RADECAL

Reactivity of atmospheric radicals with functionalised

surfaces A Fundamental Breakthrough in Detecting Atmospheric Radicals. Wolstenholme-Hogg, Amy;" Iqbal, Naeem;" Tsetseris, Leonidas^b and Chechik, Victor" ^aDepartment of Chemistry, University of York, Heslington, York YO10 5DD U.K.

^bDepartment of Physics, National Technical University of Athens, Greece.

alkane

ether

Introduction

NOW

- Currently, detecting radicals is complex, cumbersome and expensive.
- Only a few labs worldwide can detect radicals.

FUTURE

- RADICAL is developing a break-through way of detecting radicals with a small, low-cost electronic sensor that can be deployed globally.
- Self-assembled monolayers (SAMs) are going to be used to functionalise the sensor surface for enabling the detection of specific gas phase molecules.

Reactivity of plasma-generated species

•OH exposure to a library of surfacebound organic molecules

Glass slides were functionalised with a library of organic molecules.

Their rates of decay upon plasma exposure were analysed using contact angle analysis.

Distance from plasma jet

Contact angle Molecule /degrees alkane 100 ±2 perfluoro 117 ±3 65 ±2 ketone 70 ±2 ether 85 ±2 alkene 75 ±2 phenyl

The RADICAL project has received funding from the European Union's Horizon 2020 research and innovati

Methodology

Functionalisation of silica surfaces

Glass slides were used as a model substrates to attach the organic molecules and form self-assembled monolayers. **Contact angle after**

Silica Nanoparticles were used to provide further quantitative and qualitative information about the molecules attached to our surfaces per nm².

Most molecules gave a **similar rate of decay** upon exposure to •OH radicals. Only the **perfluoro alkane** chains gave a slower rate of decay. C-F bonds are unreactive towards •OH radicals, so the decay of the perfluorinated derivative is likely due to the reaction with the underlying C-H bonds.

- monolayers on glass slides.
- A library of organic molecules have been exposed to •OH radicals and their rates of decay have been monitored by contact angle analysis.
- Most molecules gave a similar rate of decay upon exposure to •OH radicals. Only the perfluoro alkane chains gave a slower rate of decay. This result has been supported by the DFT calculations.
- Pyrenemethylamine has been used as a fluorescent probe and has shown the presence of carbonyl groups after alkane chains have been exposed to plasma.
- The fluorescence technique will be used to quantify the oxygen-containing functional groups after exposure to plasma and will be used to complement the kinetics study with contact angle analysis.

References

1. Singh M, Kaur N, Comini E. The role of self-assembled monolayers in electronic devices. Journal of Materials Chemistry C. 2020;8(12):3938-55.

2. Ulman A. Formation and Structure of Self-Assembled Monolayers. Chemical Reviews. 1996;96(4):1533-54. 3. Murakami T, Niemi K, Gans T, O'Connell D, Graham WG. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity. Plasma Sources Science and Technology. 2014;23(2):025005.