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Abstract Programming is an activity that is strongly based on ab-
straction as many solutions can be generalized to cover a wide range of
applications. For students who are still in the process of developing their
abstraction skills, learning to write code for the general case can be a
daunting experience. We present the Python framework MazeMastery
which o�ers a didactic tool for teaching graph exploration strategies
through maze-based challenges at high school. Students can verify their
algorithms against randomized test cases that currently span six levels of
complexity as maze structures continuously increase in their structural
complexity. The tool o�ers an adaptable platform for examining students’
learning while challenging their conceptual understanding. MazeMastery
is an open-source community project for scientists and educators.

1 Graph Theory and the Long Way to High School

School systems around the globe are slowly adapting to the changing demands
in the job market by enforcing algorithmic problem-solving competencies in their
school syllabi. The UK, a country once said to be lagging behind Germany in
terms of CS education [15], has swiftly reacted by introducing computer science
as a compulsory subject across all grades of schooling. Meanwhile, most districts
of Germany still teach computer science as an optional subject which is o�ered
at the earliest from lower secondary school [14].

Addressing algorithmic concepts late requires that the focus is all the clearer.
The central objective of computer science in school is to foster computational
thinking skills. This term summarizes a variety of skills that encompass problem
decomposition, pattern recognition, generalization, and abstraction, alongside
learning to develop algorithms and formalizing them by programming. A wealth of
problems can be tackled using these skills, e.g., from modeling problems using the
formal notations of mathematics all the way to advanced programming concepts
such as recursion.

One domain that has already been shown to be accessible to students of all
ages is graph theory [7,16]. As a fundamental and powerful data structure, graphs
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can be used for modeling and analyzing multi-entity relationships, such as social
networks or transport systems. The corresponding algorithms are universally
applicable to all graphs including grid graphs and mazes. Since the 1980s, graph
theory has been suggested as a topic for computer science education in Germany [2]
and has not disappeared since. In dealing with graph problems, students need to
think systematically, experiment, and test their strategies.

Programmers typically explore a range of possible solutions – rarely is there
only one correct solution for a given problem. Depending on their skill level,
learners may find solutions between two ends of a spectrum: at one end they
come up with conceptually simple solutions that are highly specialized to a
specific problem instance, while at the other end, students find generalized and
complex solutions for larger problem classes. The journey along this spectrum
can be modeled as an adapted semantic wave. Maton’s semantic wave theory [18]
distinguishes between semantic density/gravity to describe the di�erent levels of
human ingenuity. Semantic density conceptualizes the degree of condensation of
meaning (perceived as complexity). Basic programming commands, for instance,
contain less semantic meaning (i.e., they are semantically less “dense”) than the
concept of recursion. In contrast, semantic gravity conceptualizes the degree of
abstraction of meaning (perceived as abstraction). Tailored solutions to a given
problem are less abstract (and thus contain less semantic gravity) than fully
generalized solutions. Teachers can model a student’s learning path via their
teaching materials according to the concept of a semantic wave.

Existing materials are available for generating and visualizing mazes [12],
for illustrating search algorithms [3,5,17,1], for interacting with mazes in mixed
reality [9], using robots [6] or via classical programming [4,13]. While these existing
projects feature various maze-related topics in isolation, we present a tool that
combines all parts in a single didactic framework for Python programming classes.
Moreover, we incorporate techniques from the semantic wave theory into a single
open-source tool. The following section describes how this tool works and how
it can be used for modeling mazes as graphs and for subsequently traversing a
maze in a visual environment.

2 A Framework for Exploring DFS via Maze Traversal

Graph traversal algorithms such as depth-first-search (DFS) are topics in com-
puter science programming curricula at high school. To implement a DFS graph
traversal algorithm from scratch, several preconditions must be met: Students
require familiarity with both non-linear data structures like graphs for modeling
purposes and with programming constructs such as sequences, loops, variables,
branching, lists, matrices, stacks, and recursion.

In the following, we present a didactic tool for teaching maze traversal
in Python based on the above-mentioned prerequisites. We first discuss how
mazes can be modeled as graphs and then dive into the technical details by
presenting a tool that generates custom maze instances to challenge students’
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conceptual understanding. Finally, we discuss the generation of mazes with
dedicated attributes.

2.1 Modeling Mazes as Graphs

Students encounter mazes in their everyday lives, from architecture to entertain-
ment; it is thus an intuitively known object of study that can be modeled as a
graph. Specifically, grid mazes can be represented as planar graphs whose nodes
correspond to individual maze cells. A cell permits access to its spatially adjacent
cells if and only if there is no wall between them. We call such cells neighbors.
Three features characterize grid mazes:

1. There is a distinctive start and end point. These nodes can be marked, e.g.,
using dedicated markers. In our case, the start point corresponds to the initial
position of the agent, whereas the endpoint is the location of the Minotaur.

2. A grid maze consists of individual cells arranged in a grid structure. Each
cell has at most four neighbors; one in each compass direction.

3. Whether or not two adjacent grid cells are neighbors (which allow passing
through in both directions) is determined by the presence or absence of
separating walls.

Consider a rectangular maze of m rows and n columns exhibiting the attributes
above. A natural approach to model such a maze as a graph consists in representing
each cell as a node, arranging them in a grid of the same dimension as the maze,
and connecting two adjacent nodes by an edge if their corresponding maze cells
have no walls in between. With this representation, we obtain a grid graph of
size m ◊ n. Each node has a unique coordinate (i, j) with i œ {0, 1, . . . , m ≠ 1}
and j œ {0, 1, . . . , n ≠ 1} that can be used as a two-tuple to determine the cell.
Figure 1 illustrates such a maze of size 4 ◊ 5 alongside the corresponding grid
graph. In this case, maze traversal starts on the cell with coordinates (0, 0), and
the target is on coordinates (2, 3).

Figure 1: The same 4 ◊ 5 grid structure once represented as a maze and once as a graph
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Note that this naming convention for nodes not only allows for assigning
each cell a unique name, but also allows for deriving from a coordinate (i, j) its
adjacent cells to the north, south, west, and east ((i ≠ 1, j), (i + 1, j), (i, j ≠ 1)
and (i, j + 1) respectively). This implicit information is the first objective that
students get to explore in our task series.

Although nodes in grid graphs typically have 4 neighbors (ignoring nodes at
the maze border), this is generally not the case in grid graphs representing mazes.
In grid graphs for mazes, nodes tend to have fewer neighbors with as few as 0 to
4 edges per node. For example, in Figure 1, cell (1,3) is connected only to (0,3)
and (1,2). Although (2,3) and (1,4) are also spatially adjacent, they do not allow
direct access due to the prevailing topology with walls. It is thus impossible to
directly visit the Minotaur on cell (2,3) from (1,3).

2.2 MazeMastery – A Tool for Teaching Maze Traversal

We developed a Python library named MazeMastery to facilitate students’ ex-
plorative, programmatic, and in-depth exposure to the graph model presented
in the previous subsection. We provide MazeMastery as a stand-alone Python
package, which allows it to be easily integrated into any development environment
supporting a Python interpreter. We provide an open-source implementation at
GitHub, and the package can be installed using the pip package manager using
pip install mazemastery.

The library provides a student-friendly user interface created with tkinter

that o�ers randomized exercises and tests for a diverse learning experience. A
minimal vocabulary of six basic commands, shown in Figure 2, is su�cient in
combination with classic Python constructs to use the library in high school
programming classes.

Students take control of an agent and are challenged to guide it from the
starting point to the end point (where the Minotaur awaits, drawing inspiration
from mythological narratives). Commands like get_pos() and set_pos(c) are
provided to determine the agent’s position and facilitate its traversal to neigh-
boring cells. Using put_[blue|red]_gem() and has_[blue|red]_gem(c), markers
can be positioned on the current cell for state management, and by utilizing
has_minotaur() and get_neighbors(), students gain the means to examine
the local surroundings of the agent, even when dealing with randomized and
unknown grids. MazeMastery uses a global Cartesian coordinate system where
the agent is, however, only able to move within his local neighborhood.

2.3 Level Description

MazeMastery currently provides six progressive levels, each curated to systemati-
cally increase the complexity and abstraction of the algorithmic implementation
required. Students have the flexibility to approach the levels with whatever
methods seem suitable. Each level comprises mazes with a specific characteristic
that poses requirements on the generalizability of the students’ solutions.
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Figure 2: Basic Commands used within MazeMastery

An overview of all levels along with an exemplary and modular codebase
showcasing key insights, can be found in Figure 10. These insights serve as
guiding principles, regardless of the specific implementation chosen by students.
We designed levels such that students can build upon their previous code and
add new functionality as the complexity of the mazes increases, thus increasing
semantic density and decreasing semantic gravity over time.

Level 1 introduces the agent starting on the left of an extended pathway with
the Minotaur at the wall to the right (see Figure 3). Navigating through this maze
requires students to visit several consecutive nodes. Students can achieve this
using a single coordinate instance whose column index is continuously updated
and used in the set_pos(c) command.

Level 2 shifts the positioning of the Minotaur at the beginning of each level
(see Figure 4). Without adapting the solution found for level 1, the agent likely
steps past the Minotaur due to this change. Consequently, the search should
terminate upon encountering the Minotaur. To this end, our library exposes the
has_minotaur() function, which checks whether the Minotaur is located at the
agent’s coordinate.

Level 3 deviates from the linear progression of the previous two levels by
presenting an unicursal maze structure that does not contain any dead ends or
loops, i.e., each node still has only two neighboring nodes but is not arranged in a
straight line (see Figure 5). In previous levels, it was su�cient to only adjust the
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column index of the agent’s position, but now this method will prove ine�ective
if the path changes direction. Keeping track of where the agent is coming from
and where it is going to be is the core challenge of this stage. The users will
most likely find that they need to mark previously visited nodes, which can be
achieved using the put_blue_gem() command, which places a blue jewel on the
agent’s coordinates, and the has_blue_gem(c) command, which enables users
to check if node c was previously marked.

Level 4 presents a perfect maze structure exclusively comprising dead ends,
devoid of any cycles (see Figure 6). It introduces nodes with more than two
neighbors, thus confronting students with the challenge to e�ectively address
dead ends and navigate despite them to advance further in the maze. A possible
strategy involves the utilization of blue gems to mark the nodes that have
been visited once and red gems, which can be placed and checked for with the
commands put_red_gem() and has_red_gem(c) respectively, for nodes that
have been visited twice (i.e., on the return path from a dead end). When students
find themselves at a dead end, they need to employ a mechanism to exclude
nodes already marked from their path options.

Level 5 presents multiply connected mazes with both dead ends and cycles (see
Figure 7). To address this challenge, students need to recognize the importance of
making previously visited nodes retrievable, a requirement not present in previous
levels. In this context, students are encouraged to contemplate adopting either an
iterative or recursive approach. In the iterative method, students employ a stack
data structure, which allows them to store the visited nodes in a last-in-first-out
manner. As the agent naturally progresses through the maze, visited nodes can be
pushed onto the stack, facilitating easy retrieval when backtracking is necessary.

Level 6 serves as the most advanced stage in the current structure. After
locating the Minotaur, the students’ objective changes to guiding the agent back
to the entrance (Figure 8). This can be achieved via recursion; the recursive
descent enables traversal into the maze, while the recursive ascent allows for an
e�ective return path. Level 6 serves as a culmination of the student’s learning
journey, consolidating their understanding of recursive algorithms and providing
a platform to showcase algorithmic skills in the context of maze traversal.

Figure 3: Sample Maze for Level 1 Figure 4: Sample Maze for Level 2
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Figure 5: Unicursal Maze with One Single Path From Start to End (Level 3)

Figure 6: Perfect Maze without Loops but with Dead Ends (Level 4)

Figure 7: Multiply connected Maze with Loops and Dead Ends (Level 5)

Figure 8: Multiply connected Maze with Backtracking (Level 6)
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Figure 9: Level structure with possible implementation
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2.4 Our Contribution to Teaching Recursion

The outlined level hierarchy is designed to provide students with a structured
and progressive introduction to algorithmic concepts related to maze traversal.
The challenges emphasize the importance of iterative and recursive methods,
conditional statements, and data structures for graph traversal. While some of
these concepts can be challenging to teach, recursion is known as a concept that
is especially hard to grasp [10,19] and for which several incorrect mental models
have been found [8,11]. We address two such flawed mental models:

1. The looping model manifests as an erroneous identification of recursion and
loops, where the recursive process is perceived as a unified entity rather
than a sequence of successive instantiations. This misinterpretation blurs the
distinction between recursion and traditional looping constructs. It is crucial
to note that until level 4, the maze challenges can indeed be e�ectively solved
using loops. However, although loops can be replaced with tail recursion,
this substitution is not universally applicable to all forms of recursion. This
limitation becomes evident in levels 5 and 6, where more complex tasks such
as identifying cycles and dead ends demand a more profound understanding
of the backtracking process. As students grapple with the intricacies of
backtracking in these scenarios, they might recognize the constraints inherent
in relying solely on an iterative approach, especially without an explicit stack.

2. The recursive descent model manifests as an initial assumption that recursion
terminates solely upon reaching the base case. This model is challenged in
levels 5 and 6 as students realize the necessity of the recursive ascent to
continue the traversal process by backtracking and overcoming impediments.
They realize that instructions following the recursive call are required to
return to the correct path using di�erent-colored node markings.

Students who develop mental models that do not fully capture the essence of re-
cursion might potentially encounter challenges in their conceptual understanding,
which could a�ect their problem-solving abilities. Addressing these misconceptions
is, therefore, a pertinent aspect of teaching programming. Our library addresses
this point using tailor-made maze instances for each of the six levels.

2.5 Maze Generation

To accommodate di�erent levels of complexity, MazeMastery generates maze
instances with specific topological and geometrical properties. We discuss how
mazes for each level are generated:

– Levels 1 and 2 present mazes that represent straight corridors that only di�er
in the positioning of the Minotaur. The corresponding graphs consist of a
single chain of nodes that di�er only by their column coordinates.

– Level 3 involves unicursal mazes constituted by a single corridor with ran-
domized turns. This type of maze is generated by sampling self-avoiding
walks, i.e., from an initial node, neighbors are added by sampling randomly
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until the path self-intersects. To prevent early intersections, we use a heuristic
by increasing the probability of choosing neighbors in less-traversed direc-
tions. For each direction, we count the number of nodes that lie opposite
the direction at hand, yielding values zd where d indicates the direction
up, down, left, and right. To compute the probability of selecting the neigh-
bor in a specific direction, we use a tempered softmax function, defined as
exp(≠—zd)/

q
dÕ exp(≠—zdÕ ). The tempered softmax serves two purposes. First,

it compresses the counts we obtain into a range between 0 and 1. This
compression allows us to interpret the results as probabilities. Second, it
ensures that the sum of these probabilities across all directions equals 1,
creating a valid probability distribution. The parameter — influences the
shape of the resulting distribution. When — is small, the distribution ap-
proaches uniformity, meaning each direction is chosen with roughly equal
probability. Larger values of — emphasize the di�erences between the counts,
increasing the chances of exploring less frequently chosen directions. However,
deterministically extending the path towards a less-explored direction will
not yield trajectories that cover the whole grid, but will tend to the center
of the grid and then end due to self-collisions. Choosing — = 0.01 seems to
strike a good balance between uniform distribution, which is prone to early
self-intersections, and a strategy that strives towards unexplored areas too
greedily, leading to paths that converge to the middle of the maze too quickly.

– Level 4 involves mazes with junctions and dead-ends, but no cycles, so-called
perfect mazes that correspond to trees. To generate these mazes, we create a
spanning tree using randomized depth-first search. In that process, potential
neighbors are chosen uniformly at random. To create the final maze, we start
with a fully disconnected grid graph and connect two nodes if and only if
they are connected in the previously generated spanning tree. With that, we
ensure that each cell is reachable and no loops exist, following the properties
of a spanning tree.

– Levels 5 and 6 involve mazes with dead ends and loops. We first generate
the maze analogously to level 4. Then, we remove walls with probability p if
their removal does not create 2 ◊ 2 grids within the maze that do not contain
a wall, retaining the maze structure while avoiding large areas with no walls.

3 Evaluation

We conducted a qualitative think-aloud study with five male participants aged 19
to 23 years. They had all programming experience of at least 3 years but varied
knowledge of Python syntax.

3.1 Study Setup

The study aimed to assess (i) whether the tool allows heterogeneous learning, and
(ii) whether there are specific problems all participants encounter. After a brief
introduction to the six commands (see Figure 2), participants started progressing
from level 1 to 6 on their own. All actions were recorded for subsequent analysis.
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3.2 Findings

A short summary of experiences:
(i) Personalized learning seems possible. Solutions for level 1 sometimes fore-

shadowed later concepts. Participants progressed at their individual pace,
some reaching level 3 in just five, others taking more than 20 minutes.

(i) Six levels seem too few. Intermediate levels between 2 and 3, and between 3
and 4 are advisable for a smoother learning experience. Within 60 minutes,
no participant reached beyond level 4, one only reached level 3.

(ii) Confusion arose from associating commands with the agent’s actions. Ini-
tial parameterized commands like put_red_gem() allowing o�-agent gem
placement caused confusion, leading to the command set presented before.

More detailed information including solutions is provided here.

4 Conclusion

Programming is an activity that requires abstraction as many solutions can be
generalized to cover a wide range of applications. For students who are still in the
process of developing their abstraction skills, this can be a daunting experience.
This work proposes an approach to address this hurdle in the context of graph
traversal using two-dimensional mazes. MazeMastery, our Python framework,
currently provides six levels of increasing semantic complexity: students first infer
global attributes of a given problem class by analyzing concrete instances, they
then develop a generalized algorithm and finally verify their algorithm against
concrete but unknown test cases. The intended learning path varies in semantic
complexity both throughout a specific level but also across all levels.

Ongoing research evaluates the framework’s e�ectiveness in teaching algorith-
mic problem-solving and analyzing learning paths. The modular and adaptable
nature of the framework allows for customization and integration with other teach-
ing resources in the context of programming. Limitations include the frameworks’
early development stage which did not yet involve tutorials and a quantitative
evaluation. However, we hope that this work inspires the scientific community to
become an active partner in researching the topic of graph theory in education
and promote future research on or with our open-source Python framework.
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A Appendix

Incomplete Complete

Recursive Descent

End

Start

i, j = get_pos()
new_pos = (i, j + 1)

set_pos(new_pos)

for neighbor in get_neighbors():

put_blue_gem()

if not has_blue_gem(neighbor):

new_pos = neighbor

found_neighbor = False

if not found_neighbor:

put_red_gem()

for neighbor in get_neighbors():

new_pos = neighbor
break

stack = [get_pos()]

new_pos = stack.pop()
else:
       stack.append(get_pos())

found_neighbor = True

break

old_pos = get_pos()

if has_minotaur() or \
                found_minotaur:

found_minotaur = True
return

solve()

put_red_gem()
set_pos(old_pos)

Recursive Ascent

Recursion tree unrolled?

Recursive Ascent

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

LEVEL 6

Iterative Approaches

while True: while not has_minotaur():

I1: Movement through
direct manipulation of the 
coordinates

Update position

I3.1: Mark visited node 
with blue gem

Iterate through current neighbors

Complete Incomplete

True False

I3.2: Check marked status,
when considering next node

Auxiliary variable to keep 
track of whether at least one 
neighbor is unvisited

Set auxiliary variable

I4: If all neighbors are marked
as visited (i.e., dead end), mark node 
with red gems and backtrack

True False

Mark node as visited during 
backtracking

Iterate through current neighbors

Complete Incomplete

if not has_red_gem(neighbor):

True False

I3.2: Check marked status, 
 when considering next node

LEVEL 1

True False

True False

Legend

A sequence connected by arrows of the same 
color represents the succession of insights and 
corresponding implementations students need 
to attain to solve a level.

I2: Check whether Minotaur 
has been found

Dashed arrows represent the return to the 
beginning of the loop.

I5: Maintain explicit node visitation order using stack

Figure 10: Flowchart illustrating the insights gained in the course of programming
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