eq. 2.32) and near field ( ~Evel ⇠
r�2, Eq. 2.31) components of the field separately. The results were checked
against the analytical solution implemented in Mathematica as illustrated
in Fig. 5.4. The agreement between simulated and semi-analytical data is
excellent. The test presented here is one in a series of many tests, chosen
because it shows a dominant far field and a relatively large peak width,
making it perfectly suited for visualization.
As a final test of the time domain code, synchrotron radiation for an electron
with relativistic energy � = 100 was simulated and compared against an
analytical solution by Chengkun et al. [29]. These analytical calculations are
aimed at investigating the influence of coherent radiation inside an electron
bunch in a synchrotron, the so-called coherent synchrotron radiation (CSR)
[30,31].
Only the longitudinal component of the electric field acts on the electrons
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Figure 5.3: Illustration of the synchrotron test used in the validation
process of the time domain code: Assumed was a single electron moving
clockwise on a circle with radius r = 1m at � = 0.9. In red, the loga-
rithmic magnitude of the resulting electric field is drawn. Using green
dots, the electron’s trajectory is illustrated. The blue line represent a
cut analyzed in detail and shown against analytical data in Fig. 5.4

(1a) (b)

Figure 5.4: This is a plot of the electric fields from the cut along the
blue line in Fig. 5.3. Blue dots represent the simulated data. The red
line is the analytical solution calculated using Mathematica. The electric
field has been decomposed to a far and a near field component. Plot (a)
shows the near field component scaling with ~Evel ⇠ r�2. Plot (b) shows
the far field component scaling with ~Erad ⇠ r�1

and can thereby influence the entire electron bunch. Therefore, the longitu-
dinal component of the far field ~Erad was simulated and compared with the
analytical results of Chengkun. The test case included a single electron with
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x

y

�

r

e

Figure 5.5: Labels for the synchrotron plots: The electron trajectory
is drawn in red. The angle � and the distance r define the position of
the field calculated.

� = 100 moving on a circular trajectory with a radius of 1m (Fig. 5.5). The
longitudinal electric radiation field ~Erad ·~e

�

is calculated around the particle
(Fig. 5.6). The results show an excellent agreement between the analytical
predictions and the simulated data.

(a) (b)

Figure 5.6: Both graphs show a contour plot of the radiation or far
field component of the electric field ~Erad of a single electron with � = 100
running in a synchrotron with a radius of r = 1m. Only the tangential
component E

�

of the radiation field ~Erad is drawn. The electron is
located in the middle of the plots. Plot (a) shows the results from the
time domain code while (b) shows the analytical results. The right graph
is taken from [29].

The left plot shows the simulated field while the right plot displays the
analytical solution from [29]. A good agreement on the clover leaf pattern
can be seen.
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5.1.3 Applications to Coherent Synchrotron Radiation

The concept of coherent radiation of electrons running in a circle, the Coher-
ent Synchrotron Radiation (CSR), was first developed in 1971 to explain the
high-intensity radiation emitted by pulsars [30]. It was first believed that
these effects were not realizable in circular accelerators and storage rings,
but in 1990, a Japanese collaboration was able to realize coherent radiation
in synchrotrons [31].
If the electron bunch size is smaller than the emitted wavelength, the radiated
power is increased dramatically. This is due to the constructive interference
occurring in the electron bunch. In the case of coherent synchrotron ra-
diation (CSR) the total emitted power scales quadratically with the beam
current. This allows to create highly intense synchrotron radiation using
only a small bunch charge.
However, at such small bunch sizes needed to create CRS, the electrons in-
teract with each other through their electromagnetic field. The electrons
can be pushed by the longitudinal component of the other electrons’ electric
field. This feedback of the field can cause the beam emittance to grow and
the bunch to become unstable [29], resulting in a destruction of the desired
coherent radiation. To understand the effects of these interactions between
the electrons and their fields a “self-consistent dynamical simulation” [29] is
needed but such a simulation seems to be not feasible. Therefore, several
one-dimensional CSR models were developed to take the effects of charge
distribution into account.
The group around Chengkun Huang et al. at Los Alamos National Labo-
ratory now developed a two-dimensional analytical model of CSR to more
accurately take into account effects by the beam’s shape and the spatial de-
pendence of the electric and magnetic fields [29]. They also developed an
analytical approximation to calculate the occurring electromagnetic fields
caused by the electrons and estimated effects of a Gaussian beam shape by
using convolution. However, they assumed the single particle fields to be
invariant under small radial displacements and rotations [29]. This approx-
imation is only valid for small bunch sizes, but to take different integration
kernels into account, a simulation of the fields is required.
Using the time domain code allows to simulate the radiation of any parti-
cle distribution and to take into account beam parameters not covered by
the 2D model. This allows to determine the limits of the 2D model and to
simulate the coherent synchrotron radiation more realistically.

At the moment, the first tests have been performed using the analytical
trajectories provided by Chengkun. A further collaboration is planned.
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5.2 The frequency domain code

The frequency domain codes, CLARA 2.0 and the Radiation Analyzer, are
able to calculate the angular resolved spectra far away from the particle emit-
ting it. This is similar to experiments where one usually observes radiation a
distance away from its point of origin. Both codes allow to predict the radi-
ation observed in experiments and are well suited to search for characteristic
radiation signatures. The calculated spectra can be used for diagnostics con-
cerning the experimental setup but also to predict radiation occurring in a
wide range of physical scenarios ranging from gamma-ray burst emission [32]
to laser wakefield acceleration [5]. A variety of tests have been performed to
ensure that the simulations produce correct results. These will be presented
together with first applications.

5.2.1 Simulating undulator radiation

Electrons passing through an undulator produce a clean spectral signature.
Their trajectories can be calculated without the need of simulations. There-
fore, computing the radiation produced in an undulator is an ideal test case
for validating any simulation of spectrally resolved radiation. Since the tra-
jectory is known analytically, any discrepancies between simulation and the
analytical solution in the calculated spectra can be ascribed to errors in the
radiation code. Additionally, any analytically known trajectory allows for
arbitrary sampling of the trajectories which is useful for testing programs
that highly depend on the sampling rate.
In order to validate the cluster-based frequency domain code, CLARA 2.0, a
method for generating traces of electrons in undulators has been developed.
In this method a variety of parameters such as electron energy, magnetic
field strength or the undulator wavelength could be adjusted to simulate dif-
ferent undulators and thereby check different aspects of the radiation code.
The simulated spectra (Fig. 5.7) were compared to the analytical solutions.
The only differences were found in the amplitude of the sidelobes of the
spectra but turned out to be insignificant. As part of the tests, the electron
energy was increased steadily to check for numerical instabilities caused by
the limited precision of ~� at those energies. At electron energies around
� > 3 · 106, the first discrepancies appeared due to the limited precision of
double precision floating point numbers.
Since electrons in laser plasma interaction can currently reach energies “only”
up to GeV-level [33], the above limit does not pose a problem for applying
the code to this physical case.
For the Radiation Analyzer included in PIConGPU, the restrictions due to
the limited precision of floating point numbers are far more severe. PIConGPU
was developed on the first generation of CUDA-capable graphics cards where
performing a double-precision operation was far slower than the single-precision
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(1a) (1b)

(2a) (2b)

Figure 5.7: The radiation of an electron � = 100 in an undulator
� = 800 nm, K = 3.7 · 10�5 is shown. The plots on the left side are
simulated spectra (a), while the plots on the right side are theoretical
predictions analogous to Fig. 2.10. The first plots (1) shows the spectra of
an 10 period long undulator, while (2) shows a 50 period long undulator.

equivalent. Therefore, all PIConGPU-internal values were stored in single
precision. This has been kept this way since the speed difference between
single and double precision floating point operations is still around three on
today’s graphic cards. Hence, single precision floating point values are es-
sential to run PIConGPU efficiently.
Thus, all particle data provided by PIConGPU have only a precision of about
7 decimal digits. This leads to severe problems when using �(�), especially
in the common case of a 1 � ~� ·~n close to zero. For certain ~n and ~�, this
results in one minus a value close to one. The precision of the remaining
difference is on the order of 10�7. Thus, these differences can be extremely
imprecise. For example at � ⇡ 700, the relative error of this difference will
be about 10%.
To avoid these numerical issues, a trick was developed: Under certain con-
ditions, a different method is used to calculate 1� ~� ·~n = 1� � · cos↵.
By using the relativistic energy factor �, the magnitude of ~� can always be
calculated with

� =

r
1� 1

�2
. (5.4)
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This allows to express 1� ~� ·~n differently.

1� ~� ·~n = 1� � · cos↵ = 1� cos↵ ·
r
1� 1

�2
(5.5)

For small values of ��2, the square-root can be approximated by its Taylor
series

p
1� x ⇡ 1� 1

2x� 1
8x

2 � 1
16x

3 � · · · . This allows to avoid to subtract
one and approximately one.

1� ~� ·~n ⇡ cos↵ ·
✓
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◆
+ (1� cos↵) (5.6)

The (1 � cos↵) part of the sum is still imprecise, but the Taylor developed
part of the sum allows to calculate values to a high precision. This alternative
calculation is only chosen if the particle energy fulfills 1

�

2 < "
c

= 0.18. The
number "

c

= 0.18 was chosen because around this value, the error of the
Taylor series in fifth order equals the error of calculating the value without
the method developed.

5.2.2 Simulating nonlinear Thomson scattering

Beyond the basic tests presented above, it is also important to check if ra-
diation from nonlinear electron dynamics can be correctly predicted by the
developed code or not. Nonlinear particle oscillations are common for inter-
actions of matter with highly intense lasers. A simulation not able to handle
these cases would not be suitable for research in this field.
As mentioned in section 2.2, nonlinear Thomson scattering is a common
source of radiation occurring in laser-particle collisions. The nonlinear os-
cillation of the particles caused by the high electromagnetic fields generates
a complex radiation pattern with higher harmonics depending on the laser
intensity and the particle dynamics. As pointed out before, a detailed de-
scription of the electron trajectories and of the resulting radiation can be
found in Esarey et al. [14]. The paper describes two distinct approximations:
a relativistic electron moving towards the laser and an almost stationary
electron wiggling around a fixed position. It covers both cases of linear and
circular laser polarization. The amplitude of the laser is approximated by
a rectangularly shaped envelope. This implies a negligible ponderomotive
forces.
For testing the frequency-domain far-field simulation, the solution of the
electron’s trajectory, presented in the Esarey et al. paper, is used. Addition-
ally, reproducing the trajectory with PIConGPU is an ideal evaluation of
the particle pusher algorithm.
In order to realize the first case described by Esarey et al. [14] in PIConGPU,
the laser was set to peak intensities of a0 = 0.5, 1.0 and 1.5 with a wavelength
of �0 = 800 nm. Similar to the Esarey paper, seven oscillation periods of the

73



5. Code verification and results

electron were chosen to contribute to the radiation calculation. The resulting
radiation is shown in Fig. 5.8. On the abscissa, the frequency, normalized to
the blue-shifted first harmonic peak without photon drag, is plotted, while
the ordinate is associated with the observation angle, normalized to the
relativistic compression of the radiation cone. Both theoretical and simulated
spectra are plotted together to better exhibit the differences. Comparing
these simulated results with the analytical results, only minor differences can
be detected. Most obvious are slightly different curvatures of the sidelobes
arising from the numerical Fourier transform implemented in the simulation.
However, the overall agreement is excellent.
The simulated spectra for the almost stationary electron are shown in Fig. 5.9.
Again, the theoretical and simulated spectra are plotted together. Since the
electron does not drift, the radiation caused by its wiggling is not Doppler
shifted. Therefore, the frequency-axis was normalized to the laser frequency
!0. The observation angle ✓ describes the angle between the electron mo-
mentum and the observer in the polarization plane of the laser and is plotted
on the y-axis. The missing drift also results in no photon drag. Since the
electron is, on average, at rest, the radiation is not Lorentz boosted and the
spectral peaks stay at multiples of the laser frequency for all observation
directions.
As with the previous test, the simulated radiation agrees very well with the
theoretical prediction (Fig. 2.8). Only small differences around the sidelobes
are observed.
For both cases described by Esarey et al. [14], a laser with an rectangular
amplitude is assumed, but the field grid of a PIC simulation cannot resolve
such a laser, since it contains high frequencies. Instead, a super-Gaussian
laser profile was implemented. The radiation caused by this laser profile is
not correctly predicted by [14]. However, dealing with a simulation allows to
selectively switch on and off the radiation calculation during the simulation.
This allowed to only calculate the radiation at instances correctly described
by the theory. It is possible to let the particle enter the rising field of the
laser without considering its radiation, then calculating the emitted radiation
while the maximal field amplitude is constant and stopping the calculation
again before the downslope of the laser profile. This selection is illustrated in
Fig. 5.10(a) by plotting the entire trajectory in blue and the part contributing
to the radiation analysis in red.
Before starting with the radiation calculation, the upslope of the laser causes
the particle to undergo ponderomotive forces, pushing it slightly in the di-
rection of the laser propagation and thereby changing its speed. For the
first test, this is not a problem for the used laser intensities since the ef-
fects of the ponderomotive force can be neglected because of the high initial
electron momentum. Tests with higher peak laser intensities would require
higher initial momenta to compensate for the ponderomotive drift. For the
second approximation in [14], this correction is always necessary. Even a
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(1a) (1b)

(2a) (2b)

(3a) (3b)

Figure 5.8: Simulated spectra of nonlinear Thomson scattering (a)
are compared to analytical solutions (b) analogous to Fig. 2.7. The
energy deposition per unit frequency and unit solid angle for different
laser strengths of an electron moving towards the laser with � = 5 is
shown: (1) laser with a0 = 0.5 (2) laser with a0 = 1.0 (3) laser with
a0 = 1.5.

small ponderomotive force will lead to a drifting electron if it was initially
at rest. Therefore an initial velocity is required such that the electron is, on
average, at rest when it reaches the laser envelop plateau. Using PIConGPU,
the effect of the ponderomotive force caused by the rising edge of the super-
Gaussian pulse were studied. The initial velocities towards the laser that
lead to an almost stationary electron at the plateau of the super-Gaussian
laser are given below. The values are given for a super-Gaussian laser pro-
file with up- and downslopes that have a standard deviation of one laser
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(1a) (1b)

(2a) (2b)

(3a) (3b)

Figure 5.9: Simulation of nonlinear Thomson scattering of an electron
with no average drift (a) are compared to theoretical predications (b)
analogous to Fig. 2.7. The energy deposition per unit frequency and
unit solid angle for different laser strengths is plotted: (1) laser with
a0 = 0.5 (2) laser with a0 = 1.0 (3) laser with a0 = 2.0.

wavelength � = �0.

a0 �
Start

0.5 0.058977
1.0 0.1975
2.0 0.5

Since PIConGPU at the time of writing this thesis included only meth-
ods to use linearly polarized lasers, the circularly polarized laser cases have
been ignored. However, if a circular polarized laser should be included in
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(a) (b)

Figure 5.10: Analyzed electron trajectory: Blue represents the electron
trajectory while red represents the part of the trajectory contributing to
the radiation analysis. In (a) an electron with initial � = 5 moves towards
a laser a0 = 1.5. In (b) an in average stationary electron < ~� >= 0
interacts with a laser a0 = 2.0.

PIConGPU, repeating this simulation using circularly polarized laser pulses
would pose an ideal test for both the new laser and the radiation code,
since several aspects of the laser implementation could be checked by simply
simulating the emitted radiation of a single electron.

5.2.3 Simulating radiation to determine the beam emittance
at ELBE

The electron accelerator at the Helmholtz Zentrum Dresden Rossendorf, the
Electron Linac for beams with high Brilliance and low Emittance, short
ELBE, is used for a variety of tasks using electron beams. Its applica-
tions range from nuclear experiments to creating highly intense light when
electron bunches pass through an undulator or interact with the available
high-intensity laser DRACO.
Most of the ELBE beam parameters can be accurately determined, however
finding out the beam emittance is a challenging task. More importantly,
knowing the beam emittance is vital for different experiments especially for
those that use the electron beam as driver of X-ray pules via Thomson scat-
tering.
One possible way to determine the beam emittance at ELBE is to use
the Draco laser and to collide the electron beam head-on with the laser
beam. This optical undulator (chapter 2.3) emits radiation in the direction
of flight of the electron bunch. However, the intensity of the radiation de-
pends strongly on the beam emittance. Since the electrons inside the bunch
cross the laser at slightly different angles and energies caused by the bunch
emittance, the resulting spectra are smeared out. On axis, this leads to a
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wider spectral peak. This results from a symmetric broadening caused by
the laser bandwidth and the electron beam energy spread and an asymmet-
ric broadening by the angular spread of the electron momentum [34]. The
resulting asymmetry of the spectral peak leads to a negative third standard-
ized moment or skewness that can be used to characterize the electron beam
emittances by the emitted spectra [35]. One can predict the radiation and
the skewness for a variety of beam parameters by simulating a multitude of
beams with different beam emittance and using the simulated electron tra-
jectories together with the frequency-domain code. Comparing those to the
experimentally observed spectra will allow to determine the beam emittance.

(a) (b)

Figure 5.11: Radiation calculation for varying beam emittance: The
pictures show two different simulated spectra of an electron beam inter-
acting with the Draco laser at ELBE. The beam is represented by 2000
simulated electrons. The beam in (a) has a beam emittance of "

x

=
5.09⇡mmmrad and in (b) a beam emittance of "

x

= 16.1⇡mmmrad.
The observation angle ✓ describes the angle between the beam propaga-
tion and the observer and is taken along the polarization plane of the
laser.

Fig. 5.11 shows two simulated spectra to illustrate this procedure. The left
spectrum was calculated from 2000 electron-trajectories with a beam emit-
tance of "

x

= 5.09⇡mmmrad.
These traces were obtained with the software General Particle Tracker (GPT)
[36, 37]. For the spectra on the right side of Fig. 5.11, 2000 electrons with
a beam emittance of "

x

= 16.1⇡mmmrad were simulated with GPT and
subsequently analyzed with CLARA 2.0. Clear differences between the two
spectra are visible. The higher beam emittance causes a wider spectrum
and is distinguished by a smaller peak intensity. Obviously, the skewness
along the frequency axis is more negative for the higher than for the lower
emittance. These spectra are clearly distinguishable and should allow to
conclude about the beam emittance if observed in experiments.
Until now, this software has been used to verify the results of the already
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existing CLARA code [18]. However, its parallel design allows to produce
results much faster by using the HZDR compute cluster more extensively.

5.2.4 Radiation from full scale plasma simulations

Physical scenario

A physical scenario of interest to be studied is the radiation due to the
injection of electrons during the bubble or blow-out regime in a laser-plasma
interaction [5]. This regime can be reached by a high-intensity laser pulse
interacting with an under-dense plasma. Due to the laser’s high intensity
a0 > 1 a nonlinear plasma wave is excited. This causes a separation of the
plasma electrons from the ions, which can be assumed to be stationary at
that timescale. The nearly electron-free bubble created right behind the laser
pulse traps electrons from the sides because of its positive charge density.
Due to the positive ion background the electrons injected in the bubble are
accelerated inside the electron-free plasma bubble. In this cavity-like bubble,
the electrons undergo oscillations caused by their initial position in the phase
space of the bubble. This quivering motion is called betatron oscillation
and is the origin of characteristic radiation [38–40]. Often, several of these
bubbles with electron injection appear, located one behind the other.

Feasibility study using CLARA 2.0

Three separate steps had to be performed in order to analyze such an sce-
nario using CLARA 2.0: simulating the particle dynamics, sorting the data
in order to create trajectories, and finally calculating the radiation. All these
steps cause a lot of input and output to the file system.
The large particle-in-cell simulation was performed using the program Il-
lumination [41] on 128 computer nodes at the hypnos cluster at HZDR.
The physical scenario studied covered a high-intensity laser pulse a0 = 4.5
and ⌧FWHM = 5 fs interacting with an under-dense plasma of density n =
1019 cm�3 particles per cubic centimeter.
The simulation created about 180 TB of electron data, containing position
and velocity of each macro-electron for all time steps. In order to distinguish
each particle and be able to calculate derivatives of the velocity, each particle
was given a unique ID determined at its creation in the simulation. Since PIC
codes in general do not need to keep track of individual particles, particle
data get mixed during the simulation and are stored more and more randomly
arranged with progressing simulation time. Extracting electron trajectories
from the data in a feasible time requires to sort the electron data beforehand.
Therefore, a first processing step was needed to sort all particle data for every
time step. A software, able to read the compressed data in parallel, to sort
the IDs, and to store everything again in a compressed way was developed.
To run in parallel, MPI was used to work with different time steps at the
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Figure 5.12: A histogram of the electron energy: for detailed study,
the beginning of the injection was selected. Right before the injection,
the maximum energy of the electrons is about 5MeV (blue). During the
injection electrons in the first bubble are accelerated. 1000 time-steps
later, there are already several electrons with a high energy (red). The
upcoming task will be to analyze the radiation occurring during these
1000 time steps of the start of the injection.

same time while OpenMP was used to load, decompress, compress and store
all particle data (see appendix B.2 for details on MPI and OpenMP).
Running through all 180 TB of electron data took about one month. The
limiting factor of this process was not the number of processors available but
the bandwidth of the network connecting the computer nodes to the hard
drives. It limited the data transfer to about 250� 350MB/s.

In order to not occupy most of the available disk space, the only feasible
option was reducing the electron data. It was decided to delete the entire
data except for the injection of electrons into the first bubble which should
be investigated in detail. Therefore, the electron energy was analyzed to
determine the time of the first injection. Prior to the self injection, the elec-
trons’ energy spectrum is limited to about 5MeV. During the self injection,
electrons inside the bubble get accelerated. This causes the electrons’ energy
spectrum to “grow a tail” towards higher energies. The clear signature was
used to decide on which time steps of the simulation to keep and which to
delete. 1000 time steps covering the first self injection have been kept. The
electrons’ energy histogram for the first and last time step preserved is illus-
trated in Fig. 5.12. A cut along the laser polarization plane through the first
electron bubble is shown in Fig.5.13. The area where the particle energy is
on average above 6MeV is highlighted by a black hatching.
This reduction of the electron data freed a lot of disk space. But 2.3 · 108
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Figure 5.13: The electron density in the bubble: The picture shows a
cut along the laser polarization plane through the first electron bubble.
The laser pulse is coming from the left and is located at z ⇡ 39µm.
The black hatched area represents the region with an average electron
energy above 6MeV, the start of the electron injection into the bubble.
Clearly visible are the streamline electron motion typical for the grid-like
initialization of the electrons in Illumination.

macro particles still needed to be sorted. A further reduction could be
achieved by deleting individual particles in the simulation. This however
results in a poorer statistical description of the emitted radiation. Even
choosing only the 1.2 · 105 particles with energy above 5MeV would still
takes month to compute.

Performing this kind of simulation demonstrates clearly the limits of com-
puting the radiation based on a full set of electron trajectories stored on
disk. Due to the finite bandwidth for in- and output, the calculation time
increases tremendously even on high performance compute clusters. This can
only be partially circumvented by parallelizing the computation of the radi-
ation. Thus, an approach based on trajectory files is impractical with regard
to the required computation time. Only combining the particle simulation
with the radiation code, as done by the Radiation Analyzer in PIConGPU,
seems to be a feasible method to simulate the radiation of full-scale plasma
simulations.
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Efficient alternative using the Radiation Analyzer

The Radiation Analyzer included in PIConGPU allows to do full scale plasma
simulations and compute the emitted radiation efficiently. Billions of parti-
cles can be considered allowing for a great statistical treatment of the total
emitted radiation.
The Radiation Analyzer simulates the emitted radiation for many observers
in parallel. For the first time, this allows to compute a complete spectral
sky map of the radiation emitted during a laser wakefield acceleration [5]
(Fig. 5.14). Radiation signatures emitted towards a specific direction can
thus be identified and linked to specific plasma dynamics. Detecting such
spectral signatures could optimize the diagnostics of laser-driven particle
accelerators.

Figure 5.14: Schematic drawing of the radiation sky map together with
a physical scenario of interest: The laser is focused into a gas jet and ion-
izes the gas, thereby creating a plasma.The ultrashort laser pulse excites
a plasma wave that accelerates electrons into the forward direction. For
predicting spectral signatures based on simulations the entire spectral
sky map needs to be computed. In order to diagnose this wakefield ac-
celerator the electromagnetic spectrum can be detected and compared
with the predictions of the sky map simulation.

Additionally, the Radiation Analyzer can compute the emission intensity for
arbitrary frequencies. This enables to calculate logarithmically scaled spec-
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tra, ranging from infrared to X-ray, in a single run of PIConGPU.
In order to perform these full-scale simulations, the code needs to run ef-
ficiently on high performance compute systems. The speedup achieved by
using more GPUs for a fixed-sized problem was measured on the TITAN clus-
ter at Oak Ridge National Lab (ORNL), USA. The time needed for different
numbers of GPUs was compared to that of only 32 GPUs. The speedup
of the code in this strong scaling test is close to perfect (Fig. 5.15). This
exceptional result is rarely reached by parallel codes.

Figure 5.15: Speedup per compute node (strong scaling) of PIConGPU

with Radiation Analyzer. The red line represents the ideal speedup, while
the blue dots are the speedup values actually achieved with the code.

This means that running the code on hundreds of graphic cards in parallel is
possible without losing parallel efficiency. There is no apparent reason why
the Radiation Analyzer should not scale for up to ten thousand GPUs.

In order to simulate the radiation emitted during a plasma interaction in the
blow-out regime with PIConGPU, hundreds to thousands of GPUs running
in parallel are required.
A proposal of running PIConGPU together with the radiation code on the
TITAN cluster was submitted to and accepted by the Oak Ridge Leadership
Computing Facility (OLCF) at Oak Ridge National Lab (ORNL), USA, the
largest computer cluster at present [42]. This will allow to run a simulation
with up to 1000 GPUs in parallel. A maximum of 1 million CPU-hours can
be spent on simulations. Since every GPU is assigned to 16 CPU cores, this
means that 62500 GPU-hours are available to run PIConGPU. When using
around 1000 GPUs, a single simulation would need less than three days. An
equivalently large simulation would need nearly two years on the joker clus-
ter at the TU Dresden.
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Feasible setup parameters of the simulation are given in the table 5.1. There
are three different setups for the simulation, each with a different number
of observation points on the sky map. The number of observation points
is limited to around one hundred. This is due to the restrictions of hard-
ware memory used in accordance with the project specifications. If all of
the 18, 688 GPUs available in OakRidge are used and one assumes close-
to-perfect scaling as indicated by Fig. 5.15, one could use almost 20, 000
observation points to cover the complete 4⇡ sphere. This would allow a
detailed scan of the entire spectral sky map for frequencies ranging from
infrared to X-ray in a matter of days.

Table 5.1: Setup parameters for the TITAN simulation

parameter values
GPUs used 5 ⇥ 32 ⇥ 6 GPUs = 960 GPUs
Total number of cells 400 ⇥ 4608 ⇥ 408
Cell size �x = �z = 0.1722 · 10�6m

�y = 0.22 · 10�7m

Time step �t = 0.08 fs
Total simulation time 25, 000 ·�t = 2, 000 fs
Volume simulated V = 4.9 · 10�4mm3

Initial electron density ⇢ = 2.2 · 1025 1
m3

Macro particle per cell 4
Macro particle per GPU 3,133,440
Total number of macro
particles

N
p

= 3.008 · 109

Option 1 128 observers
11.4 s/time step
total runtime: 79.2 h
! 1.22 · 106 CPU-h

Option 2 96 observers
8.8 s/time step
total runtime: 61.2 h
! 0.88 · 106 CPU-h

Option 3 80 observers
7.4 s/time step
total runtime: 51.4 h
0.74 · 106 CPU-h

In order to illustrate that the Radiation Analyzer works for large collections
of particles, a result of a test run is given in Fig. 5.16. An electron bunch
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5.2 The frequency domain code

with a Gaussian bunch size of �
x

= �
z

= 2�
y

= 6µm and � = 5 interacts
with an electromagnetic plane wave of intensity a0 = 1.0. The bunch size is
about 2 orders of magnitude larger than the wavelength of the first harmonic
emitted. The resulting radiation is incoherent and causes a noisy spectrum.
However, the spectrum agrees well with the predictions in section 5.2.2.
There are more sidelobes since the radiation was computed for the entire
interaction with the super-Gaussian laser pulse. The energy emitted per
particle is higher since the electrons passed more than seven laser periods.
For this test 32 GPUs on the JUDGE cluster at the Research Center Jülich,

Figure 5.16: Example of radiation calculation on several GPUs. This
is the original spectra as simulated, no post processing was applied.

Germany [43] were used. A total of 5 million particles have been used for
the calculation.
All tests covered in this thesis were aimed at verifying the correctness of the
developed Radiation Analyzer. Since such a huge simulation can just run
once, all components had to be checked extensively. This has been done
using the joker cluster at the TU Dresden and the JUDGE cluster in Jülich.
All tests of the Radiation Analyzer have turned out to agree very well with
the predictions (see section 5.2.2 to C for details). This allows to face the
planned simulation in Oak Ridge with confidence.
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In this work I presented the development three different codes to simulate
electromagnetic fields from electrons moving at relativistic speeds.

The time domain simulation allows to simulate electric and magnetic fields
from electrons at arbitrary positions and times. Because the code considers
the full solution of the Maxwell equations for point-like particles by Liénard-
Wiechert potentials, the electromagnetic fields calculated are correct for par-
ticles at relativistic speeds. This allows to simulate fields where standard
mesh-based field solvers would need too many grid points to correctly cal-
culate the electromagnetic fields. An example of such a case is coherent
synchrotron radiation (CSR). The time domain code is a useful tool to con-
sider the reaction of the bunch to its own field. Right now, the software
is being tested by the “Radiation Source ELBE” division at the Helmholtz-
Center Dresden-Rossendorf and by the Center for Nonlinear Studies at the
Los Alamos National Lab. It agrees very well with analytical solutions for
several test cases.
Furthermore, it might be useful for initializing the electromagnetic fields of
arbitrary particle sources in PIC simulations. Such a relativistically correct
field initialization is inevitable when considering situations with non-zero
electromagnetic fields at start and if the particles’ initial velocity is already
close to the speed of light, as for example in the case of electron bunches
injected into a laser-driven wake field for post-acceleration.

The frequency domain code allows to spectrally and directionally resolve
the radiated intensity from accelerated charges. It is well suited to compare
spectra from experiments with simulated particle dynamics or to predict
characteristic radiation with simulations. By exploiting the highly parallel
structures of compute clusters, results can be produced faster allowing pa-
rameter scans with respect to beam and laser properties. The software is
independent of any specific particle simulation and can easily be adjusted to
different input files. Currently, the simulation developed is used in parallel
to the CLARA 1.0 code to simulate effects of beam emittance at ELBE for
head-on Thomson scattering of ELBE bunches with laser pulses from the
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high-power laser DRACO, and it will be used to analyze the radiation from
electron self-injection in laser plasma interactions in blow-out regime.

The Radiation Analyzer was developed to calculate the energy emitted from
accelerated electrons simulated with PIConGPU. It is able to produce the
same results as the cluster-based frequency domain code but because it runs
directly within PIConGPU it can completely avoid time loss due to stor-
ing and reading trajectory files from simulations. It also exploits the highly
parallel architecture of graphic cards to speed up the radiation simulation
immensely. This gives the unique opportunity to simulate the radiation for
entire laser plasma simulations which to the author’s best knowledge had not
been implemented in any other PIC code due to the heavy computational
load of this method. With this simulation considering millions of particles,
it will be possible to investigate radiation effects during laser plasma interac-
tions and perhaps link characteristic spectral signatures to effects predicted
by simulations. It is able to simulate coherent radiation, allows to analyze
frequencies from infrared to X-ray in a single run and is fast enough to sim-
ulate the radiation on a full spectral sky map.

As part of the diploma thesis, all these codes have been thoroughly tested
to assure that the simulated results are correct. The results of these test
simulations where checked against known analytical solutions. For the fre-
quency domain code, these tests ranged from simple Coulomb fields to highly
relativistic coherent synchrotron radiation. For the frequency domain codes,
tests of undulator and non-linear Thomson scattering were performed. In
addition, tests were also performed to reveal the limits of these codes. These
limitations could be pushed further by applying several tricks conceived. For
example, the Nyquist limiter is a new method developed to prevent incor-
rect reflection in frequency space when dealing with many particles and the
(1� ~�~n) approximation permits to simulate radiation on GPUs.

The extensive validation process, especially for the Radiation Analyzer used
in PIConGPU, now allows one to assess changes and newly developed meth-
ods to PIConGPU with standardized radiation tests to check the effects
of the changes against known analytical spectra. In contrast to all other
output created by PIConGPU, radiation spectra have the advantage of sum-
ming up all effects on the electrons and thereby revealing errors quickly.
This validation method has already been applied to several newly developed
particle-pusher algorithms and was able to disclose previously undiscovered
bugs.

The three codes are powerful tools for comparing simulations with experi-
ments and for predicting field and energy distributions caused by electrons.
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The fact that these programs are already applied by different groups show
that there had been a need for radiation codes that could be covered by these
programs.

Predicting radiation from laser plasma interactions was previously mainly
treated analytically which only allowed to cover a few special cases. Sim-
ulations often only reproduced tiny fractions of the entire process due to
memory limitations. The PIConGPU’s Radiation Analyzer now allows to
predict for the first time the radiation for the entire plasma. Therefore, new
effects are likely to be seen. Hopefully the first new results will be found
next year with the first-large scale simulations.

This simulation will be the first PIC code ever to realistically simulate the
entire radiation emitted during a laser wakefield acceleration.
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Large-scale simulations on the Oak Ridge National Laboratory supercom-
puter TITAN will start at the beginning of 2013. This will be the first
full-scale radiation simulation of laser wakefield acceleration (LWFA). It will
give a unique insight into the radiation signatures seen in LWFA. Linking
spectral signatures to specific particle dynamics will allow to improve exper-
imental diagnostic methods and thus allow to better optimize experimental
setups.

A possible extension of the Radiation Analyzer will consider coherent radi-
ation independently for small-scale spatial subsets of cells. This would give
the opportunity to combine the radiation originating from these cells coher-
ently, while combining the radiation over all cells incoherently. With this
method, the noisy background due to the coherent radiation method could
be avoided, while still being able to simulate coherent radiation correctly.
Additionally, this spatial decomposition of calculating the radiation would
allow to pinpoint radiation signatures to a specific location of origin.

For future simulations the effects of the radiation back reactions needs to
be considered: In the previous chapters, several aspects of electromagnetic
radiation emitted by electrons have been covered. However, consequences of
the energy carried away by the radiation have been ignored. This is due to
two reasons. First of all, the back reaction of the emitted electromagnetic
radiation on the accelerated charge, the so-called radiation reaction, can only
be dealt with correctly using quantum electrodynamics [6]. And secondly,
in most cases, the changes in the particle’s dynamics caused by the emitted
radiation can be neglected.
Nonetheless, there exist several approximate classical treatments of radia-
tion reaction and for future high intensity lasers with a0 > 10, equal to
a laser peak intensity larger than I > 2.2 · 1020W/cm2 for a laser wave-
length of �0 = 800 nm, the effects of electromagnetic emissions can no longer
be ignored [44]. Therefore, this chapter will briefly introduce the classical
treatment of radiation reaction, outline its disadvantages, and propose a
novel approach based on the numerical solution for electromagnetic radia-
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tion presented in this thesis. This approach might solve some of the current
methods’ shortcomings.
The power lost by radiation can be described by Larmor’s formula (Eq. 7.1).
It is derived by integrating the Poynting vector (Eq. 2.33) over a sphere
surrounding the charge emitting the radiation [45].

P =
µ0 · q2 · c

6⇡
· �̇2 (7.1)

This formula assumes that the particle’s velocity is negligible compared to
the speed of light v ⌧ c. The emitted power is proportional to the square
of the charge q and the square of the normalized acceleration �̇. In case of
a particle with relativistic velocity, this scaling remains true but additional
terms gain influence. The relativistically correct formula for emitted power
(Eq. 7.2) was first derived by Liénard [6].

P =
µ0 · q2 · c

6⇡
· �6

h
�̇2 �

⇣
~� ⇥ ~̇�2

⌘i
(7.2)

A common way to include the radiation reaction is by using the Abraham-
Lorentz formula (Eq. 7.5). To keep things simple, all following derivations
will assume a non-relativistic scenario. The Abraham-Lorentz approach ac-
counts for the energy loss (Eq. 7.1) by introducing a radiation reaction force
~F
rad

acting on the charge. However, the particle constantly exchanges energy
with the near field ( ~E ⇠ 1

r

2 ), which is negligible in the Larmor formula be-
cause it does not carry away energy. Therefore, the radiation force introduced
will only be correct in an average description of the electron’s dynamic [45].

Z
t2

t1

~F
rad

· ~� · c d t = �µ0 · q2 · c
6⇡

Z
t2

t1

�̇2 d t (7.3)

Assuming the particle motion to be periodic or ~̇� · ~� = 0 allows to integrate
the left part of Eq. 7.3 by parts [6], leading to:

Z
t2

t1

✓
~F
rad

� µ0 · q2 · c
6⇡

~̈�

◆
· ~� · c d t = 0 . (7.4)

It is no problem to assume the force to be:

~F
rad

=
µ0 · q2

6⇡
~̈� . (7.5)

All other options for ~F
rad

turn out to be more complicated and even less cor-
rect. It is important to keep in mind that the Abraham-Lorentz equation just
describes the time averaged influence of the radiation on the particle over a
special time interval. Additionally, this formula ignores effects perpendicular

92



to ~�, which would change the direction of the particle’s momentum but not
its energy. Furthermore, the force introduced by Abraham and Lorentz leads
to unphysical “runaway” solutions of the particle’s motion and to preaccel-
eration effects.
An alternative to Abraham-Lorentz is the description by Laundau and Lif-
shitz. By applying a time derivative on Newton’s second law, one can find a
formula for the normalized acceleration

~̈� =
1

m · c
~̇F
ext

. (7.6)

Applying this to the Abrahm-Lorentz force results in:

~F
rad

=
µ0 · q2

6⇡mc
~̇F
ext

. (7.7)

This is the Landau-Lifshitz formula which implies that the change in accel-
eration ~̈� is solely caused by the change of external forces ~̇F

ext

[46]. It is
only an approximation of the Abraham-Lorentz equation but it can be of
advantage concerning the preacceleration and the diverging solutions. How-
ever, it can be shown that both formulae result in unphysical behavior while
Abraham-Lorentz usually shows the better results in the limit of point-like
charges [46].
Both formulae describe the energy loss caused by the emitted radiation by
arbitrarily introducing a radiation force. This force arises from the particle’s
interaction with its own field. This is hard to imagine for a point-like particle
where the field diverges at the position of the charge. However, for contin-
uous, not point-like, charge distributions, it can be shown that the charge
interacts with its own retarded field. This remains true even in the limit of
the charge’s spatial extension approaching zero (see e. g. [45] for the case of
a dumbbell or [46] for a spherical shell).
In particle-in-cell simulations, the fields caused by all charges are solved on
a grid using Maxwell’s equation. These fields do act back on the charges.
Therefore, back reactions of the charges on themselves are already included
up to a certain limit. This limit is given by the spatial resolution of the
field lattice. If the electromagnetic fields are solved on a grid with a node
distance of �

lattice

, the minimal wavelength �
limit

that can be resolved on a
cubic grid is about

�
limit

⇡ 2 ·�
lattice

(7.8)

depending on the direction of field propagation. Effects with a periodicity
below �

limit

, or equivalently at frequencies above !
limit

= 2⇡c
�limit

, are omit-
ted and do not act back on the emitting charge. As an example, the field
lattice needs to resolve the laser. It does this by sampling the laser about
an order of magnitude more precisely than needed by the Nyquist-Shannon
sampling theorem (see Eq. A.12). Therefore, back reactions caused by ef-
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fects at frequencies around the laser frequency are already considered by the
particle-in-cell algorithm. In contrast the impact of self fields at frequencies
more than an order of magnitude higher than the laser frequency are ignored.
Adding one of the previously described radiation forces to the equation of
motion will result in double-counting of the low frequency part of the radi-
ation, while not adding F

rad

ignores the radiation reaction caused by high
frequency effects. However, radiation effects at high frequencies usually arise
from particles with high velocity and therefore high energy. Considering the
relativistic Larmor equation (Eq. 7.2), these particles radiate energy pro-
portionally to the sixth power of their energy P ⇠ �6. Thus, the radiation
damping is strong for these particles.
It seems that it is only possible to overestimate the radiation damping of
the many low-energetic particles in laser plasma simulations, or to underes-
timate the effects of radiation damping for the few high-energetic particles
where the energy loss actually becomes important.
Effects below !

limit

are taken into account by the particle-in-cell simulation
and only the emitted radiation with frequencies above !

limit

needs special
treatment. To do this, one needs to consider the spectrally resolved emit-
ted intensity. Integrating the emitted intensity over all frequencies above
!

limit

and over the total solid angle results in the total emitted energy not
considered by the particle-in-cell algorithm. This energy loss can be treated
similarly to the original Abraham-Lorentz equation.

Z
t2

t1

~F · ~� · c d t = �
Z

d⌦

Z 1

!limit

d!
d2 I

d! d⌦
(7.9)

= � q2

16⇡"0c

Z
d⌦

Z 1

!limit

d!

�������

Z
t2

t1

d t
~n⇥

h
(~n� ~�)⇥ ~̇�

i

(1� ~� ·~n)2
· ei!(t�~n ·~r/c)

�������

2

(7.10)
This formula describes the total energy lost by a particle due to radiation re-
action not considered indirectly through the field lattice. However, deriving
an instantaneous force from this equation turns out to be difficult because,
as the Abraham-Lorentz equation, it would only be valid in a time average.
Additionally, considering the Fourier transform correctly holds other diffi-
culties. Implementing an algorithm based on this basic principle of separate
treatment of the radiation reaction poses a still unsolved problem. However,
it needs to be solved when simulating laser plasma interactions at laser in-
tensities above a0 > 10 where the radiation back reaction starts influencing
the electrons’ dynamics.
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A | Fourier analysis

The following chapter is supposed to present the definitions of Fourier trans-
form used in this book and recapitulate the most important theorems of
Fourier analysis, Fourier series, discrete Fourier transform and the famous
Fast Fourier Transform.

A.1 Fundamentals of Fourier analysis

Fourier analysis is a method to describe any function R ! R or C ! C
by trigonometric or complex exponential functions. An extension to more
than one dimension is possible. This transformation is especially useful for
functions with a periodic behavior.
In the following brief description, I will concentrate on the one dimensional
complex Fourier analysis and will speak of time and frequency space, even
if this represents just one possible interpretation. The decomposition of a
function in time domain to a function in frequency domain (f(t) ! F (!))
is called Fourier transform and can be defined as:

F (!) =
1p
2⇡

Z +1

�1
f(t)e+i!t d t (A.1)

The inverse operation is called Fourier synthesis and results from above’s
definition as follows:

f(t) =
1p
2⇡

Z +1

�1
F (!)e�i!t d! (A.2)

There are several different definitions of the Fourier transform and synthe-
sis, mainly using different constants. This definition has simply been chosen
because it is used in Jackson’s Classical Electrodynamics [6]. Any other def-
inition would be as good, only resulting in minor changes of some constants.
The Fourier transform has a variety of properties. Only those of importance
to radiation are covered here. For a complete description, please refer to [47].

• The Fourier transform is a linear operation, meaning that for any a, b 2
C a function h(t) = a · f(t)+b · g(t) will transform to H(!) = a ·F (!)+
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b ·G(!). This property can be applied when calculating the emitted
radiation of several particles. An addition in time and frequency space
is equivalent and therefore can be implemented as needed.

• A translation in time will lead to a phase shift in the frequency domain.
If translating f(t) by a constant a 2 R, the Fourier transform F (!)
will change to F (!) · e+i!a. This needs to be used when considering
emitted radiation infinitely far away from it’s point of origin. The
unknown, and infinite, time the radiation needs to propagate is just
resulting in an unknown and often uninteresting phase.

• As can be derived from the rules of integration by substitution, scaling
of the time f(t) ! f(a · t) also scales the Fourier transform F (!) !
1
|a|F (!

a

) in frequency space. This needs to be used when a unit trans-
form, as in PIConGPU, is applied.

• Of importance is also Parseval’s theorem:
Z +1

�1
|f(t)|2 d t =

Z +1

�1
|F (!)|2 d! (A.3)

It allows for substituting a power integration over time by an integra-
tion over frequency and still get the correct total energy as applied in
the derivation of section 2.1.3.

• The convolution theorem states that a convolution in time space h(t) =
f(t)⌦ g(t) =

R +1
�1 f(s) · g(t� s) d s is related to a multiplication of the

Fourier transforms H(!) = F (!) ·G(!) and vice versa. This theorem
is useful when, for example, deducing the effects of an envelope function
added to an existing solution.

A.2 Discrete Fourier transform

For a numerical approach to Fourier transforms, one is not dealing with
functions anymore but with series of values. This relates closely to the topic
of Fourier series and illustrates the idea behind Fourier transforms.
Assuming a function with a periodicity T, it is only necessary to know the
function at t 2 [0, T ] to know it everywhere. In order to describe this function
using complex exponential functions, one can concentrate on those ei!kt with

!
k

=
2⇡

T
· k , (A.4)
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because no other complex exponential function will fulfill the periodicity T .
With this knowledge, one can define a general form for the function:

f(t) =
+1X

k=�1
F
k

· e�i!kt . (A.5)

By defining a Fourier transform similar to Eq. A.1

F
k

=
1

T

Z
T

0
f(t) · e+i!kt d t (A.6)

and knowing that
1

T

Z
T

0
e�i!lt · e+i!kt d t = �

kl

(A.7)

one sees that the Fourier transform selects the contribution F
k

of a single
frequency !

k

from the series Eq. A.5. The different normalization of Eq. A.1
and Eq. A.6 arises from T ! 1, which causes !

k

to become a continuous pa-
rameter !. However, since definition Eq. A.6 would lead to a divergence, a re-
definition of the Fourier transform is needed: lim

T!1
(T ·F

k

) = (2⇡)�1/2F (!).
From experimental measurements or simulations only values at discrete points
in time are usually known. These can be analyzed by using the discrete
Fourier transform. In order to simplicity the derivation, a signal f

j

at equidis-
tant time steps is assumed:

t
j

= j ·�t with: j 2 {0, 1, . . . , N
t

� 1} . (A.8)

Since the signal outside of t 2 [0, N ·�t] is by definition unknown, for sake of
simplicity a periodic behavior is assumed. However, this assumption causes
errors that will be discussed later. Applying Eq. A.6 to the discrete series in
time results in

F
k

=
1

N ·�t
·

NX

j=0

f(t
j

) · e+i!ktj�t (A.9)

=
1

N
·

NX

j=0

f
j

· e+2⇡ijk/N . (A.10)

By using the abbreviation W
N

= e
2⇡i
N , Eq. A.7 can be rewritten for the

discrete case.
N�1X

j=0

W (k�l)j
N

= N · �
k,l

(A.11)

It is important to notice, that a real signal, e.g. a cosine cos(!t), will not
only contribute at ! but also at �! because cos(!t) = 1

2

�
e+i!t + e�i!t

�
. A
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frequency contribution of a real signal is contributing equally at positive and
negative frequencies.
A serious problem arises from the sampling of the signal itself. Assuming
e.g. a cosine signal with periodicity T

c

and a sampling every �t = T
c

/2 time
step, one obtains values of the kind {+1,�1,+1, . . . }. A discrete Fourier
transformation results correctly in a frequency of ! = 2⇡/T

c

. However,
by decreasing the sampling rate, it is not possible to reconstruct the sig-
nal anymore. Instead, one arrives at a Fourier transform containing com-
plete nonsense. With a sampling step-width of �t, one can only analyze
bandwidth-limited signals containing frequencies below:

|!| < ⌦
Nyquist

=
⇡

�t
. (A.12)

As mentioned before, contributions of negative frequencies in the spectra are
the usual case. But a negative frequency ! = �j · 2⇡/T is isolated in Fourier
transform by:

ei(�!)t = e
2⇡i(�j)k�t

T = W i(�j)
N

= W i(N�j)
N

= ei(2 ·⌦Nyquist�!)t (A.13)

This gives the impression of negative frequencies reoccurring above the Nyquist
frequency. For real signals, this appears as if all frequencies are mirrored at
⌦

Nyquist

.
But what happens when the sampling rate is not large enough or the signal
is not band-limited at all? Than one sees an effect called aliasing. A signal
with a frequency of !

sig

= ⌦
Nyquist

+�⌦ will appear as a signal of frequency
!

DFT

= ⌦
Nyquist

��⌦. As lower frequencies seem to be mirrored at ⌦
Nyquist

,
the same is true for higher frequencies. Therefore, a badly sampled signal
might result in a wrong spectrum and hence, a high sampling rate should be
preferred. However, this is not as easy for radiation calculation as shown in
section 4.
Returning to the problematic assumption that the signal t 2 [0, T ] will pe-
riodically continue. This might lead to serious errors, when a low frequency
signal is cut of at an incomplete cycle. This problem is less important for
higher frequencies and can even be avoided completely by zero-padding the
signal. Zero-padding is simply adding additional values of zero to the signal.
Extending T or N by adding zeros does not contribute to the original signal,
but increases the frequency resolution of the discrete Fourier transform as
can bees seen in Eq. A.14.

�! =
2⇡

T
=

2⌦
Nyquist

N
=

2⇡

�t ·N
(A.14)

The more zeros are added before and after the signal, the less important
become the problems with frequencies not fitting in the period T .
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A.3 Fast Fourier transform

The DFT algorithm can be seen as a multiplication of a signal vector f
k

of length N with a N ⇥ N -matrix describing the time-frequency-relation
or for short the complex phase. Therefore the DFT algorithm scales with
N ⇥N , costing a lot of calculation time. However, Gauss and more than a
century later James Cooley and John Turkey [48] discovered that a divide
and conquer algorithm could be applied to Fourier transform which reduces
the complexity to 2N log2N and revolutionized not only data analysis but
also a wide variety of other fields dealing with computation. Here, I will
follow closely James Cooley’s and John Turkey’s original paper to introduce
the basic idea behind the Fast Fourier Transformation, short FFT [48] .
Assuming that the total number of data points can be expressed as N =
r1 · r2, one can define:

j = j1 · r1 + j0 j0 2 {0, 1, . . . , r1 � 1}, j1 2 {0, 1, . . . , r2 � 1}(A.15)
k = k1 · r2 + k0 k0 2 {0, 1, . . . , r2 � 1}, k1 2 {0, 1, . . . , r1 � 1}(A.16)

With these definitions, it is possible to rewrite Eq. A.10:

F
j

=
1

N

r2�1X

k0=0

r1�1X

k1=0

f(k1 · r2+k0) ·W jk1r2 ·W jk0 (A.17)

The first exponential function can be rewritten.

W jk1r2 = W (j1r1+j0)k1r2 = W j1k1N+j0k1r2 = W j0k1r2 (A.18)

As in [48], the inner sum over k1, depending only on j0 and k0, can be
redefined.

F1(j0, k0) =
1

r1

r1�1X

k1=0

f(k1 · r2+k0) ·W j0k1r2 (A.19)

This simplifies Eq. A.17 to:

F
j

=
1

r2

r2�1X

k0=0

F1(j0, k0) ·W jk0 (A.20)

For the calculation of F1, there are N · r1 operations needed. Additionally,
r2 ·N operations are necessary to compute F

j

from F1. The total amount
of operations (one complex multiplication with one complex addition) is
therefore N · (r1 + r2) < N2 if N > 4 and the two factors r1 and r2 are
chosen wisely. Since F1 has a similar form as F this procedure can be ap-
plied successively if the total number of data points can be described by
N = r1 · r2 · . . . · r

m

. In the special case of all r
i

being equal to r, only
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r ·N · log
r

N operations are necessary, reducing the complexity of the nu-
merical Fourier transform dramatically.
As shown in [48], choosing r = 2 is not the fastest method, but close to
it and additionally better suited for computers and their binary arithmetic.
This requires signals of length N = 2n, which can always be realized by zero-
padding. In this widely used case, k0 2 {0, 1}, therefore splitting the original
signal f

k

into two separate signals, one containing all even steps f1,k1 = f2k1
and the other all odd values f2,k1 = f2k1+1 with k1 2 {0, 1, . . . , N/2 � 1},
results in two separate sums.

F1,j =
1

N/2

N/2�1X

k1=0

f1,k1W
k1j

N/2 (A.21)

F2,j =
1

N/2

N/2�1X

k1=0

f2,k1W
k1j

N/2 (A.22)

Applying Eq. A.17 results in:

F
j

=
1

2
F1,j +

1

2
W j

N

F2,j (A.23)

This scheme can be pursued until only two values are left for summation.
The relation between the two values being added seems to be complex, but
for N = 2n and r = 2, it turns out that the order of summation is deter-
mined by a bit-reversal of the original index [47]. Values with bit-reversed
index next to each other are summed up first. A possible implementation
of this algorithm with a more detailed description of the algorithm can be
found in the Numerical Recipes [49]. The implemented algorithm for the
radiation code is based on an improved version of the Numerical Recipes
implementation proposed in [21]. Additionally, the algorithm was written as
a templated [50] version, to work with the classes developed for the radiation
code.
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Requirements on simulations often exceed the abilities of a single computer
in matters of available memory or aspired calculation time. Therefore, com-
bining several computers to perform certain tasks in parallel is the standard
approach to speed up the necessary time for a simulation or to increase the
size of a simulation beyond the hardware limits of a single computer. In this
appendix, a brief introduction to the abilities and limits of parallel computing
is given. Several methods of parallelization will be introduced in condensed
form. It is aimed at allowing a better understanding of the parallelization of
the developed code. However, it cannot replace a detailed description of the
used programs and libraries.

B.1 General remarks on parallel computing

Even as the processors speed stagnates for more than a decade, due to tech-
nical reasons [51], Moor’s Law stays valid. It states that the number of
transistors on a processor doubles about every 18 month [52]. This allows to
use the more complex structure of modern processors to run operations in
parallel. Alternatively, one may use several independent computers to pro-
cess programs faster. However, both methods require to know how to exploit
parallel architectures efficiently making this a inevitable skill for physicists
developing simulations today.
Parallelization of programs can be put into four different categories proposed
by Michael J. Flynn [53].

• single-instruction and single-data organization (SISD) means a com-
pletely sequential process, reading data and executing instructions
both sequentially. Most programs on todays desktop computers fol-
low this organization scheme.

• single-instruction and multiple-data (SIMD) means that a single in-
struction can be performed on several data-streams in parallel. This
finds it’s application in todays graphic cards and modern streaming
capable CPUs [51].

101



B. Parallel Programming

• multiple-instructions and single-data (MISD) Running several instruc-
tion on the same stream of data is still a theoretical concept and has
no real application jet.

• multiple-instructions and multiple-data (MIMD) finds it’s application
when several computing nodes run simultaneously on different data
streams. This is the usual parallelization scheme on compute clusters
and computers with several cores. One usually distinguishes between
distributed memory, where all computing units have independent mem-
ory as on different computers of a cluster, and shared memory, where
computing nodes have access to partially the same memory and can
share data using that part of the memory bank.

One also distinguishes between processes and threads. A process is a set
of instructions executed on a computer with an unique ID, a counter of
the execution status, register values and several different kinds of allocated
memory for example stack and heap memory. In contrast, a thread is also
a set of instructions with its own ID, execution status, register and heap
memory. However, it shares other forms of memory with other threads who
also execute the same instructions [51]. Threads are light-weighted versions
of processes and usually a process can start several threads. Parallelization
over several computers use different processes while instructions on a GPU
are executed by parallel running threads.
Executing a certain set of instructions in parallel usually results in a shorter
execution time. The achieved speedup s

n

is defined by the ratio between
the time needed for a sequential execution T1 and the time needed when
executing the task n times parallel T

n

.

s
n

=
T1

T
n

(B.1)

To determine how well a code can be parallelized the efficiency e
n

can be
calculated by the speedup s

n

normalized to the number of parallel tasks n.

e
n

=
s
n

n
(B.2)

There are two ways to interpret to possibilities of parallel computing. The
first is based on the idea that every task is made of a part that can be
executed in parallel ⇢ and one that only can be handled sequentially � and
that both parts are constant in size. Therefore, if a program runs completely
sequentially, the total time needed is T1 = ⇢+�. However, when parallelizing
the software the time needed can be reduced to T

n

= ⇢

n

+�. By normalizing
the sequential execution time to one T1 = 1 = ⇢ + �, the resulting speedup
is s

n

= 1
�+ 1��

n

. This leads to the fact that the highest possible speedup of a
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task of fixed size is:
s
n

 lim
n!1

s
n

= s
max

=
1

�
(B.3)

This is Amdahl’s law [24] and it reveals that the possible speedup of a defined
task is limited by its sequential part. A sequential part of only 10% would
only allow for a speedup of 10. This shows the limits of executing a program
in parallel.
However, this does not cover the entire truth. More hardware usually allows
to increase the size of the simulation. This generally results in an increase
of the parallel part of the program ⇢ compared to the sequential part � =
1 � ⇢ reducing the relative sequential part � with increasing parallelization
n and therefore making larger problems more efficient. Assuming that the
sequential execution time T

s

is independent of the size of the problem to
simulate, the speed-up can be calculated by:

s
n

=
T1

T
n

=
T
s

+ n ·T
pn

T
s

+ T
pn

= 1 + (n� 1)
⇢
n

� + ⇢
n

(B.4)

T
pn

is the execution time of the parallel part when using n nodes. It can be
increased by expanding the problem, while T

s

stays constant. Therefore, the
speed-up goes with:

lim
�!0

s
n

= n (B.5)

This is the Gustafson’s law [51].
While a fixed sized problem follows Amdahl’s law (Eq. B.3) and might not
profit from parallelization, the usual physics simulation can often be im-
proved by increasing the simulated region or the number of particles making
parallelization vital to keep the simulation time low.

B.2 Methods on Compute Clusters

Large scientific simulations are typically run on compute clusters. However,
there is a variety of possibilities to use the available resources. First of all,
a cluster consists of several computers, usually called nodes. Each computer
has its own central processing unit (CPU) with its own random access mem-
ory (RAM) and is connected to the other computers of the cluster via a
network, e. g. ethernet or InfiniBand. Each CPU might have several cores
running in parallel and accessing the same RAM.
The most easy form of parallelization on a cluster is to write a sequential
program and execute it with different input on several machines. Because
this is extremely common, most clusters provide a program that takes care of
starting programs on different nodes, called the batch system. For example
the hypnos cluster at HZDR uses the PBS submit system while the GPU
cluster joker at the TU Dresden used SGE and now uses PBS pro.
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This batch, or job submission, system is often the only way to interact with
the different nodes of a cluster because it schedules all jobs according to
the available and requested hardware requirements. This ensures that the
resources of the cluster are correctly assigned to certain jobs and are not
blocked by other programs.
Another option for parallelization is to use several cores available on a CPU
to run certain threads in parallel. The most easy form of this parallelization
scheme is provided by the OpenMP standard [51]. It allows to tell the com-
piler, using so-called pragmas instruction in the source code, to parallelize
certain instructions by creating threads. The advantage of OpenMP is that
it hides the actual handling of the threads from the developer. Except for
the pragmas, the source code still looks sequential making it more easy to
check.
A more advanced method of parallelization includes the use of several nodes
in parallel and sharing results between nodes while running. This can be
achieved by using the message passing interface (MPI) [54]. The basic prin-
ciple behind this standard is that tasks are split up into different processes
with their own data. To exchange data, for example to communicate results,
massages can be send and received. This simple principle allows to built
complex programs running distributedly on several nodes of a cluster. One
advantage of the MPI library is that in contrast to any specific network li-
brary, MPI processes can exchange messages by using the fastest method of
communication available to processes. For example two MPI processes might
run on the same node but on different cores of the same CPU. They would
exchange messages over shared memory using the RAM of the CPU. On the
other hand, on different nodes, processes can communicate using the fastest
network available, which might not necessarily be the ethernet connection.
The MPI library provides an abstract and easy to handle network, relieving
the developer of the need to deal with technical details of network commu-
nication. It also provides a variety of useful functions for common types of
data exchange, as for example broadcasting data to every node, collecting all
data at a single node, summing up data of different nodes and many more.
It is no problem to combine MPI with OpenMP allowing every MPI pro-
cess to spawn its own parallel threads as for example the cluster based time
domain code (chapter 3.2) or the sorting program for the Illuminaton data
(chapter 5.2.4) do.

B.3 Massively Parallel Programming using graphic
cards

Modern CPUs usually are node of several individual cores. These cores pro-
vide a full set of, generally, x86 instructions and can be considered processors
of their own except that they access the same RAM. Since each core can han-
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dle its own set of instructions, CPUs are called multicore devices. In contrast
to that, graphic processing units (GPU) have far more individual processing
units which however cannot all perform different instructions. Several of
these arithmetic and logical units (ALU) share the same cache for instruc-
tions and controls. This many-core approach aims for a high throughput of
parallel threads. [55]
Todays graphic cards provide a more than five times higher processing power
than modern CPUs, as for example Intel’s Sandy Bridge processors [22]. Ad-
ditional, the GPUs memory bandwidth is about 4 times larger. This differ-
ence in performance makes GPUs more attractive for large simulations. To
comply with the needs of scientists, NVIDIA developed the CUDA program-
ming language to provide means to easily develop software running on CPUs
and graphic cards aside from actual visualization applications [55] [22].
The basic idea behind CUDA is to extend the programming language C by
methods specifically designed for NVIDIA’s graphic cards. The user does
not need to know many details about the architecture used because CUDA
allows to abstractly describe the parallelization of the tasks. This abstrac-
tion provides the means of developing functions to be executed by several
threads in parallel on the graphics card called kernels. To easily describe the
parallelization of a kernel, a two dimensional grid containing several blocks
each with a number of threads organized in a three dimensional grid is used.
This scheme allows means for a more efficient handling of threads.
Threads of any blocks can run in parallel and have access to the same global
memory. However, access to global memory is relatively slow. Threads of
the same block also have the means of accessing a specific part of the mem-
ory only assigned to one block called local memory. It can be accessed faster
and allows to efficiently share data between threads of a block. But shared
memory is limited, making it necessary to combine only those threads to a
block which profit from a faster alternative to share data.
The ALUs of a GPU are combined to several streaming multiprocessors (SM).
Each SM provides a certain amount of shared memory accessible by all ALUs
of the SM. A block of threads is executed on one SM. Not all threads of a
block are executed simultaneously, 32 threads of a block, called warp, run at
the same time. If a warp is stopped, finished or is waiting for a process to
finish, another warp associated with the SM is executed. Because threads
run as part of warps, it is ofter more efficient to parallelize the tasks in such
a way that the number of threads in a block is a multiple of 32. A block
is always just associated with one SM, but a SM can handle several blocks.
A GPU consists of many SM, therefore only a parallelization with several
blocks can use the hardware to its capacity.
For a detailed description of how to write CUDA code, please refer to [22]
[55]. An alternative to CUDA is OpenCL, however developing using OpenCL
code is at present still more difficult than using CUDA.
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herent radiation

The radiation analyzer in PIConGPU uses the coherent radiation method in
order to simulate coherent radiation correctly. As discussed in section 4.2.1,
this algorithm leads to statistical fluctuation due to the random selection of
macro-particles.
It is therefore crucial to investigate the statistical effects of the coherent ra-
diation method when using a certain number of particles. While keeping the
number of particles used for radiation calculation low results in fast simu-
lation times, using too few particles will lead to results critically depending
on the initial choice of particles.
Coherent radiation is very sensitive to the source distribution in phase space.
If the average distance between two particles h�xi is larger than the emit-
ted wavelength �

rad

, incoherent radiation will be dominant [28]. Assuming
Gaussian-distributed particles leads to the following criterion for incoherent
radiation.

�
x

⇡ h�xi > �
rad

(C.1)

Investigating the statistical behavior of the simulated radiation using the
coherent method requires to simulate different numbers of particles with a
predefined spatial distribution and a clear spectral signature. Hence, a pro-
totype version of the Radiation Analyzer developed without PIConGPU was
combined with a GPU-based undulator trace generator. The trace generator
uses Eq. 2.47 - 2.49 to calculate the particles’ motion while allowing to set
the starting position of every particle using a variety of random distribu-
tions. In all test cases an electron energy of � = 50, an undulator length of
�
u

= 4µm and an undulator parameter K = 3.7 · 10�4 were set. This leads
to a frequency peak at !

rad

= 2.35 · 1018Hz (Eq. 2.51) or �
rad

= 0.8 nm for
the electron’s flight direction ✓ = 0. Furthermore, only 10 undulator periods
were considered, resulting in a broad peak (Eq. 2.52).
Gaussian-distributed particles were considered to investigate the statistical
effects of the coherent radiation method. The standard deviation of the dis-
tribution in all three dimensions � was varied between completely coherent
radiation � = 10�3�

rad

and entirely incoherent radiation � = 10+7�
rad

. The
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number of particles changed from N
particles

= 128 = 27 up to N
particles

=
65536 = 216. The choice of particle numbers is due to running the code
efficiently on the GPU architecture.
In order to reduce the effects of small scale interferences, a convolution with
a normal distribution, which has a standard deviation of � = 1016 Hz or 0.5%
of the plotted frequency range, was additionally performed on the frequency
domain. Such a convolution can be done after the simulation and therefore
permits a post-processing without having to rerun the simulation.
The resulting spectra for coherent radiation agree perfectly with the pre-
diction and there are almost no differences between the original and the
smoothed spectrum. This is even true for only a small number of test parti-
cles as shown in Fig. C.1. Here, the normal distribution of the particles are
set to a standard deviation of � = 0.1 ·�

rad

.
In contrast, simulating radiation in the incoherent range will lead to spec-

(a) (b)

Figure C.1: Spectra from N
p

= 128 particles, with a Gaussian distri-
bution of � = 0.1 ·�

rad

in an undulator of �
u

= 4µm and K = 3.7 · 10�4

over 10 undulator periods. The electron in the undulator has an energy
of � = 50 (a) shows the original signal, while (b) shows a smoothed
version.

tra with a noisy underground. The spectral structure can be identified but
the noise, caused by the random particle selection, makes it hard to identify
any substructures. This random noise causes striking differences between
the original signal and the spectrum after convolution. However, in this in-
coherent range it does again not matter how many particles are considered.
Higher particle numbers just lead to a slightly smoother spectrum after con-
volution. Fig. C.2 shows the results of simulating N

p

= 216 particles with
a standard deviation of � = 103 ·�

rad

. The smoothed spectrum shows a
clear structure, while for the original spectrum the signal-to-noise ratio is
too high to identify any substructures on the main spectral peak. It needs
to be emphasized that the energy scale in both plots differ because the con-
volution reduces the size of any single peak in favor of an average spectra.
It is important to notice that particle distributions with a density close to
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(a) (b)

Figure C.2: Spectra from N
p

= 216 particles, with a Gaussian distri-
bution of � = 103 ·�

rad

in an undulator of �
u

= 4µm and K = 3.7 · 10�4

over 10 undulator periods. The electron has an energy of � = 50 (a)
shows the original signal, while (b) shows a smoothed version.

the critical distance of �x ⇡ �
rad

destroy the spectral structure. This is not
a numerical problem, but a physical effect. When particles are a distance
equivalent to the radiated wavelength apart, their emitted fields cancel out.
Numerically, this cancellation strongly depends on the random choice of par-
ticles as can be seen in Fig. C.3 for N

p

= 128 and N
p

= 65536 particles.
It is important to notice that, even if the random interference effects are
reduced with an increasing number of particles, a signal at low-frequencies
will remain. Hence, the Radiation Analyzer can be set up to not calculate
the low frequency part of a spectrum thereby saving simulation time.

(a) (b)

Figure C.3: Critical effects of coherent radiation: The simulated par-
ticles are normal distributed with � = �

rad

. No smoothing has been
applied. (a) shows the emission of N

p

= 128 particles. The main form
of the undulator spectra is still visible, but the cancellation is random.
(b) shows the radiation of N

p

= 65536 particles. The spectrum does
not show any features of the typical undulator spectrum anymore. Both
spectra have a strong low frequency signal. (undulator: �

u

= 4µm and
K = 3.7 · 10�4, electron: � = 50)
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Another effect occurs when considering very large standard deviations �
compared to the radiation wavelength �

rad

. Around a spread of � = 8 cm =
107�

rad

, weak side peaks appear (Fig. C.4).

(a) (b)

Figure C.4: Simulating very spread-out particle distributions � =
107 ·�

rad

leads to side peaks. The effect seems stronger for N
p

= 128 par-
ticles (a) than for N

p

= 65536 particles (b). Both pictures are convoluted
with a normal distribution. (undulator: �

u

= 4µm and K = 3.7 · 10�4,
electron: � = 50)

These side peaks do not disappear for larger numbers of particles N
p

. The
cause for this effect is still unknown. But it is a less relevant case because
usually particles distributions of several centimeters are less common in laser
plasma physics.
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