
Computational Thinking Readiness of Incoming
High School Students in Taiwan

Greg C. Lee1[0009�0002�5624�543X], Jia-Yi Chen2[0009�0003�9929�4263], and
Yu-Wen Yang3[0009�0009�4612�3595]

1 National Taiwan Normal University, Taipei, Taiwan
leeg@csie.ntnu.edu.tw

2 National Taiwan Normal University, Taipei, Taiwan
81147002S@ntnu.edu.tw

3 National Taiwan Normal University, Taipei, Taiwan
wen860806@gmail.com

Abstract. The new national K-12 curricula went into e↵ect four years
ago in 2019. Of which, the technology curriculum has shifted towards
cultivating Computational Thinking (CT) and programming skills of stu-
dents. The first group of students who completed middle school education
under the new national curriculum entered high school in fall of 2022.
A multi-year study is underway to evaluate how the new curriculum
has improved students’ CT skills. A CT and programming assessment
tool was created for this study. Two types of tasks, namely goal-based
and problem-based tasks, were designed to test di↵erent CT and pro-
gramming skills. The two goal-based tasks require pattern recognition
and generalization CT skills as well as simple repetition and selection
programming skills to solve. The two problem-based tasks additionally
require students to have good abstraction skills in solving the given tasks.
In this paper, results from the first year of on-going study are reported.
A total of 17 schools, 130 classes and 4,475 students participated in this
study. The incoming high school students were tested during the first four
weeks of classes before additional programming lessons were conducted.
Thus the result reflects students’ learning outcome from middle schools.
Overall, the majority of students were able to solve the two goal-based
tasks (94% and 92%). However, only less than one fifth of students were
able to solve the two problem-based tasks (20% and 10%). This result
showed that students need more practice to improve their abstraction
skills. Further analysis of students’ programs showed that students have
the most di�culty in using variables. Findings from this study provide
good feedback to middle school teachers. Furthermore, statistical data
provides a good baseline for future studies.

Keywords: Computational Thinking · Assessment types and tasks ·
Online assessment system · CS education

1 Introduction

In recent years, research on Computational Thinking (CT) has focused on the
development of e↵ective instructional strategies, the cultivation of foundational

CC BY 4.0, G. C. Lee et al.

J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 167–174, 2023.

https://doi.org/10.5281/zenodo.8431959

https://doi.org/10.5281/zenodo.8431959


skills required, and the formulation of assessment methods and frameworks for
CT. In 2019, the new K-12 national curriculum went into e↵ect, which also
mandates to have Information technology (IT) classes in each of the two semester
of grades 7-9. The new IT curriculum emphasizes on Computational Thinking
and programming for problem solving. Thus, the curriculum is more oriented
toward computer science than computer applications. Many grades 7-9 teachers
in Taiwan, as with many other countries, uses Scratch [7], Blockly [1], MIT
App Inventor [4], Greenfoot [3], etc. as computer programming learning tools in
practice. Understanding the e↵ectiveness of curriculum implementation is one of
the important goals after the implementation of the new curriculum. However,
previous assessments of Computational Thinking lack quantitative tools that can
be used for a large number of tests, so it is di�cult to provide a comprehensive
report on the e↵ectiveness of curriculum implementation.

In 2010, Koh, Basawapatna, Bennett, and Repenning [2] developed a visual
semantic assessment tool called the Computational Thinking Pattern (CTP)
graph particularly for student-created games and simulations. The graph can be
used to indicate the existence of CT transferred from games to science simula-
tions. The Fairy Assessment [8] was proposed a few years later in another study
to assess two aspects of CT skills, thinking algorithmically, and making e↵ective
use of abstraction and modeling. In the assessment, although students were lim-
ited to the Alice based learning environment, this study has been regarded as
one of the major developments in the assessment of CT skills. In 2015, Moreno-
Leon & Robles [5, 6], assessed students’ CT skills with “Dr. Scratch” by ana-
lyzing students’ visual programming projects. Dr. Scratch is an analytical tool
that automatically analyzes Scratch projects and assigns a CT score in terms of
abstraction, decomposition, parallelism, logical thinking, synchronization, flow
control, user interactivity, and data representation. The tool demonstrates how
students’ programming skills can be improved with the feedback provided.

In summary, there have been some studies evaluating students’ CT abilities,
some of them assessed students’ specific CT abilities by pre-designed tasks, or
conversely, directly analyzing students’ existing game projects to understand
their CT abilities. In this study, we conducted a large scale experiment to assess
incoming high school students’ Computational Thinking readiness after they
have had three years of middle school computer classes. The assessment was
based on actual problem solving tasks through programming that require di↵er-
ent types of CT and programming skills. In the following sections, the assessment
tasks are first explained before the research setup and finding are presented.

2 Chippy Assessment Tool

The Chippy assessment is composed of two types of tasks, with two goal-based
tasks to assess students’ pattern recognition ability and simple programming
ability to perform the same routine repetitively. Students are shown an animation
of the task at hand and must recognize the repetitive pattern in the animation
before writing Scratch or Blockly code to complete the task. Students can run

168 G. C. Lee et al.



their program and see an animation of the e↵ect of executing their program code
step by step. On the other hand, the problem-based tasks are described in words
with sample input and output. The tasks are already familiar to the students so
are easy for them to understand. The problem-based tasks have test data that
correspond to di↵erent possible instances/cases of the problem. When students’
programs are executed, feedback can then be provided to alert them of di↵erent
scenarios that have not yet been correctly considered.

The four tasks used in this study are given in Fig. 1. The two goal-based
tasks are Light and Robot Vacuum. The Light task repetitively projects di↵erent
colored light onto the stage. The projected light color is determined by switching
on or o↵ the red, blue, and green lights above the stage. Students must watch
the animation, observe the repetitive color pattern of the projected lights, and
write program to perform the same task. For the Robot Vacuum task, the task
animation shows that the robot goes around the classroom to clean dust o↵
the floor. Once students recognize the same turning/moving directions can be
used to sweep each quarter section of the classroom, the program code are quite
simple as shown in Fig. 1(b).

The two problem-based tasks are Cake Promotion and Drink Orders. The
Cake Promotion task asks students to calculate the discount, the shipping fee,
and the total price. Students must be able to set proper variables, break problem
into taking order and calculation subtasks before designing proper algorithm to
solve the problem. The Drink Orders task is similar to the Cake Promotion task
but added requirement to use list/array data structure and wrinkle to compute
subtotal/total of the order. Both tasks require students to demonstrate good
abstraction, problem decomposition and algorithmic design skills. The two tasks
have 5 and 6 di↵erent possible cases, respectively, that students should consider
when designing algorithm. Possible correct programs for the two tasks are shown
in Fig. 1(c) and (d). The CT skills needed to complete each task is summarized
in Table 1.

Table 1. Computational Thinking skill required for each task.

Tasks
Skills

Pattern Recognition Abstraction Decomposition Algorithm Design

Light !

Robot Vacuum ! !

Cake Promotion ! ! !

Drink Orders ! ! !

CT Readiness of Incoming High School Students in Taiwan 169



(a) (b) (c) (d)

Fig. 1. The Chippy Assessment Tasks: (a) Light, (b) Robot Vacuum, (c) Cake Promo-
tion, (d) Drink Orders.

3 Research Setup

3.1 Participants

A call for research participation was made to high school teachers before the start
of the fall semester. Teachers with Information Technology classes for incoming
high school students (10th grade) were encouraged to participate. In all, 21
teachers from 17 schools with 130 classes for a total of 4,475 students signed
up for this study.

3.2 Procedure

The participating teachers use one class period within the first four weeks of
the new semester to conduct the Chippy Assessment Test. The assessment was
conducted before additional programming lessons in high school. Teachers were
asked to use the first 5 minutes of the class to explain the assessment tool.
Students then have 45 minutes to work on the above mentioned four tasks.
Teachers can help explain the tasks, but students must think, write, and debug
programs on their own. Student program for each task was evaluated instantly,
and so students know if a task is completed correctly.

3.3 Assessment Scale

The assessment test was scored objectively. As shown in Table 4, Light and Robot
Vacuum can only have either 0 or 100 scores, denoting having programmed
incorrect or correct problem-solving strategies. For the Cake Promotion and
Drink Orders tasks, partial scores were given based on the number of possible
distinct scenarios considered and whether they can produce correct output. The
maximum score for each task was 100. Students were able to see the evaluation

170 G. C. Lee et al.



result instantly. Furthermore, students were given feedback on where or why
the program was not given a 100 score. For the goal-based tasks, animation of
students’ program will reflect the moves as instructed, giving students visual que
to where the algorithm failed. For the problem-based tasks, all possible problem
scenarios were listed and those that were solved incorrectly were clearly marked.

3.4 Expected Outcome

The maximum score for the assessment test is 400. Having completed the Infor-
mation Technology curriculum in middle schools (7th⇠9th grades), high school
freshmen (10th grade) are expected to have the competency to complete both
goal-based tasks and at least one of the two problem-based tasks with 45 minutes.
Students with more practices or can think more quickly can possibly complete
all four tasks. Therefore, as shown in Table 2, with each task having a score of
100 points, the expected total score of students is between 251 and 350, an
equivalent of completing 2.5 to 3.5 tasks. Scores above 351 indicates having ex-
cellent CT and programming skills. Scores between 151 and 250 indicates not
being able to complete one problem-based task and thus only having moderate
CT and programming skills. Any score below 150 indicates not being able to
complete even the two goal-based tasks; therefore, having inadequate or no
CT and programming skills.

Table 2. The CT skills description corresponding to each score range.

Score Range Relative to the 7th⇠9th grades IT curriculum
351-400 Excellent CT and programming skills.
251-350 Expected CT and programming skills.
151-250 Moderate CT or programming skills.
51-150 Inadequate CT and programming skills.
0-50 No CT and programming skills.

4 Results and Findings

4.1 Quantitative Analysis

The average score among all 4,475 students participated in this study is 198.
Given the expected score of 251 or better, this average score suggests that the
CT readiness of incoming high school students, in general, is somewhat below
expectation. Table 3 gives the number and the percentage of student scoring in
each score range. It can be seen that only 12% (9%+3%) of students performed
as expected or better, while most students (71%) exhibited moderate CT and
programming skills. It is alarming that close to one fifth (2%+15%) of students
still have inadequate CT skills as they enter high schools.

CT Readiness of Incoming High School Students in Taiwan 171



Table 3. Number of students and percentage of students in each score range.

CT/Prog. Skills No CT Inadequate Moderate Expected Excellent Total
Score Range 0-50 51-150 151-250 251-350 351-400 Avg. = 198

No. of Students 74 661 3193 392 155 4475
% of Students 2% 15% 71% 9% 3% 100%

Next, we look at the results by task. Table 4 shows the descriptive statis-
tics. The table shows that majority of students attempted the two goal-based
tasks (99% and 96%). Furthermore, majority of students did complete these two
tasks (94% and 92%) correctly. This shows that students are capable of find-
ing repetitive patterns from the given problem animation and write programs
to perform the same task. For the problem-based tasks, only 56% and 35% of
students attempted the two tasks, respectively. This shows that close to half of
students either did not attempt or ran out of time to solve problem-based tasks.
Of those attempted problem-based tasks, a majority of students (73% and 87%)
were not able to receive any partial scores, while only 20% and 10%, for the two
tasks, respectively, of student were able to receive full score. These statistical re-
sults show that majority of students were not proficient in problem analysis and
Computational Thinking, which led to di�culty in solving the problem-based
tasks.

Table 4. Number of people and percentage in each score range.

Task Attempted Average Score Score Distribution

Light 99% 93.6

Robot Vacuum 96% 92.2

Cake Promotion 56% 22.7

Drink Orders 35% 12.0

172 G. C. Lee et al.



4.2 Qualitative Analysis

After looking through students’ programs for the problem-based tasks, two ob-
servations can be made about student’s CT and programming abilities.

1. Poor understanding and proper usage of variables
Although students have learned to use variables, proper usage of variables
requires high level of abstraction skill. In general, students do have under-
standing of storing values in variables, but often can only use variables as
constants. For example, in Fig. 2(a), although student’s program did use a
variable “Cake” to store the number of cakes ordered, that program failed
to declare a second variable to keep track of the running total. In this case
student did not know how to “update” variable value as required in this
task. As another example, in Fig. 2(b), the program had five variables to
keep track of the drink prices, but also used the same variables for checking
the ordered drink number. Students conceptually associated drink number
with drink price in the same variable; thus, unable to use one variable for
order checking and another variable for overall cost computation.

(a) (b)

Fig. 2. Sample student program for (a) Cake Promotion, (b) Drink Orders tasks.

2. Ine�cient formulation of di↵erent problem instances
Another common problem exhibited by students’ programs is that the pro-
gram did not properly condition di↵erent cases of the problem with variables.
Furthermore, many programs used multiple if statements, instead of nested
if-then-else statement to match natural logical reasoning of di↵erent cases.
For example, in Fig. 3(a), the program failed to use if-then-else structure,
but the actual error lay in not being able to keep a running total using a
second variable. In Fig. 3(b), in addition to being unable to read in value for
variable a and the lack of a variable for running total again, the program
used five if-do statements to check for drink order number. In both of these
examples, students decomposed the problem into a few independent cases.
In fact these should be exclusively disjoint cases.

CT Readiness of Incoming High School Students in Taiwan 173



(a) (b)

Fig. 3. Sample student program for (a) Cake Promotion, (b) Drink Orders tasks.

5 Conclusions

In this study, incoming high school students were put to the test to assess their
CT and programming learning achievement from their middle school informa-
tion technology education. The results were rather surprising and alarming. Two
recommendations are relayed back to the middle school teachers. First, when
training students to think computationally, there is a need to focus more on ab-
straction of problems, including formulating di↵erent problem instances logically.
Secondly, more examples and practices are needed to help build conceptualiza-
tion and good usage of variables.

In summary, this first year study provides a good baseline for future studies.
We will continue to conduct this study annually, expanding to more schools and
classes. Qualitative results will lead to development of teaching strategies to
meet the learning objectives of the information technology curriculum.

References

1. Blockly, https://developers.google.com/blockly. Last accessed 3 June 2023.
2. Koh, K.H., Basawapatna, A., Bennett, V., Repenning, A.: Towards the automatic

recognition of computational thinking for adaptive visual language learning. 2010
IEEE Symposium on Visual Languages and Human-Centric Computing. (2010).

3. Kölling, M.: The Greenfoot Programming Environment. ACM Transactions on
Computing Education. 10, 1–21 (2010).

4. MIT APP Inventor, https://appinventor.mit.edu/. Last accessed 3 June 2023.
5. Moreno-León, J., Robles, G.: Analyze your Scratch projects with Dr. Scratch and

assess your computational thinking skills. Presented at the Scratch Conference, 12-
15 (2015).

6. Moreno-León, J., Robles, G.: Dr. scratch: a Web Tool to Automatically Evaluate
Scratch Projects. Proceedings of the Workshop in Primary and Secondary Comput-
ing Education. 132-133 (2015).

7. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Bren-
nan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y.: Scratch:
Programming for All. Communications of the ACM. 52, 60–67 (2009).

8. Werner, L., Denner, J., Campe, S., Kawamoto, D.C.: The Fairy Performance As-
sessment: Measuring Computational Thinking in Middle School. Proceedings of the
43rd ACM technical symposium on Computer Science Education. (2012).

174 G. C. Lee et al.


