
Computer Science Education
with a Computer in the Background

Maciej M. Sysło1[0000-0002-2940-8400]

1 Warsaw School of Computer Science, Warsaw, Poland
syslo@ii.uni.wroc.pl

Abstract. The original premise of the unplugged approach was to introduce
students to the concepts of computer science (CS) in a way that does not require
access to computers, in particular for programming. It is difficult to fully main-
tain this approach today, when almost all schools and all students are equipped
with digital equipment. The Bebras challenge is another initiative addressed to
students of all ages in K-12 in which it was originally assumed that students
have no prior knowledge of CS. The new CS curriculum was introduced in Po-
land in 2017/2019 and since then we witness a variety of approaches taken by
teachers and schools to meet the curriculum requirements. In this paper we pre-
sent an idea of teaching and learning CS with computers which are in the back-
ground and the use of them depends on a particular situation and student's deci-
sions. We consider this approach as an extension of the unplugged approach.
Four groups of such activities are distinguished: (1) classical unplugged with a
computer in the background, (2) problem situations for which a computer is on-
ly a medium, (3) educational robotics, and (4) designing solutions to problems
outside computers before using them. We shortly characterize these groups and
comment on their use in developing computational thinking and assessment.

Keywords: Unplugged, Computational Thinking, Curriculum

1 Introduction

We believe that the selected approaches to the development of computational thinking
(CT), programming skills and learning about computer science (CS) can bring the
expected results, as the authors of the papers assume. In our case, we look for an ap-
proach that will guarantee the achievements of all students as provided for in the CS
core curriculum. Contrary to most research results conducted on selected groups of
students from a fixed school level, we are interested in implementing the spiral devel-
opment of all students throughout the years of their stay in school, i.e. in K-12. It
follows from this premise that we cannot limit ourselves to a fixed approach or fixed
tools – teachers and especially students should be free to choose.

Computer science (Informatics) education has a long history in Poland. In this his-
tory, you can find elements corresponding to today's unplugged and CT approaches
that have been used and developed for a long time without being specifically named
as they are today.

CC BY 4.0, M. Sysło

J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 89–101, 2023.

https://doi.org/10.5281/zenodo.8431926

https://doi.org/10.5281/zenodo.8431926

We will focus here on teaching CS and the presence or absence of a computer and
its applications in this process. We will justify our approach extending the unplugged
approach to CS with a computer in the background in a sense that a computer could
be in a reach of students and they can use it when they (or teacher) decide that it can
help them to learn better.

Today when all students have an easy access to technology, smartphones in their
pockets, tablets and computers in school computer labs, it is difficult to convince
students to CS classes with no access to technology.

2 CS education in Poland

2.1 Early History of CS education in Poland

The first regular lessons related to “computers” were held in Poland in two HS in
Wrocław in the second half of the 1960’ when the terms “computer” and “informat-
ics” did not have counterparts in Polish and a computer was a “mathematical ma-
chine”. The school subject was called „Programming and using a computer”. Since
those days a computer was mainly used for numerical calculations, students in this
first informatics classes learnt some basic numerical methods for solving mathemati-
cal problems and programming languages (assembler, Algol 60). They ran their pro-
grams on the real mainframe Elliott 803 located at the University (Sysło, 2014a).

The official history of informatics (computer science in Polish) in Polish schools
started in 1985 with the first official informatics curriculum for the school subject
called “Elements of Informatics” proposed by the Polish Information Processing So-
ciety and approved by The Ministry of National Education. The curriculum covered
the topics related to the use of microcomputer applications (for text editing, creating
graphics and sounds, building tables and simple databases, making simulations) and
also elements of algorithmics and structural programming using Logo, mainly for
drawing pictures and operations on lists of characters (Sysło, 2014a).

In Poland, we are very proud that algorithmics and programming in infor-
matics education, introduced to the curriculum in 1985, have remained in the
national core curriculum for all these years until today.

2.2 Computational thinking in the CS curriculum of 1997

From 1997 for the next 15 years in Poland, all national core curriculum on CS sup-
ported Denning's opinion that: Computational thinking has a long history within com-

puter science. Known in the 1950s and 1960s as “algorithmic thinking,” it means a

mental orientation to formulating problems as conversions of some input to an output

and looking for algorithms to perform the conversions (Denning, 2009).
In the curriculum for HS approved in 1997, in the section "Algorithmics and pro-

gramming" one can read that the school is to provide conditions for students to ac-
quire the following competences, called algorithmic thinking:

• Define a problem situation, including data [abstraction], the goal and the results.

90 M. Sysło

• Formulate a plan for solving the problem – separate sub-problems [decomposition]
and indicate connections between them.

• Choose a way to solve the problem:
o design an algorithm [algorithmic thinking].
o use an existing program or program a solution method in a selected program-

ming language [implementation, programming].
• Analyze the correctness of the algorithm and its implementation [debugging], and

assess its complexity [evaluation], test the program [testing].
• Complex projects solve in a team [collaboration].
• Choose and solve problems from various school subjects [generalization].

The above list of competencies resembles the operational definition of CT (Barr et al.,
2011). Additionally, we have inserted into the text above some mental tools of CT (in
italic) that constitute another definition of CT. Thus, CT as algorithmic thinking has a
long tradition in our CS education. In the years that followed, these curriculum state-
ments slightly reformulated were addressed to all school levels.

2.3 The new CS curriculum

In the last 20 years several countries began introducing CS for all students with CT as
a main capability. We in Poland continue our efforts to address CS to all students in
K-12 with algorithmic thinking as the main approach which, as illustrated above, is
another formulation of the operational definition of CT.

The new core curriculum of CS has been introduced to K-8 in September 2017 and
to HS, including vocational schools, in September 2019. It benefits very much from
our experience in teaching informatics in schools for more than 30 years (Sysło,
Kwiatkowska, 2015).

The new curriculum consists of Unified aims, which define five knowledge areas
in the form of general requirements, they are the same for all school levels. The most
important are the first two aims and their order in the curricula: (I) Understanding
and analysis of problems based on logical and abstract thinking, algorithmic think-
ing, and information representations; (II) Programming and problem solving by
using computers and other digital devices – designing algorithms and programs,
organizing, searching and sharing information, using computer applications. The con-
tent of each aim, defined adequately to the school level, consists of detailed Attain-
ment targets. Thus, learning objectives are defined that identify the specific infor-
matics concepts and skills students should learn and achieve in a spiral fashion
through the four levels of their education (grades 1-3, 4-6, 7-8, HS 9-12). At each
level the implementation of the curriculum varies across three elements – the first
element is more important at lower levels and elements 2 and 3 become more im-
portant during progression: (1) problem situations, cooperative games, and puzzles
that use concrete meaningful objects – discovering concepts, heuristics; (2) computa-
tional thinking about the objects and concepts – algorithms, solutions; (3) program-
ming, moving from visual/block to text-based environment, including program testing
and debugging. For benefits of such a spiral curriculum see (Webb et al., 2017).

Computer Science Education with a Computer in the Background 91

2.4 Computational thinking

As a conclusion to the history of our way to CS4ALL in Poland, where CT appears to
be operationally defined and consisting of some mental tools used in the process of
solving problems, we avoid to use the terms “CT education”, “teaching CT”, “CT
classes” and similar, as used by many authors. CT is an approach and a collection of
mental tools used in problem solving as a byproduct in learning CS concepts and
methods (algorithms). Therefore, the following definition of CT fits our approach
(Wing, 2014): Computational thinking is the thought processes involved in formulat-

ing a problem and expressing its solution(s) in such a way that a computer – human

or machine – can effectively carry out.

We propose not to directly teach CT, but teach how to discover, develop, and use
CT in solving problems from various areas of education, especially in CS. Similarly,
as we suggest not to “teach Scratch” but to “teach programming using Scratch”.

The introduction of CT to education, along with Jannette Wing in 2006, is also at-
tributed to Seymour Papert in connection with his idea of constructionist learning
(Papert, 1980) focused on stimulating students to reflective thinking. The most ap-
pealing to us is the saying of Papert from 1970 (Papert, 1970) that: children learn by

doing and thinking about what they do. Therefore, treating CT as a problem-solving
strategy that involves the use of CT-related mental tools in the process, we add also a
constructionist viewpoint and expect students’ reflective thinking.

3 CS education with a computer in the background

Computer Science Unplugged (CS Unplugged) has been defined as: a collection of

activities and ideas to engage a variety of audiences with great ideas from computer

science, without having to learn programming or even use a digital device. It origi-
nated in 1990’ as an outreach program to engage school students to help them under-

stand what computer science might involve other than programming. Then some un-
plugged activities have been described and published in several languages (see csun-
plugged.org) and they are widely used in lessons and also in research. The approach is
mentioned in textbooks and web services on teaching CS and appears also in recom-
mendations for national and school curricula. However, the available content was still

intended as enrichment and extension exercises, and did not assume that computer

science would be part of the curriculum (all citations from Bell, Vahrenhold, 2018).
From pedagogical point of view, unplugged approach is based on constructivism

and partly on constructionism: students construct their own knowledge, sometimes
producing also certain artifacts, by utilizing what they have already learnt, using some
mental tools, and engaging with problem situations to be solved or questions to be
answered. This process of learning leads them to understand important concepts, prin-
ciples, and mechanisms, mainly of computing nature (Relkin, Strawhacker, 2021).

Looking back at the history of CS education in Poland, briefly described in Sec.2
(Sysło, 2014a), algorithmics plus programming and problem solving using algorith-
mic thinking were closely related in the 1965 and 1985 curricula for schools as well
as in all national core curricula after 1997. In 1980’ when regular CS lessons entered

92 M. Sysło

schools, students had a long way (in distance and time) to a computer, therefore they
had to spent a lot of time writing their programs on paper before the programs reached
a computer. Also teachers were explaining CS concepts and algorithms using tradi-
tional tools. It was time of unplugged introduction to CS and preparation for pro-
gramming. I remember HS classes coming with their teachers to our Institute for CS
lessons (the Institute was quite well equipped in computers) – the students spent first
hour in a classroom developing their algorithms and programs and then spent one
hour in a computer lab uploading, running, testing, and debugging their programs.

Never in the past or in recent years have we referred to classes as unplugged or
plugged-in, these CS teaching and learning phases have been naturally intertwined
and integrated. Today it is difficult to maintain an unplugged approach when almost
all schools are fairly well equipped with digital equipment. Moreover, it is reported
that unplugged activities are effective when used in a context where they will be ulti-

mately linked to implementation on a digital device, either through programming, or

by helping students to see where these ideas impinge on their daily life (Bell, Lodi
2019). Unplugged activities may play a role of introduction to using CT tools. In par-
ticular, combining both unplugged and plugged-in activities may help students to
better comprehend programming concepts and constructions such as variables, loops,
conditionals, and events, which are shared by CT, programming, and CS in general.

Understanding the unplugged approach as an introduction to CS without using a
computer, mainly so as not to program it, we extend here the range of unplugged, to
teaching and learning environments with a computer in the background, in which
the computer (and other IT technologies) is in the background of learning activities,
closer or further, more or less integrated, but not as the technology used in learning to
program, although in the process of CS problem solving including programming.

Almost every CS concept can be introduced to students without using a computer.
However, since we focus on rigorous CS education, we propose to use the approach
with a computer in the background very flexibly. Ultimately, it is the teacher who
decides about the role of computers in his classes, but leaving students the choice so
that they have an opportunity to develop also their ability to make decisions about the
use and the role of computers and other technologies in the problem-solving process.

We distinguish four types of environments in which a computer has its place in the
background, in a certain sense. In the rest of this chapter we focus our attention on
these environments and comment how they can be used in learning and teaching to
reaching the goals of CS education including – the most important – CT skills.

• classical unplugged, eventually with some computer puzzles
• Bebras tasks
• educational robotics
• algorithmics and programming unplugged.

One may thing also about other types of environments which are combination of dif-
ferent tools, mechanical and electronic calculating machines, games, computer games
etc. which can be used to introduce students to fundamental concepts of computing.
We use such environments at a children’s university (Sysło, Kwiatkowska, 2014b).
Our approach contributes to constructionist learning, to learning by doing and making

Computer Science Education with a Computer in the Background 93

meaningful objects in the real world, computational models of real-world situations.
Our learning environments are extensions of classical unplugged ones by encouraging
children to purposely and properly use computers for certain activities.

3.1 Classical unplugged

By classical unplugged activities we mean the activities originally proposed by Mike
Fellows and Tim Bell and the other activities of similar type used to engage young
students with basic ideas and algorithms from computing and problem solving, but
without using a computer or another digital device. Since usually there are many digi-
tal devices in the classrooms (tablets, smartphones), we have created a package of 25
modules with simple applications that can be used in many ways by the youngest
students, hence its name: Informatics for Kids – I4K (pl. Informatyka dla Smyk). The
applications are mostly related to CS education, but they can also be useful in classes
related to almost any other education: mathematics, natural sciences, languages, art,
etc. Some modules are linked to the Bebras tasks or the code.org puzzles.

Almost all activities proposed in this package, intended to be
carried out on a computer or tablet, can be transferred to situa-
tions arranged outside the computer with appropriately prepared materials (cards,
templates etc.). Then such classes take the form of the classical unplugged – a group
activity, providing kids with additional impressions, cooperation skills and reflection.

Behind the package there is the idea of Jean Piaget's constructivism, according to
which the kids build their knowledge on the basis of what they already know and the
experience gained while performing various exercises. This idea of learning by doing,
which has its roots in progressivism at the turn of the 19th and 20th centuries, was
extended at the end of the 20th century by Seymour Papert to constructionism, plac-
ing additional emphasis on artifacts (also on a screen) that are the product of learners.
It is well characterized by Papert's words that: children learn by doing and thinking

about what they do (Papert, 1970). Currently, the thinking accompanying children's
educational activities is well defined by mental tools that make up CT.

3.2 Bebras tasks

The Bebras Challenge consists in solving a certain number of tasks (called Bebras
tasks). Most of the tasks are in the form of illustrated stories that describe certain
“real” problem situations. The tasks are related to concepts, issues or methods in CS,
usually indirectly, hidden in the stories. The Challenge is an opportunity for students
to discover CS concepts and methods (algorithms) by solving short tasks that promote
CT (Dagienė et al. 2019). They have about 3 minutes to solve a task: to choose a right
multiple-choice entry, write an answer (usually a string of characters) in an open win-
dow or interact with a part of the task formulation to complete its solution. A comput-
er is only a medium for presenting the tasks and is used to create and save task solu-
tions. The Bebras tasks may be also used in a full unplugged fashion, printed or ar-
ranged on the floor, far from computers.

94 M. Sysło

In Poland, the Challenge is run by a computer system, client-server type – each de-
cision of a student (client) taken at his school computer is recorded on the server.
After a challenge, we issue augmented versions of all tasks which contain an addi-
tional section consisting of: a correct solution and its development, and comments that
are extended version of the original task section “It’s informatics”. The comments are
addressed to both, students and to teachers.

In the beginning of the Challenge, it was assumed that the Bebras tasks could be
solved without any previous knowledge of CS or programming. On any level of
school education, students were not supposed to demonstrate any CS knowledge, but
possibly the ability to solve tasks using mental tools of CT. After almost 20 years of
the Challenge which have been accompanied by many national initiatives aimed at
introducing CS for all students at all education stages, the role of the Bebras tasks
should be reconsidered and possibly reviewed. One hour of a challenge a year, usually
taken by only some students on only a selection of concepts, topics and tools, is not
able to make a significant impact on CS education of all students in general.

Reviewing the pertinent references we could not find any evidence that the Bebras
tasks are used beyond the challenge and integrated with regular CS lessons and learn-
ing strategies in a class, except assessment, see Lonati (2020). On the way to over-
come this situation, we build a repository of Bebras tasks as a collection of individual
tasks in both versions, competition and with explanations, used in the Challenge in
Poland. The tasks are tagged with CS concepts and CT mental tools used in the tasks
(see (Dagienė et al. 2020; Datzko, 2021) for a classification of Bebras tasks). A teach-
er can choose one or more tasks from the repository by setting the stage of the Chal-
lenge and selecting key words characterizing the tasks with CS concepts and CT
tools. From selected tasks, a teacher can create a mini-challenge for a class, which can
be used in several ways, as a warm-up preparing or introducing students to a lesson
topic, as a test how students are prepared for a lesson, or as a test assessing students'
knowledge and skills in the range of CS concepts and CT skills at the end of a lesson.

The repository allows easy access to tasks to learn how to solve them. There is no
other way to learn than to practice with such tasks – this is our answer to teachers,
students and their parents when they ask: How to prepare students for the Challenge.

The idea underlying the Bebras Challenge as a way to introduce students to CS,
can be extended on professional development of teachers. This may apply to all
teachers who do not have a full ICT/CS education as required by the curriculum. We
focus our attention on primary education teachers (grades K-3), who are graduates of
pedagogical faculties and usually have contact only with ICT classes.

The Bebras tasks can also be used as measures to assess students' overall develop-
ment and ability to transfer acquired CT skills while solving problems that, by the
nature of these tasks, relate to real problem situations (Román-González et al., 2019).
A special moment for such an assessment may be the end of a certain educational
stage, for example at the end of primary education K-3 what is very important for a
successful spiral development of students. Again, the repository of Bebras tasks may
be very useful to properly arrange tests according to expected knowledge and skill of
students.

Computer Science Education with a Computer in the Background 95

3.3 Educational robotics

Learning with physical robots, such as Dash&Dot, Ozobot, Genibot can be seen as a
continuation of the kinesthetic activities from the first group of activities, when for
example a robot is supposed to imitate the movements of children or vice versa, on
the floor or on the screen. Moreover, physical manipulation of objects promotes chil-
dren’s’ constructionist learning through the development of mental representations of
the objects. Solving various tasks and problems they create, build, evaluate, and re-
vise their constructions and concepts which are to meet their expectations and goals.
Robotics also encourages students to analyze real world problems, think creatively,
and apply CT tools in the process of proposing solutions to such problems (Bers,
2008), (Grover, 2011), (Chevalier et al., 2020).

Classes with robots can also play a role of introduction to programming when stu-
dents turn on robots and control their moves to achieve certain goals with the help of
programs made in a language characteristic for given types of robots. In such classes
students have opportunity to learn that robots can understand they own language to
communicate with them: graphical collection of interactive instructions (Dash&Dot),
colors (Ozobot), cards (Genibot), and Blockly (Dash&Dot, Ozobot, Genibot).

Although playing with a robot is unplugged to some extent, almost every robot
contains a "mechanism" to control its behavior. Watching the youngest children play-
ing with robots, treating robots as programmable devices goes to the background of
their attention, they are mainly interest in the behavior of the robots they want to
achieve. Thanks to this, it is quite easy to associate the types of robot moves with
concepts that have a broader meaning, such as moving in different directions or dis-
tances, repeating selected moves a certain number of times, or performing certain
moves depending on the situation encountered by robots. From such learning with
robots it is quite close to a more formal approach to programming concepts in general.

A special type of lessons with robots are concerned with controlling them on a
computer screen. Such children activities are important to implement the statement in
our curriculum for K-3 which reads: "A student [...] programs sequences of instruc-
tions which control an object on the screen of a computer or other digital devices". An
excellent environment for this type of activities are puzzles in the Hour of Code initia-
tive (https://code.org/learn), which is very popular in Poland – in 2018 there were
more than 650 M students registered to code.org from Poland. Such a popularity is
due to many thoughtful solutions such as: (1) the heroes of the puzzles are characters
known to students from their favorite stories, comics and games; here they can inter-
act with them; (2) puzzles are in sets of increasing difficulty; (3) the solutions of puz-
zles consist in arranging a program in a block-based language to pre-prepared scenar-
ios; (4) the students can run, debug and improve solutions many times; (5) they can
also view the Java Script code corresponding to the block-based solution. Although
there is no direct connection of the code.org activities with CT concepts, solving such
puzzles arranged in courses which correspond to particular algorithmic and program-
ming constructions, students apply abstraction and pattern matching, then decomposi-
tion and finally algorithms in solving puzzles. Moreover, using event blocks students
can program interaction what is a quite advanced CS topic.

96 M. Sysło

3.4 Algorithmics and programming unplugged

Modeling, designing and solving problem situations outside the computer as a step
preceding the computer solution – in unplugged fashion – has a history as long as CS
in professional and educational environments. In 1950’ till even in 1980’, for a pro-
grammer or a student there was a long way (in distance and time) to a computer,
therefore they spent a lot of time on writing their programs on paper before they were
run on a computer. I remember when students’ programs brought to a computer, run
successfully without any corrections – I don’t think it happens today, now they sit at a
computer until their programs run correct.

Caeli and Yadav (2020) in they view on historical development of CS emphasize
the importance of combining plugged and unplugged activities, as means to fully
understand and take advantage of the power of computing. Unplugged activities can
be very efficient in understanding the concepts and methods behind a problem to be
solved and computer tools to be used.

Skills of programming are not needed to develop an algorithm for a problem, alt-
hough programming a solution is needed to fully experience limitations when imple-
menting the algorithm. On the other hand however, after a few first lessons on pro-
gramming with a properly chosen algorithms to be implemented, any next lesson on
creating and implementing an algorithmic solution to a problem cannot be naturally
split into unplugged and plugged parts – students working on an algorithmic solutions
quite often use programming constructions they have already learnt to describe algo-
rithmic constructions. Finally, a description of an algorithm, even on paper, takes a
pseudo programming language form, which can be considered as a result of not only
combining plugged and unplugged activities but as an integration of both approaches.

The first informatics textbook Elements of informatics (in Polish) for high schools
appeared 1989 and contained two chapters on algorithmics and programming. The
chapter “From a problem to a program – elements of programming in Pascal” leads
from formulating a problem situation to a program in Pascal and the chapter “Calcu-
late faster – the efficiency of algorithms” deals with practical efficiency and theoreti-
cal optimality of some searching and sorting algorithms. In 1997, the author published
the book Algorithms (in Polish) “for those who are interested in learning how to cre-
ate algorithms and using them to solve problems” and in 1998 the book on algorithms
was accompanied by Pyramids, cones and other algorithmic constructions (in Polish),
which consists of 15 short chapters on various problem situations treated in an un-
plugged manner for developing some algorithmic topics and techniques, see Table 1.

Each problem situation in the Pyramids can be first discussed, analyzed and solved
to some extent far from a computer. Popular examples are: social games, short codes,
change making, etc. The book contains also a chapter on the stable marriage problem
which has a much longer history in the author’ teaching using unplugged approach. In
a class on algorithmics in the early 1970’, the author has decided to introduce the
Gale and Shepley's algorithm for creating stable marriages to a group of students (the
same number of boys and girls). First, the students created lists of preferences in the
other sex group and then they started to perform the algorithm (which is a kind of
greedy method) interchangeably choosing in the other group and revising their choic-

Computer Science Education with a Computer in the Background 97

es when refused in the other group. Finally a class concluded writing a computer pro-
gram which in that time was run in the batch mode. The author was able to see the
benefits of the applied approach – unplugged – after 20 years, when he met one of the
students and he remembered exactly how the algorithm “run” on the living organism
of students – he was able to repeat it. I doubt whether he would be able to reproduce a
program written for this algorithm. Today, when computers are at hand and every-
where and I still recommend this algorithm to be performed in a group of students
before they start programming it.

Table 1. Contents of the book Pyramids… Each chapter is characterized by CS topics it deals
with and CT tools applied in solving the related problems.

Chapters CS topics, CT tools
Add a pinch of salt to taste – are recipes
algorithms

CS topics: precision of algorithmic steps
CT tools: approximation, uniqueness, cook versus compu-
ter

How the pyramids were built CS topics: calculations
CT tools: algorithm

Social games CS topics: who is the idol? leader election.
CT tools: reduction by elimination

The efficiency of Russian peasants in
multiplication – how to simplify your life

CS topics: binary system, fast multiplication
CT tools: multiplication by decomposition

Recursion – how to use what we know,
how to "dump the work" to a computer

CS topics: generating consecutive digits of a number
CT tools: recursion, positional representation of numbers

Fibonacci numbers – how to be perfect CS topics: Fibonacci numbers in science
CT tools: recursive thinking, fast calculations

Filling vessels using the Euclid algorithm CS topics: Euclid algorithm
CT tools: geometric interpretation, diophantine equation

Prime numbers and composite numbers CS topics: prime and composite numbers
CT tools: algorithm, testing whether a number is prime

Clock arithmetic – benefits of residuals CS topics: modular arithmetic
CT tools: fast calculations on large numbers

Searching in ordered and unordered sets
– about the benefits of taking care of
order

CS topics: searching in ordered sets
CT tools: binary search, divide and conquer

Finding stable relationships – dancing
couples, marriages

CS topics: stable matching
CT tools: greedy strategy

Do we always gain from greediness? CS topics: the change making problem, leaving the maze
CT tools: greedy algorithm

Small trees – fast vending machines and
short codes

CS topics: Huffman compression, fast vending machines
CT tools: greedy approach, trees

Backtracking search CS topics: the queens problem, leaving the maze
CT tools: backtracking, brute force

Dynamic programming CS topics: dynamic programming

98 M. Sysło

CT tools: optimization by dynamic programming
The topics discussed in Pyramids… are introduced there in an informal way, omitting
theoretical arguments. Practical applications and examples help the reader to solve
some of the tasks in the book, which may be considered as a test of comprehension.

This book can be used by teachers as a demonstration of pedagogical content
knowledge (PCK) that subject knowledge and teaching methods cannot be considered
independently (Shulman, 1986). PCK combines the knowledge of the subject with
pedagogy and the practice of teaching it. PCK is (Shulman): "The ways of represent-
ing and formulating the subject that make it comprehensible to others", to students
and also to teachers when they first approach new topics they are going to teach.

3.5 Conclusions

Activities as puzzles appear in all the above groups. They are important “tools” for
algorithmic thinking, accompanied by other CT tools. In particular (Levitin, 2005):
(1) puzzles lead to thinking about algorithms on a more abstract level not directly
related to programming; (2) strategies of solving puzzles are always special instances
of general problem-solving techniques which might be useful in other domains; (3)
solving puzzles helps to develop creativity; (4) puzzles are usually very attractive for
students more than regular lesson assignments, making them working harder.

The approach to developing CT skills presented in this paper is a proposal to inte-
grate unplugged activities and coding without any restrictions when using one or the
other in the spiral development of computing skills and CT. Decisions are in the
hands of teachers and students who should be able to choose the best way of learning
for them. There is no dichotomy of unplugged or programming, unplugged should be
integrated with the process of learning programming and CS concepts in general..

Activities of students outside a computer are offered today to the youngest adepts
of CS, but in the past they have also accompanied specialists in CS, especially in
times when computers were located in remote and isolated places. Activities in clas-
ses without a computer or with a computer in the background have also broader goals
of developing the ability to select tools (hardware or/and software) as a decision in the
process of designing a way to solve a problem. In some cases, it may turn out that a
computer is not needed at all, for example, when certain calculations can be done by
hand, and when we decide to use a computer – the solution can be created in a ready-
made application without the need to create our own program.

How different is the role of computers in the activities discussed in this chapter. In
the first case, computers are really in the background. In the Bebras Challenge, com-
puters are necessary, but they are only a medium for conducting the challenge. Then,
in playing with robots, a computer may appear either as a processor built into such
devices or as a robot control device, often requiring programming. Finally, in the last
type of activities, the computer waits for a prepared student to make proper use of it.

All these four types of activities have one thing in common – they are addressed to
all students, including also those who do not think about connecting their professional
future with CS. Therefore, they are to bring them closer to CS using various methods
and from different points of view, with or away from the computer, to varying de-

Computer Science Education with a Computer in the Background 99

grees of depth. As a result, they are to tear off the secrecy from CS solutions and
bring closer the laws and mechanisms of their functioning. Knowledge of these mech-
anisms can be useful even to a non-specialist to understand their operation, and some-
times even modify them for their own purposes.

References

1. Barr D., Harrison J. and Conery L. (2011), Computational Thinking: A Digital Age Skill
for Everyone. Learning and Leading with Technology, 38, 20–23.

2. Bell T., Vahrenhold J. (2018), CS Unplugged – How is it used, and does it work? in:
Böckenhauer H.-J., Komm D., Unger W. (eds.), Adventures between lower bounds and
higher altitudes. Springer, New York: 497–521.

3. Bell T., Lodi M. (2019), Constructing Computational Thinking Without Using Computers,
Constructivist Foundations 3/14, 342-359.

4. Bers M.U. (2008), Blocks to robots, Learning with Technology in the Early Childhood
Classroom, Teachers College, Columbia University, New York

5. Caeli E.N., Yadav A. (2020), Unplugged Approaches to Computational Thinking: a His-
torical Perspective, TechTrends, nr 6/2020.

6. Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020), Fostering computational think-
ing through educational robotics: A model for creative computational problem-solving. In-
ternational Journal of STEM Education, 7, 41.

7. Dagienė V., Futschek G., Stupuriene G. (2019), Creativity in solving short tasks for learn-
ing computational thinking, Constructivist Foundation 14, 3, 382-415.

8. Dagienė V., Hromkovic J., Lacher R. (2020), A two-dimensional classification model for
the Bebras tasks on informatics based simultaneously on subfields and competencies,
ISSEP 2020.

9. Datzko Ch. (2021), A multi-dimensional approach to categorize Bebras tasks, ISSEP 2021.
10. Denning P.J. (2009), Beyond Computational Thinking, CACM 52, 6, 28-30.
11. Grover S. (2011),Robotics and Engineering for Middle and High School Students to De-

velop Computational Thinking, Annual Meeting of the American Educational Research
Association, New Orleans

12. Levitin A. (2005), Analyze That: Puzzles and Analysis of Algorithms, SIGCSE’05, ACM.
13. Lonati V. (2020), Getting Inspired by Bebras Tasks. How Italian Teachers Elaborate on

Computing Topics, Informatics in Education, Vol. 19, No. 4, 669–699.
14. Papert S. (1970), Teaching Children Thinking, WCCE, IFIPS, Amsterdam.
15. Papert S. (1980), Mindstorms. Children, Computers, and Powerful Ideas, Basic Books.
16. Relkin E., Strawhacker A. (2021), Unplugged Learning: Recognizing Computational

Thinking in Everyday Life, in: Bers M. (ed.), Teaching Computational Thinking and Cod-
ing to Young Children, IGI Global, 41-62.

17. Román-González M., Moreno-León J., Robles G. (2019), Combining assessment tools for
a comprehensive evaluation of computational thinking interventions. in: Kong S.C., Abel-
son H. (eds.),Computational thinking education, Springer, 79–98.

18. Shulman L.S. (1986), Those who understand: Knowledge growth in teaching, Educational
Researcher, 2/15, 4–14

19. Sysło M.M. (2014a), The First 25 Years of Computers in Education in Poland: 1965 –
1990, in:Tatnall A., Davey B. (eds.), History of Computers in Education, IFIP AICT 424.

20. Sysło M.M., Kwiatkowska A.B. (2014b), Playing with Computing at a Children’s Univer-
sity, WiPSCE '14, Berlin, Germany, 104-107.

100 M. Sysło

21. Sysło, M.M., Kwiatkowska, A.B. (2015), Introducing a new computer science curriculum
for all school levels in Poland, ISSEP 2015.

22. Webb M. et al. (2017), Computer Science in the School Curriculum: Issues and Challeng-
es, in: Tatnall A., Webb M. (eds.), WCCE 2017, IFIP AICT 515, 421–431.

23. Wing J. (2014), Computational Thinking Benefits Society,
http://socialissues.cs.toronto.edu/index.html%3Fp=279.html.

Computer Science Education with a Computer in the Background 101

