Teaching the Von-Neumann Model with a
Simulator

Martin Weinert, Jan Hendrik Krone, and Johannes Fischer

Technische Universitdt Dortmund, 44227 Dortmund, Germany
{martin.weinert,hendrik.krone, johannes.fischer}@cs.tu-dortmund.de

Abstract. An important goal of computer science education is the de-
mystification of computing machinery. The Von-Neumann-model can
help to achieve this goal, since it demonstrates how programs are ex-
ecuted.

Therefore we developed a simulator and an accompanying series of lessons
on the Von-Neumann-model. Such teaching series are already being used
in practice, but are often separated from related computer science top-
ics. We connected our lessons to the concepts of sequential logic systems,
(higher) programming languages and the IPO model.

Keywords: Von-Neumann-Model - IPO - Series of Lessons

1 Introduction

One of the core goals of computer science education is the demystification of
computing machinery. The Von-Neumann-model contributes to this [7,6] by pro-
viding a simple, yet precise description of a computer, which allows students to
understand how computers operate.

Because of the complexity of the topic, it is important to apply some sim-
plifications through the teaching material. It is a common idea to achieve this
by using simplified simulators. Such simulators are already in use. Examples are
Johnny [1,2] and MOPS [4] for use in schools or Microsim for university edu-
cation. The simulators were developed with several design principles in mind.
MOPS, for example, used the IPO model (Input-Processing-Output) as an orien-
tation [4]. Although the simulators are simplified and put emphasis on different
aspects, they still have difficulties to effectively teach the Von-Neumann-cycle [3].
In order to address these difficulties and to be able to focus program execution
as a teaching topic, we decided to develop and use a new simulator.

2 Simulator KUR?2

An important design decision of the simulator is the arrangement of the com-
ponents. In contrast to other simulators like Johnny, MOPS or Microsim, we
consciously separated the input and output components and arranged them in a
way that resembles the IPO model. The user enters programs in machine code,

CC BY 4.0, M. Weinert et al. (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 221-224, 2023.
https://doi.org/10.5281/zenodo.8432030

https://doi.org/10.5281/zenodo.8432030

222 M. Weinert et al.

DRESS CONTENT

CONTROLLER

Fig. 1: Screenshot of the Simulator

which are then stored in the memory unit and executed afterwards. Due to the
presentation of the internal registers, the flow of data can be followed.

We emphasized a very simplistic design, because we wanted to integrate the
simulator into a story about John von Neumann. Therefore we did not want to
include modern design elements into the graphical representation.

3 Lessons series and materials

In this section, we describe the lessons that we developed. They can be accessed
on the authors’ website [5] for further examination and usage.

3.1 Series of Lesson

The series of lessons is composed of six lessons:

Lesson 1: The students learn how the simulator is structured by puzzling
together its pieces on a worksheet.

Lesson 2: The students interact with the simulator for the first time. They
simulate first programs and learn how to write simple programs for basic calcu-
lations.

Lesson 3: The students see how the functions of the simulator can be imple-
mented with sequential logic. They interact with a logic simulator, which shows
how some of the functions of KUR2 can be performed with logic gates. They
learn how sequential logic and the Von-Neumann-model are connected.

Teaching the Von-Neumann Model with a Simulator 223

Between NAND and makeTurtle() #i The o N e -y

The abstraction layers in the computer
Pben -
,,,,,,, Higher programming
e
‘ languages

asemvier | Assembler

[

J31dwo)
i
L]

=

e

1 IEemElr
i == !D j@ [e]
| o
(a) Poster (b) Worksheet IPO-VNM (c) Sequential logic

Fig. 2: Materials used in the lessons

Lesson 4: The students learn about jumps. First they formulate that programs
are stored as a linear sequence of commands. Then they see that execution can
deviate from this sequence through (conditional) jumps. At the end of the lesson
the students write down these insights as rules of the von-Neumann-model.

Lesson 5: The students see that programs and data are stored in the same
memory. They also learn how the memory is structured and addressed. These
insights are again written down as rules of the model.

Lesson 6: Finally there is a last lesson where the students can choose from
three activities. Those activities introduce connections to external (virtual) de-
vices and show how text and pixel displays can be accessed or how a simple guess
the number game can be played with the simulator. The activities are intended
to teach that the machine is independent of the problem.

3.2 Supporting materials and key features

During the development of the series of lessons some aspects emerged as espe-
cially important. The first of those aspects came from the realization that the
first contact with the simulator was quite overwhelming for the students. We
tried to make it easier for the students by introducing the puzzle (see fig. 2b) in
the first lesson, where they just put the simulator together and relate it to the
TPO model.

Next we tried to make it easier to see the connections to related topics and
build a coherent overall picture. To this end we created a poster (see fig. 2a)
that shows the different layers of abstraction and their connections. This poster
was presented in the computer lab to be visible at all times. These connections
were also emphasized by adding the activity where the students would see the
simulator implemented with logic gates (see fig. 2c).

224 M. Weinert et al.

Finally we tried to tie all lessons together with an engaging backstory. The
idea is that someone has found a box containing John von Neumanns old belong-
ings. Since the notebook that contains information on the Von-Neumann-model
and the simulator KUR2 in partly destroyed and unreadable, the students have
to reconstruct its contents through the lessons and worksheets.

4 Future work

Our observations during the lessons indicate that the connection of the Von-
Neumann-model to underlying topics like sequential logic and the IPO model,
and to emphasize how it fits into the broader context might be substantial for
effective teaching. We will investigate how this affects the development of mental
models of computing machinery in the future.

The aforementioned connection was mainly established with the poster that
shows the connections between the Von-Neumann-model and other topics, as
well as the simulator itself. We will look for additional ways to improve the
connections.

All of the materials and the simulator are free to use for educational pur-
poses. The materials and simulator can be accessed on the authors’ website [5].
The simulator is implemented in Java and a JavaScript version is currently in
development. The source code can be accessed via GitHub [8].

References

1. Dauscher, P.: Johnny - A Simulator of a Simple von-Neumann Computer (2012),
https://sourceforge.net/projects/johnnysimulator/

2. Dauscher, P.: Aufbau und Funktionsweise eines Von-Neumann-Rechners - Ein
moglicher Unterrichtsgang mit dem Open-Source-Simulator Johnny. LOG IN 33(2)
(2013)

3. Gobel, L., Hellmig, L.: Die Von-Neumann-Prinzipien erleben - Ein enaktiver Zugang
zu einem abstrakten Thema. LOG IN 39(1) (2019)

4. Haase, M.: MOPS Modellrechner mit PseudoAssembler.
http://www.viktorianer.de/info/mops.html (2013)

5. Krone, J.H., Weinert, M.: Teaching materials for KUR2 (2023), https://Is11-www.
cs.tu-dortmund.de/staff/weinert /kur

6. Lautebach, U.: Vom Gatter zum Compiler: Im Unterricht durch sieben Ab-
traktionsebenen. In: Gallenbacher, J. (ed.) Informatik allgemeinbildend begreifen.
Gesellschaft fiir Informatik e.V., Bonn (2015)

7. Sorva, J.: Notional machines and introductory programming education. ACM Trans-
actions on Computing Education 13(2), 1-31 (jun 2013)

8. Weinert, M.: Code repositories for KUR2 (2019), https://github.com/kur2

