
Supporting Gender Equality in Computer Science
Through Pre-Introductory Programming Courses

András Margitay-Becht1,2 and Udayan Das1

1 Saint Mary’s College of California, 1928 St. Mary’s Road, Moraga, CA 94575, USA
2 Eötvös Lóránd University, Pázmány Péter sétány. 1/C, 1117, Budapest, Hungary

abecht@inf.elte.hu

Abstract. The past thirty years have seen an exponential growth in the
presence of computers in everyday life. However, some studies find that
introductory programming courses in university curricula might reduce
students’ willingness to engage with the material further. To complicate
matters, despite extensive efforts of the past decades, there are still cor-
ners of the computer science landscape that are unwelcoming to female
practitioners, implicitly or explicitly discouraging female students from
the profession.
This paper discusses an experimental university-level pre-introductory
course targeting non-computer science students with limited or no back-
ground in programming. The explicitly stated goal of the course was to
reduce trepidation regarding programming. The course saw equal partici-
pation from male and female students. The results were positive: students
reported a reduced perception of difficulty regarding programming and
an increase in the subjective importance of the area. Even more encour-
agingly more female students experienced a reduction in the perception
of programming difficulty than male students.
The paper will discuss the structure of the course, the unique set of
approaches that led to success, the lessons learned, and the new iteration
of the class we are going to offer the upcoming year.

Keywords: Gender equality · Programming education · Computational
thinking.

1 Introduction

There is a global shortage of programmers and computer science professionals,
in spite of the relatively high salary. There are many reasons for this, but a
contributor is the low and decreasing engagement of females with the discipline.
In the mid 80-s, 37% of computer science students were female [1]. This shrank
to 27% by 1997, then to 20.7% by 2006, and hit 18.7% in 2016 [2]. The total
number nearly doubled be-tween 1997 and 2016, from 6900 to 12,200, but this
growth is significantly lower than the growth experienced among male students.

This paper will discuss why this discrepancy might exist, and what are some
possible ways of reducing this effect. We will also introduce our approach that
targeted the fear of computer science in general, but ended up also empowering
female students in the pursuit of computer science knowledge.

CC BY 4.0, A. Margitay-Becht and U. Das

J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 37–48, 2023.

https://doi.org/10.5281/zenodo.8431898

https://doi.org/10.5281/zenodo.8431898


2 The Problem with Introductory Classes

One of the problems of teaching computer science, whether for male or female
students, is the fact that the topic is generally considered scary (for a few ex-
amples see [3–5]). Of particular interest is the research done by Alford et al in
2017[6]. The original purpose of their research was to investigate the gender gap,
but they found that students in general, irrespective of gender start out intim-
idated by programming. The student population they investigated were mostly
engineering students who had to take an introductory programming class (so
many of them were there because they had to and not because they wanted to).
The total number of students investigated were close to 2000, of whom about
35% were female. Importantly, they found no real difference between the interest
of male and female students before taking the class. When asked what grade they
were expecting, male and female students again responded similarly, but to a
question regarding how confident they were that they can successfully complete
the course, the male students responded more positively, in alignment with previ-
ous findings. Interestingly, when asked how confident the stu-dents were in their
ability to succeed in the course, the pre-test results showed greater confidence
for men than women, but the post-test saw men drop in their self-assessment
more than women (indeed, in some samples women increased their con-fidence
throughout the course). The greatest takeaway for us was hidden in the phrasing
of the previous sentence: men and women both left the introductory classes less
interested and confident and more intimidated than at entry time. This is in
agreement with LaBouliere’s findings from 2015: middle school girls increased in
their programming understanding and confidence, but greatly decreased in their
inter-est in programming[7]. Similarly, Rubio reports a loss of interest for female
students as well[1].

It appears that introductory courses might not be the best places to provide
an in-spiring experience for students. These classes have to discuss a significant
curriculum of complex topics, covering those usually takes up the whole course,
and there is little time to slow down and spend some time working on an inter-
esting project or real life problem. Introductory classes are excellent for students
who are already interested in the subject and determined to follow through. In-
deed, they are designed to serve this audience, so the speed of the classes and
the amount of material they cover are scaled to support these students. But this
leads to the above situation where students who are not already positively pre-
disposed towards the discipline might be further turned off by the introductory
classes.

A solution is to start with a pre-introductory experience, like the one dis-
cussed in [8]. As Schindler and Muller state: “The first contact with programming
is crucial to keep students in the long run”, so if the curriculum design or ed-
ucational system allows for it, creating a “first contact” experience might be
valuable.

Our approach [9] is similar: we are trying to provide an educational experi-
ence that is primarily focusing on showcasing the value, and indeed the joy of
programming, while covering some basic concepts of coding. We have created

38 A. Margitay-Becht and U. Das



our class, “Coding is Fun”, not as a replacement for introductory classes, but
as a place for curious students to explore their curiosity, see if they find value
and joy in programming, in order to provide them with the mindset that will set
them up for success in the introductory programming class. Our approach differs
from the above cited Schindler and Müller approach by utilizing the advantage
presented by the fact that we are teaching at a small liberal arts university with
class sizes around 20, allowing us to give control of a large portion of our class
over to our students. Instead of teachers, we became guides, and as we guided
them throughout the basics of programming along their own interests, pivot-
ing as they wanted, we succeeded in increasing their interest and reducing their
apprehension. It also allowed us to use the approachable Scratch programming
environment, something that would have been unsuitable for an introductory
class at university level. Our course also serves as an optional course unattached
to any program, so it is accessible not only to computer science students, but
for anyone interested in general.

We have designed this experience for all students, irrespective of gender. We
have found, however, that our female students seem to have benefitted more
than our male students from this approach. In this paper we will quickly discuss
some of the issues and prejudices affecting female students of computer science,
then discuss our course and the outcomes of the pre-introductory experience.

3 Key Issues for Female Students

3.1 Skills

First and foremost it is important to discuss whether there is a capability gap
between male and female computer science students. Murphy et. al., investigat-
ing the gender differences among male and female students at a computer science
program in 2006 found that women in general started the program knowing less
than men did, but as they progressed through the program, both their knowl-
edge and academic performance (GPA) caught up to that of the male students.
In 2015 Akinola completed an empirical study of programming skills between
male and female groups of two and four, finding no statistically relevant differ-
ence between the genders based on either efficiency or accuracy [10]. Akinola
concluded that the underrepresentation might come from different interests or
fear, lack of confidence.

In a 2018 study Kallia and Sentance compared mostly 11th grade students
from 7 different UK schools, finding that boys and girls performed roughly the
same [11]. A 2019 study at the Graz University of Technology found similar
results: freshmen female computer science students performed just as well as
males did[8].

Study after study confirms our personal experiences, that female students
are not worse at programming and computer science related tasks and courses
than their male counterparts. The underrepresentation must come from another
source.

Supporting Gender Equality Through Pre-Introductory Courses 39



3.2 Interest

A frequent component of research projects focusing on the gender gap is the
apparent lower interest of female students in the field. Pau et. al. reports on the
generally held preconception that bad experiences with programming classes
can alienate female students from pursuing the discipline [12]. They found that
with proper support and structure, programming courses can be empowering to
female students.

Funke et. al. surveyed 63 Bavarian computer science teachers [13]. Most of
them reported no dissimilarities between boys and girls, only three categories
showed meaningful differences: girls were perceived as more structured but less
confident and interested. Master et. al. report on an experiment enriching the
computer science experience of 6-year-old students with the use of robotics[14].
Like Funke, they also found that boys had greater intrinsic interest than girls,
but the introduction of robotics increased girls’ interest significantly more than
boys’, drastically reducing the interest gap between the two groups. Braga and
Motti explored a similar age group, 7-10 year olds [15]. The children were in-
vited to participate in programming exercises inspired by the worlds of Frozen,
Minecraft and Angry Birds. They found that if the environment is engaging
enough, both girls and boys are equally likely to participate. Moreover, “girly”
themed experiences – as the article calls them – were not a major motivational
factor for the girls.

3.3 Confidence

Female students, overall, tend to be less confident than their male counterparts,
often undervaluing their own capabilities. This was the central question of Kallia
and Sentence’s research, finding that despite similar performance, girls regularly
underestimate themselves [11]. More worryingly, girls also scored lower on self-
efficacy than boys, indicating need of better support. Similar results were found
in [8, 13] as well: female students matching the performance of male students,
but rate themselves worse than males do.

3.4 Possible Solutions

If lower confidence and motivation keep highly competent girls and women from
pursuing computer science, it is important to address these issues directly. Rubio
et. al. suggested creating separate introductory tracks for people with different
back-grounds, enabling easier transition into the discipline [1]. Alternatively,
they suggested more contextualized classes like Media computation, robotics,
or animation, where the utility of the field is easier to experience. Their own
approach focused on using physical computing, which led to a reduced failure
rate for females in the class, although it still caused a reduction in interest in
computing among female students, like the alternative programming approach
did.

Pau et. al. discuss the key issues they found that can increase the positive
experience of an introductory programming class for female students [12]:

40 A. Margitay-Becht and U. Das



1. Programming tasks that are connected to real-life issues and actual problem
solving are a lot more engaging, similar to Rubio’s recommendations above

2. When time pressure is removed and students are allowed to work from home,
they find the class a lot more beneficial

3. Parental support from home
4. Higher mathematics performance helps transitioning into programming

We have incorporated some of these findings into our course design to make our
class more appealing – to female and male students alike.

4 Pre-Introductory Programming: a Combined Solution

4.1 Goals of the Course

The primary purpose of our course, called “Coding is FUN” was to show that,
as the title describes, coding can be fun. At our university, we offer a mandatory
January Term experience for the students. The instructors are encouraged to
create unusual and experimental courses, and we designed this class to provide
an opportunity for students who have not yet tried their hands at programming
to explore the area a little bit. The course description itself that was available
to the students before enrol-ling explicitly stated this.

4.2 Recruiting and Student Population

The course was originally intended for freshmen students just entering college,
to help them learn about potential major opportunities like Computer Science
(CS) or Data Science (DS). In the end, we ended up with a significantly more
diverse group spanning from freshmen to seniors. The recruitment of students
for the course was largely based on word-of-mouth. The university’s Tech Club
overseen by one of the instructors held two short super-introductory program-
ming workshops. The upcoming course was announced at these workshops. Two
of the students involved in these workshops also ended up becoming peer tutors.
Instructors also shared the course information with peers in other departments.
Many students in the CS program and DS programs shared this upcoming course
with roommates and friends. One CS senior for example had 2 roommates at-
tending the course.

Since our university is a small liberal arts college, class sizes are traditionally
be-tween 15 and 25 students. We were initially worried that there might not be
enough interest for the course, but in the end we ended up with 23, close to the
maximum class size allowed.

A point of pride is the diversity of students we managed to address, both by
gender and by major of study. We had 7 students of Business-adjacent majors, 4
students of varied STEM majors, 4 Psychology majors and 4 liberal arts majors
in the class, in addition to the 4 freshmen who did not yet have declared a
major. The gender breakdown ended up being 9 female and 14 male students
completing the class.

Supporting Gender Equality Through Pre-Introductory Courses 41



4.3 Structure of the Class

The course was offered every Wednesday, 2.5 hours per meeting, during the
January of 2023. The class was delivered in a synchronous online format, allowing
students the ability to work from home. To reduce the impact of time pressure
further, the course required the students to create only a single program as
their final project; no tests, quizzes or homeworks were assigned. They were also
allowed to work on their project whenever they wanted, with ample support
being provided for them both online and offline.

The intended layout of the course was a session introducing Scratch program-
ming, then a session of more advanced programming topics based on student
choice, then a session on design and computational thinking and a final session
for the students to showcase their content. Due to great student interest, this
plan expanded by 50% to provide them with the extra opportunities they asked
for.

We decided to use Scratch as the initial introductory language as it is ex-
tremely approachable even for 5-year-olds, and it all but removes any concern
about syntax in programming. It is also complex enough that the basics of imper-
ative programming can be found in it: variables, conditional statements, loops,
functions/methods and lists, all in an approachable, graphical environment. It
is also built around events, so students also learn event-based control. Since
the class aimed to be a pre-introductory course to be followed up by a tradi-
tional introductory course, the short-comings of the programming language were
considered less important than the immense ease-of-access benefit the language
provided. This was a popular choice among students, and most of them stuck to
using Scratch throughout the class.

During the first class session we set up a Slack channel to improve commu-
nication with the students. After the first class, a poll was posted there, asking
if they want more Scratch practice during the second class, or want to see the
basics of Spread-sheet programming or Python. To our surprise, while Visual-
Basic based spreadsheet programming was entirely unpopular, many students
showed interest in both more Scratch and learning some Python, so we decided
to pivot the course plan: during the normal class time a Scratch session took
place, and an optional Python period was added in the afternoon. Highlighting
student interest, this optional period was well attended, just like a second op-
tional Python session, that provided further details on the language. This was
great feedback for us, as students seemed to have wanted to engage with the ma-
terial significantly more than we expected – an insight that will be incorporated
into the next iteration of the class.

During the third and fourth weeks additional scaffolding was provided to
the students in the form of consultation periods both synchronously and asyn-
chronously over Slack or e-mail. The third class period focused on how the design
and computational thinking principles can be utilized to come up with a final
project, and iteratively design, implement and test it. During the final class pe-
riod the students showcased projects far more complicated than we expected
or imagined, demonstrating that they have spent a significant amount of time

42 A. Margitay-Becht and U. Das



outside the classroom learning additional techniques just for the amusement of
themselves.

4.4 Scaffoding and Support

Student support is a critical element for bridging-the-gap for students who may
not have as much exposure to programming or programming-adjacent materials
in the past. Students need to know that programming is not a magical thing that
some people just get and others cannot, but that programming is a skill that
can be learned and honed. As with many other human endeavors and activities,
some people are naturally more adept at programming, but that does not mean
that others are incapable of learning this skill. The presence of in-class support
provides students with the opportunity to talk through some difficulties, partic-
ularly for those students who are hesitant to talk to the class as a whole. Peer
tutoring programs have demonstrated success, particularly in Computer Science
learning contexts and can improve retention and student achievement [16].

There were 3 students who served as peer tutors for the course. They were
selected such that they would be from different levels of proficiency. One student
had recently completed Programming I (Programming with Python), one stu-
dent had recently completed Programming II (Data Structures and Algorithms
with Python), and the other student would be graduating with a Bachelor’s De-
gree in Computer Science in 6 months. Thus, one student was at a first year
level, the second student was 2nd year level, and the final student was at a se-
nior (4th) year level. The different levels are beneficial in peer tutors to express
to participants that learning programming is a journey and people at all lev-
els have something to share. Peer tutors at different levels also bring different
benefits with those fresh out of an introductory programming course having had
recently experienced their own journey from insecure to self-reliant confident
when it comes to programming, at the other end the senior level student brings
the benefit of having more experience and knowledge yet being closer to the
students than the instructors. Peer tutors always have the benefit of allowing
more informal exchanges between students and peer tutors. The tutors for this
class were also relatively diverse with 1 woman and 2 individuals from minority
groups.

Support in this course involved both during class session support (peer tutors
in groups) as well as peer-tutor led sessions during the project phase. About 8
students took advantage of sessions to work on the project during an open lab
session with a peer tutor. In the week preceding the final presentations (week
3 of the course) these sessions were held. Instructors also held support sessions
during this period with an additional 2 students attending. Altogether a total
of 10 students used the support sessions. The availability of multiple sessions at
different times of day and with dif-ferent individuals surely contributed to many
students taking advantage of the ses-sions. Slack was also used as an online forum
space for communication, community, and support and students took advantage
of Slack to troubleshoot code snippets, and importantly, share their work with all
other students at the end. Further along in the CS program students commonly

Supporting Gender Equality Through Pre-Introductory Courses 43



submit work to GitHub and so this kind of shar-ing is possible. But starting this
kind of sharing enables students to learn from each other, and in the instructors’
experience get impressed and inspired by each other. No amount of code samples
provided by the instructors can match the value of seeing peer work.

5 Methodology and Results

Grading and assessment were done completely separately in this course. For
grading, we used a growth mentality. As this course was an elective class that did
not count for any major field of study or the core curriculum of the university, and
only carried a minuscule credit value (less than 0.7% of the total credits required
for graduation), we felt comfortable assigning grades based on the improvements
our students made in the small amount of time available in the class. Our key
assessment focused on the student experience in the course and the change of
attitude we were hoping to achieve. To measure this, we created a pre-class and
a post-class questionnaire for the students, focusing on their experience with
and attitudes towards programming. Two key questions are worth discussing in
more detail: the perception of difficulty and the perceived utility of programming.
The following tables will show information from the 15 of the 23 students who
filled out both surveys. It is interesting to note, that close to 90% of the female
students filled out both the pre- and post-class questionnaires, while only 50%
of male students did so.

5.1 Perceptions of Difficulty

To test the perceptions of difficulty of programming, in the pre-test we asked the
students how hard the class will be for them. Not surprisingly, none of them said
they expected the course to be too hard for them, as it was an elective course
working with a positively biased audience. Most of the students, however, chose
the tentative “I can probably do it” option, with only 3 (2 males and 1 female)
selecting the assertive “I can for sure do it”.

At the end of the class, we were happy to find that close to half of the respon-
dents found programming at least somewhat easier than they expected. Most of
the rest found that programming was about as hard as they were expecting, with
2 students (a male and a female) feeling that programming was a bit harder than
they thought initially.

While the above results are already exciting, they become even more so if we
look at the gender breakdown of the responders. Table 1 shows the breakdown of
the responses: the rows contain the questions from the pre-class questionnaire,
while the columns the options from the post-class questionnaire. In the cells the
values are in the form of [male : female] students giving that combination of
answers. In alignment with the established literature, we found that six of the
eight students who found programming to be easier than expected were females,
while only four of the six who found it as hard as they expected were males. This
means that the majority of the perception gain happened to the female students
in the class, empowering and encouraging them to pursue programming further.

44 A. Margitay-Becht and U. Das



Table 1. Perceptions of programming difficulty before and after the course. Rows
contain the post-course feedback, columns the pre-course feedback. Results are reported
as [males : females]

Too hard for me I can probably do it I can for sure do it
A bit harder than expected 0:0 1:1 0:0
About as hard as I expected 0:0 3:2 1:0
Easier than expected 0:0 1:4 0:1
A lot easier than expected 0:0 0:0 1:0

5.2 Perceived Utility

While it is exciting to see that the class increased the confidence and reduced the
worry of female students, that alone is not going to improve participation if they
find programming to be unimportant. To measure the perceived importance of
programming, the pre-class questionnaire asked the students’ estimation of the
likelihood that programming will be useful for them personally. We had two
students (both female) say that they did not expect to use programming at all,
five students (4 males, 1 female) say that they will definitely use programming,
the rest fell into the more tentative maybe category.

After the class, we were excited to find that six out of the eight females
thought that programming will be more useful to them than they thought before
the class, and one of the remaining two already thought it was going to be useful
and found confirmation in her experience. The male students had a lot more
varied journey: one student said that programming will be less useful than they
initially expected, and all three of the students who were expecting programming
to be a lot more useful to them were also males. It was also exciting to us that the
class seems to have rein-forced initial positive expectations: all 5 students who
were certain of the usefulness of programming experienced increased valuation
of it.

Similar to above, Table 2 showcases the breakdown of [male:female] respon-
dents based on their preclass and post-class responses.

Table 2. Perceptions of the utility of programming before and after the course. Rows
contain the post-course feedback, columns the pre-course feedback. Results are reported
as [males : females]

I won’t use it I might use it I will use it
Less useful than expected 0:0 1:0 0:0
About as useful as expected 0:1 0:1 0:0
Somewhat more useful than expected 0:1 1:4 2:1
A lot more useful than expected 0:0 1:0 2:0

Supporting Gender Equality Through Pre-Introductory Courses 45



5.3 Overall Results

Like the above cited literature, we have found no difference in the quality of
work done by male and female students. Indeed, the most complex project was
created by a female student, and every female student turned in a project that
greatly exceeded the expectations – and the material covered in the class. This is
an excellent indicator of increased self-efficacy, that was demonstrated by nearly
all students. We hope that this skill will prove to be transferable to other areas
as well.

Computational thinking, especially decomposition, was clearly demonstrated
in most projects. This will reinforce and expand the students’ critical thinking
skills. We have seen both explicit and implicit use of design thinking. The most
impressive ex-ample was one student who worked together with her younger
brother to create a game with him for him to enjoy. This was both a touch-
ing moment – siblings using a class exercise to socialize remotely over Zoom
– and also a great application of design thinking principles, working with and
for a “client” to create a desired product. A final indicator of the success of the
class, that out of the 15 responders, 13 re-ported desire to continue learning
programming, either on their own, or in some kind of structured manner.

6 Next Steps

Due to the great success of the class, it will live on in the January of 2024,
with some modifications. The greatest one of these will be an expansion to a
full class, increasing the meeting times from four to 15. The increase in contact
hours can provide an opportunity for introducing pair programming in the class.
Pair programming and peer programming are also known to be effective learn-
ing techniques within software engineering and are a significant element of Agile
Software Development practices. Talking through the thought process behind
code development greatly strengthens students’ overall programming skills. Pair
programming has been demonstrated to improve retention and student confi-
dence [17].

A change in recruiting efforts will attempt to address the needs of incom-
ing fresh-men. The class will continue to target students with no programming
background, but it could serve as an ideal first experience not only for students
who are programming curious, but also for those who know they want to pur-
sue a career in computer or data science and want a more gradual on-ramp to
programming prior to taking their introductory course.

The course will also aim for a more layered outcome regarding further study
for the students: aside from continuing to study on their own or just taking an
introductory class, they might be able to pursue a certificate in programming
or website development, a minor in programming or data science, or even a
major in computer science or/and data science. The majors and minors at our
institutions are created in a way that they scale easily. We consider computer
and programming abilities necessary for the enlightened citizens of 2023, and this

46 A. Margitay-Becht and U. Das



course might provide a gateway for students of all backgrounds and interests to
expand their education with some 21st century skills.

7 Conclusion

Optional pre-introductory experiences implement separate introductory tracks
for students with different backgrounds. Those who enter university with some
back-ground in programming can enroll directly into an introductory program-
ming class. Those, however, who are worried about their own skills or even
underestimate their own abilities, as many female students seem to, can partic-
ipate in a pre-introductory course to alleviate their concerns and improve their
self-confidence. A student-centric, real-life grounded pre-introductory class can
showcase the usefulness and fun of programming, creating and reinforcing inter-
est. For example, a student who enjoys drawing can use programming to create
animations. A student interested in child psychology can use programming to cre-
ate research tools to engage children – or analyze the results of the engagement.
A biochemist can use programming to model molecules or analyze experimental
data, an economist can model the success of a product or the trajectory of a
nation. By being able to focus on inspiring students, these classes can serve as
the affective counterparts to the cognitive focused introductory courses[18]. And
by focusing on increasing student interest, breaking down barriers, improving
self-efficacy and confidence, pre-introductory courses can help support female
students exactly in the ways they need support to be able to start a career in
the IT field – or to expand their interest with technology.

References

1. Rubio, M.A., Romero-Zaliz, R., Mañoso, C., de Madrid, A.P.: Closing the gender
gap in an introductory programming course. Computers & Education. 82, 409–420
(2015). https://doi.org/https://doi.org/10.1016/j.compedu.2014.12.003

2. NSF - National Science Foundation: Women, Minorities, and Persons with Disabili-
ties in Science and Engineering: 2019, https://ncses.nsf.gov/pubs/nsf19304/digest.
Last accessed 2023/06/02.

3. Connolly, C., Murphy, E., Moore, S.: Programming Anxiety Amongst Computing
Stu-dents—A Key in the Retention Debate? IEEE Trans. Educ. 52, 52–56 (2009).
https://doi.org/https://doi.org/10.1109/TE.2008.917193.

4. Höök, L.J., Eckerdal, A.: On the Bimodality in an Introductory Programming
Course: An Analysis of Student Performance Factors. In: 2015 International Con-
ference on Learning and Teaching in Computing and Engineering (2015).

5. Wyeld, T., Nakayama, M.: Visualising the Code-in-Action Helps
Students Learn Programming Skills. In: 2018 22nd International
Conference Information Visualisation (IV). pp. 182–187 (2018).
https://doi.org/https://doi.org/10.1109/iV.2018.00040.

6. Alford, L., Dorf, M.L., Bertacco, V.: Student Perceptions of Their Abilities and
Learning En-vironment in Large Introductory Computer Programming Courses.
In: 2017 ASEE Annual Conference & Exposition Proceedings. p. 28867. ASEE

Supporting Gender Equality Through Pre-Introductory Courses 47



Conferences, Columbus, Ohio (2017). https://doi.org/https://doi.org/10.18260/1-
2–28867.

7. LaBouliere, J.J., Pelloth, A., Lu, C.-L., Ng, J.: An exploration of
the attitudes of young girls toward the field of computer science. In:
2015 IEEE Frontiers in Education Conference (FIE). pp. 1–6 (2015).
https://doi.org/https://doi.org/10.1109/FIE.2015.7344265.

8. Schindler, C., Müller, M.: Gender gap? a snapshot of a bachelor com-
puter science course at Graz University of Technology. In: Proceedings of
the 13th European Conference on Soft-ware Architecture - Volume 2. pp.
100–104. Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/https://doi.org/10.1145/3344948.3344969.

9. Margitay-Becht, A., Das, U.: Enhancing student learning through hidden motiva-
tional learn-ing outcomes. In: Enomoto, K., Wagner, R., and Nygaard, C. (eds.)
Enhancing student learn-ing outcomes in higher education. Libri Publishing Ltd.
(2023).

10. Akinola, S.O.: Computer programming skill and gender difference: An empirical
study. American journal of scientific and industrial research 7(1), 1–9 (2015).

11. Kallia, M., Sentance, S.: Are boys more confident than girls? the role of calibra-
tion and students’ self-efficacy in programming tasks and computer science. In:
Proceedings of the 13th Workshop in Primary and Secondary Computing Educa-
tion. pp. 1–4. Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/https://doi.org/10.1145/3265757.3265773.

12. Pau, R., Hall, W., Grace, M., Woollard, J.: Female students’ experiences
of programming: it’s not all bad! In: Proceedings of the 16th annual joint
conference on Innovation and technology in computer science education. pp.
323–327. Association for Computing Machinery, New York, NY, USA (2011).
https://doi.org/https://doi.org/10.1145/1999747.1999837.

13. Funke, A., Berges, M., Mühling, A., Hubwieser, P.: Gender differences in
programming: re-search results and teachers’ perception. In: Proceedings of
the 15th Koli Calling Conference on Computing Education Research. pp.
161–162. Association for Computing Machinery, New York, NY, USA (2015).
https://doi.org/https://doi.org/10.1145/2828959.2828982.

14. Master, A., Cheryan, S., Moscatelli, A., Meltzoff, A.N.: Program-
ming experience promotes higher STEM motivation among first-grade
girls. Journal of Experimental Child Psychology. 160, 92–106 (2017).
https://doi.org/https://doi.org/10.1016/j.jecp.2017.03.013.

15. Braga, C., Mochetti, K.: Programming teaching tools and the gender gap in the
Information Technology field. In: Anais do Workshop de Informática na Escola.
pp. 70–79. SBC (2018). https://doi.org/https://doi.org/10.5753/cbie.wie.2018.70.

16. Servin, C., Pagel, M., Webb, E.: An Authentic Peer-Led Team Learning
Program for Community Colleges: A Recruitment, Retention, and Comple-
tion Instrument for Face-to-Face and Online Modality. In: Proceedings of the
54th ACM Technical Symposium on Computer Science Education V. 1. pp.
736–742. Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/https://doi.org/10.1145/3545945.3569851.

17. McDowell, C., Werner, L., Bullock, H.E., Fernald, J.: Pair programming improves
student retention, confidence, and program quality. Commun. ACM. 49, 90–95
(2006). https://doi.org/https://doi.org/10.1145/1145287.1145293.

18. Bloom, B.S., Krathwohl, D.R.: Taxonomy of educational objectives: The classifi-
cation of educational goals. Book 1, Cognitive domain. longman (1956).

48 A. Margitay-Becht and U. Das


