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ABSTRACT The upcoming sixth generation (6G) mobile networks require integration between terrestrial
mobile networks and non-terrestrial networks (NTN) such as satellites and high altitude platforms (HAPs)
to ensure wide and ubiquitous coverage, high connection density, reliable communications and high data
rates. The main challenge in this integration is the requirement for line-of-sight (LOS) communication
between the user equipment (UE) and the satellite. In this paper, we propose a framework based on actor-
critic reinforcement learning and generative models for LOS estimation and traffic scheduling on multiple
links connecting a user equipment to multiple satellites in 6G-NTN integrated networks. The agent learns
to estimate the LOS probabilities of the available channels and schedules traffic on appropriate links
to minimise end-to-end losses with minimal bandwidth. The learning process is modelled as a partially
observable Markov decision process (POMDP), since the agent can only observe the state of the channels
it has just accessed. As a result, the learning agent requires a longer convergence time compared to the
satellite visibility period at a given satellite elevation angle. To counteract this slow convergence, we use
generative models to transform a POMDP into a fully observable Markov decision process (FOMDP). We
use generative adversarial networks (GANs) and variational autoencoders (VAEs) to generate synthetic
channel states of the channels that are not selected by the agent during the learning process, allowing the
agent to have complete knowledge of all channels, including those that are not accessed, thus speeding up
the learning process. The simulation results show that our framework enables the agent to converge in a
short time and transmit with an optimal policy for most of the satellite visibility period, which significantly
reduces end-to-end losses and saves bandwidth. We also show that it is possible to train generative models
in real time without requiring prior knowledge of the channel models and without slowing down the
learning process or affecting the accuracy of the models.

INDEX TERMS NTN, Satellite, Generative Models (GMs), Reinforcement Learning, Actor-Critic, Multi-
path, Traffic Splitting.

I. INTRODUCTION

THE sixth generation (6G) mobile communications sys-
tem, also known as International Mobile Telecommu-

nications (IMT) for 2030 and beyond (IMT-2030) [1], will
not only be an evolution of cellular networks, but a complete

revolution of current terrestrial mobile networks and the end-
user communication experience. According to the Working
Party 5D (WP5D) [1], a group of the International Telecom-
munication Union (ITU) Radiocommunication Sector for
IMT systems, 6G is expected to provide seamless connec-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1



Machumilane, A. et al.: Towards a Fully-Observable Markov Decision Process with Generative Models for Integrated 6G-Non-Terrestrial Networks

tivity not only to users but also to massive machine-type de-
vices. Three main scenarios for 6G have been identified. The
first scenario is Immersive Communication, an evolution of
5G enhanced Mobile BroadBand (eMBB) but with new use
cases such as extended reality (XR) and holographic commu-
nication which require more bandwidth than 5G eMBB. The
second scenario is Massive Communication, which assumes
5G Massive Machine Type Communication (mMTC) but
aims to increase connection density, i.e. connecting many
devices in a small area, using technologies such as Internet of
Things (IoT), Internet of Everything (IoE) and Industrial IoT
(IIoT). The third scenario is hyper-reliable and low-latency
communications, which will evolve 5G Ultra-Reliable and
Low Latency Communications (URLLC) to support use
cases such as remote telesurgery, fully autonomous driving,
industrial control and operations. In general, 6G is expected
to address the shortcomings of current mobile networks and
respond to growing communications needs by offering ultra-
high peak data rates of around 200 Gbit/s compared to 20
Gbit/s in 5G, ultra-low latency, wide coverage and high
connection density, Quality of Service (QoS) and energy
efficiency, high sensing resolution and accuracy, and high
security and privacy [2]. Two other important advances
in 6G are the incorporation of ubiquitous and distributed
Artificial Intelligence (AI) at all levels of communication
[3] and the paradigm shift from network-centric to user-
centric communication, where users can collaborate with
the network to decide on the service they expect from the
network and the allocation of channel resources.

Despite the rapid evolution of terrestrial mobile networks,
supporting the 6G communications requirements described
above requires new and advanced communications tech-
nologies, infrastructures, and standards. The WP5D has
called for urgent research and innovation in the design
of future network infrastructures and the development of
various enabling technologies to support new 6G scenarios
and use cases. Several enabling technologies for 6G have
been identified, including the application of data and AI in
distributed and collaborative ways, Integrated Sensing and
Communications (ISAC), Reconfigurable Intelligent Surface
(RIS), Full Duplex Operation, Radio Access Network (RAN)
Slicing and Infrastructure Sharing, among others [1]. In
addressing the 6G requirement for wide coverage and full
connectivity, the ITU report on Future Technology Trends for
Terrestrial International Mobile Telecommunications systems
towards 2030 and Beyond [1] applied to 6G what the Third
Generation Paternship Project (3GPP) proposed for 5G [4]
and recommends integrating 6G mobile networks with Non-
Terrestrial Network (NTN) technologies. NTN platforms are
network segments that use transmission equipment or base
stations mounted on an airborne or spaceborne vehicle. NTN
platforms include satellites such as geosynchronous (GEO),
Medium Earth Orbit (MEO) and Low Earth Orbit (LEO),
High Altitude Platforms (HAPs), and Unmanned Aerial Sys-
tems (UASs). The white paper on 6G wireless networks [5]

also recommends that future wireless networks must be able
to connect seamlessly with terrestrial and satellite networks.
Since satellites have wide coverage, they can complement
terrestrial mobile networks in partially connected and uncon-
nected areas such as maritime areas, mountainous regions,
and deserts. Although satellites have not been widely used
in the past due to high construction costs, as technology
advances and communication requirements increase, various
satellite constellations such as Starlink, OneWeb, and Telesat
[6] have been launched. High Altitude Platform (HAP)
systems include airborne base stations deployed above 20
km and below 50 km to provide wireless access to devices
in large areas. HAP systems can be used as HAP Stations
(HAPS) to offer internet access between fixed points in
suburban and rural areas and in emergency situations [7].
HAPS offer wide coverage, flexible deployment, and low
construction costs. They also have low latency due to their
relatively lower altitude compared to satellites. Another
application of HAP systems is to use HAPS as International
Mobile Telecommunication (IMT) Base Station (HIBS) to
complement IMT requirements for mobile phones or other
terminals in areas not covered by HAPS. So, with HIBS,
some of the access functionalities in the terrestrial networks
can be moved to the non-terrestrial infrastructure. UASs,
commonly known as Unmanned Aerial Vehicles (UAVs) or
drones, can also be used as IMT base stations. UAVs have
attracted a lot of attention because they are lightweight, easy
to deploy, and offer flexible services. Exploiting the advan-
tages of terrestrial networks and non-terrestrial platforms will
support a range of new applications and use cases such as
remote monitoring, rescue operations, reconnaissance, goods
delivery, connected autonomous vehicles (CAVs), and high-
speed transportation (e.g., trains or aircraft). In this paper,
we focus on the integration between LEO satellites and the
upcoming 6G mobile networks.

The main challenge in integrating terrestrial IMT and NTN
is the channel modeling of the service link, i.e. the link
between the NTN terminal or User Equipment (UE) and the
satellite or an NTN platform, as this link requires Line-of-
Sight (LOS), which is impaired when both the satellite and
the UE are in relative motion. In dense urban scenarios, tall
buildings, and other tall infrastructure can severely degrade
LOS communications as signals are blocked or reflected. In
addition, the LOS probability varies with the elevation angle
of the satellite, with low elevation angles having a low LOS
probability due to blocking. The LOS variations can lead to
unreliable communication due to poor connectivity, network
unavailability, or service interruption, making it difficult to
meet 6G communication requirements. Existing ITU service
link models take into account the elevation angle, frequency,
and propagation environment (e.g. urban or rural), [8] but not
the relative movement of the UE and satellite, which can
make the propagation environment non-stationary because
the LOS probability may vary with time.
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FIGURE 1: Reference Scenario: A user equipment in a duo-connectivity in Terrestrial-NTN integrated network. The UE
accesses the IMT core network and the Internet via two LEO satellites with RAN capabilities.

II. Reference Scenario and Motivations
In this paper, we propose an AI-based intelligent system for
LOS estimation and traffic scheduling on the access link of
6G-NTN integrated networks. We use the Actor-Critic (AC)-
Reinforcement Learning (RL) framework, in which an RL
agent continuously monitors and learns the LOS probability
of multiple links and selects an appropriate subset of the
available links on which to schedule traffic to increase link
availability and reliability by increasing the probability of
good traffic reception. Since our proposed framework is not
deterministic but learning-based, it can track the dynamic
variations of LOS due to terrain and mobility. As shown
in Figure 1, our reference scenario, the UE with multiple
interfaces can connect to two satellites in multi-connectivity
mode. The two satellites are equipped with BS through
which the UE connects to the terrestrial IMT Core Network
(CN) and theData Network (DN). The UE can be any user
terminal, a UAV, or an IoT device. Our RL agent learns the
channel characteristics of each access link and schedules traf-
fic according to link characteristics such as LOS and Packet
Loss Rate (PLR) to increase link availability, reliability and
throughput. Given the limited computational resources of the
UE, the RL agent can be deployed on the edge device with
high computational resources or anywhere in the network
and offered as AI-as-a-Service (AIaaS) as envisaged in 6G
[1]. To further improve link reliability and throughput, we
use a multipath transmission technique that splits a single
traffic flow into sub-flows and transmits each subflow over
a separate path, achieved by one or more communication
channels, to increase the probability of good reception by
leveraging the different link characteristics. We then couple
multipath with traffic duplication, which adds redundancy to
further increase the probability of good reception because
the redundancy traffic is transmitted on different links than
the information traffic, so that traffic lost on one link
can be recovered on other links. We perform redundancy
optimisation to avoid excessive bandwidth consumption.

To support duo-connectivity and multipath transmission,
we use the standard mechanism known as Access Traf-
fic Steering, Switching, and Splitting (ATSSS), originally
introduced by 3GPP for IMT-2020 [9], but needs to be
further developed and improved for IMT-2030 to support
Multi-Access Packet Data Unit (MA-PDU) session services
through self-learning decision policies supported by AI.
Access traffic steering means the selection of an access
network over which a particular new data flow is to be
transmitted. On the other hand, traffic switching refers to the
process of moving all the traffic of an ongoing flow from one
access network to another while maintaining the continuity
of the flow. On the other hand, traffic splitting refers to the
process of dividing a data flow into parts that are transmitted
over different access networks. 3GPP standard defines two
ATSSS functionalities: ATSSS high-layer functionality and
ATSSS low-layer functionality (ATSSS-LL). In the former,
traffic steering is performed above the Internet Protocol (IP)
layer, where each substream is identified with a unique
IP address, as shown in Figure 2. Link monitoring and
performance measurements such as PLR or Round-Trip Time
(RTT) are performed End-to-End (E2E) between the UE
and the DN through a multipath server proxy in the core
and can be used as criteria for traffic steering decisions.
The standard identifies two protocols for ATSSS higher-
layer functionality: Multi-Path-TCP (MPTCP) for multipath
Transmission Control Protocol (TCP) traffic and Multi-Path-
QUIC (MPQUIC) for Quick UDP Internet Connections
(QUIC) User Datagram Protocol (UDP) traffic. ATSSS-
LL, on the other hand, is implemented at the link layer,
where Media Access Control (MAC) addresses identify sub-
flows and can handle any traffic, including TCP, UDP and
Ethernet traffic. ATSSS is a very important feature for the
6G paradigm shift from a network-centric to a user-centric
approach, as it supports collaborative network performance
measurements between the network and the user. The user
can measure access link performance in terms of LOS,
delay, PLR, bandwidth, link availability, or unavailability

VOLUME , 3



Machumilane, A. et al.: Towards a Fully-Observable Markov Decision Process with Generative Models for Integrated 6G-Non-Terrestrial Networks

and either share the measurements with the core network or
use the measurements autonomously for uplink (UL) traffic
steering over the access networks. In the future, this feature
can be used to support UE decisions on channel resource
allocation, which is one of the provisions in the user-centric
6G networks.

The framework proposed in this paper performs traffic
splitting and steering at the link layer in accordance with
the ATSSS-LL functionality. The ATSSS standard has intro-
duced a function called Performance Measurement Function
(PMF) that enables the exchange of messages between the
UE and the core for performance measurements. We have
developed a stub that provides our learning agent with link
performance measurements such as LOS, link-PLR, and
E2E-PLR for traffic steering over the two satellite networks.
LOS and link-PLR are used to decide which link to steer
the traffic to, while E2E loss is used to decide whether
to use a single transmission or multiple transmissions with
traffic duplication to compensate for E2E losses. In this case,
the E2E loss occurs when no traffic is received on either
link. Since the LOS changes with the elevation angle of the
satellite, the RL agent constantly retrains to track the ever-
changing LOS of multiple moving satellites and allows the
UE to distribute traffic to the appropriate link(s). However,
we found that each time the elevation angle changes, the
agent takes a long time to re-train and converge compared
to the duration of the satellite visibility [10]. Normally, a
moving satellite is visible from a UE near Earth or on Earth
for a certain period of time called the satellite visibility
period, which can be very short for large constellations. For
example, the satellite visibility period in Paris, France, was
found to be 3.5 minutes for Starlink constellations. During
this visibility period, the satellite changes its elevation angle
and consequently, the LOS probability also changes. If the
learning agent converges slowly, it cannot make the best use
of the satellite visibility period because the elevation angle
and LOS probability change before it converges. As a result,
the agent transmits with non-optimal policies.

In this paper, we use generative models to solve the
problem of slow convergence of the learning agent. Although
there can be several reasons for slow convergence, we
focus our investigation on learning-based LOS estimation,
which in such scenarios is modeled as Partially Observable
Markov Decision Process (POMDP) [11], since the learning
agent can only observe the states of the links it selects for
transmission at a given time, for scalability reasons1. With
multiple channels, the agent needs a lot of time to fully
know the states of all available channels and to select the
appropriate channels. The obvious and simple solution would
be to duplicate the traffic and transmit it over all available
links to quickly learn the LOS probability of each link.

1Channel State Information (CSI) analytics have computational and
storage costs, and if multiple interfaces can be used, a policy to limit data
collection must be considered. Therefore, limiting the analysis to only one
interface being used at any given time can be a reasonable choice.

Although this seems to be a simple solution, it is inefficient
as it wastes bandwidth. In this work, we provide a more
efficient and intelligent solution that transforms the POMDP
into a Fully Observable Markov Decision Process (FOMDP)
so that the agent can have the CSI of all available channels,
including the channels it does not select on each transmission
event, without having to transmit on all links. To this end,
we use deep generative models (Generative Models (GMs))
which we train to generate synthetic channel states that
closely resemble the real channel state of the links not
selected by the agent. Specifically, we use two deep GMs
[12]: Conditional Tabular Generative Adversarial Networks
(CTGANs), a version of the most popular and powerful deep
generative model called Generative Adversarial Network
(GAN), and Tabular Variational Autoencoders (TVAEs), a
variant of Variational Autoencoder (VAE), another powerful
and commonly used deep generative model. When the agent
selects a subset of the available channels at each transmission
event and learns their LOS probability, the trained GMs
generates synthetic LOS estimates for the remaining subset.
In this way, the agent has a complete view of the channel
states for each transmission event. As a result, the agent
learns quickly, converges faster, and transmits with an op-
timal policy for most of the satellite visibility period. As
explained in Section VI, the GMs can be trained offline or
during deployment.

Our main contributions can be summarized as follows:

1) We propose the use of reinforcement learning (RL)
and generative models (GMs), to provide intelligence
into integrating terrestrial and non-terrestrial networks
for supporting 6G communication requirements such as
improved network accessibility and connectivity, link
availability and reliability, and high data rates.

2) We use generative models, specifically GANs and
VAEs, to transform a POMDP into a FOMDP. The
GMs generate synthetic states of a partially observable
Markov process that are not visited by the agent during
the learning process and, thus, transform a partially
observable process into a fully observable Markov de-
cision process by providing the agent with a complete
view of all states. This method can be applied not
only to LOS estimation, as in this work, but also to
any partially observable Markov decision process. To
the best of our knowledge, this is the first work that
uses generative models to transform a POMDP into a
FOMDP.

3) We develop an actor-critic-RL framework to estimate
the LOS probability of multiple service links between
UE and LEO satellites in IMT-NTN integrated networks
with heterogeneous characteristics. The RL agent learns
to determine the LOS probability of each link and select
an appropriate subset of the available links for trans-
mission, i.e., the link(s) with a relatively higher LOS
probability, to increase the probability of good traffic
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reception, improve link availability and reliability, and
increase data rates.

4) We couple multipath with traffic duplication to proac-
tively compensate for E2E losses and consequently
increase throughput. Since traffic duplication can in-
crease bandwidth consumption, we optimize the use of
redundancy to avoid excessive bandwidth consumption.
We show through intensive simulations that our RL
agent can track low E2E losses when deployed in dif-
ferent propagation environments with different E2E loss
thresholds according to the end-user QoS agreement.

5) Since the satellite visibility period is shorter than the
convergence time of the RL agent, we use our proposed
model for transforming a POMDP into a FOMDP, to
convert a learning-based LOS estimation which is a
POMDP, into a FOMDP to accelerate the convergence
of the RL agent within the satellite visibility period.
We use GANs and VAEs to generate synthetic LOS
link states of the links not visited by the agent and
thus, convert a POMDP into a FOMDP since the RL
agent now has complete knowledge of the LOS state of
all links. This allows the agent to learn and converge
within a short time, and transmit with an optimal policy
for most of the satellite visibility period.

6) Finally, we show through simulations that GMs training
can be performed in real-time without slowing down the
RL agent learning process or affecting GMs accuracy.

The rest of the paper is organized as follows: In Section
III, we review the state-of-the-art techniques with respect to
our work. We present our system model in Section IV and
describe the training and evaluation of the GMs in Section
V. Section VI presents the architecture and training of the
Actor-Critic Reinforcement Learning Agent while its perfor-
mance evaluation is presented in Section VII. Section VIII
concludes the paper and identifies future research directions.

III. Related Work
A. LOS Estimation and Traffic Scheduling
Several methods for estimating LOS and scheduling traffic
through multiple channels have been suggested. In [13],
a theoretical model for LOS prediction in cloud-free sky
is proposed which takes into account the angle between
the satellite and the ground station. In [14], a maximum
likelihood-based method for detecting the presence of Non-
Line-of-Sight (NLOS) is proposed. In [15], the authors
propose an empirical model for probability estimation of
LOS for satellite and HAPs communications. All of these
approaches are empirical and deterministic and therefore not
suitable for dynamic and nonstationary NTN propagation
environments. Traditional and static traffic scheduling tech-
niques such as Round-Robin (RR), Weighted Round Robin
(WRR) have been shown to be inefficient in heterogeneous
and time-varying wireless channels [16]. With the pursuit of
self-reconfigurable networks, the improved schedulers such
as deficit round robin (DRR) and weighted fair queuing

(WRQ) schedulers [16], RTT, PLR, [17], the lowest-RTT-
first schedulers [16], [18], [19] are becoming increasingly
unpopular and research is leaning towards learning-based
schedulers. For example, in [20] a Deep-Q (DQ) RL-based
scheduler is presented for dynamically allocating bandwidth
to different WiFi applications. Wu et al. [21] have proposed
a RL-based multipath scheduler for multipath QUIC on
WiFi and cellular applications. In [22], a AC agent is
used for multi-channel access in wireless networks to avoid
collisions. Yang et al. [23] propose an AC-based scheduler
for cognitive Internet-of-Things (CIoT) systems. Another
AC-based scheduler is proposed in [24] to address end-to-
end delay in Fog-based IoT systems. However, all these
works are partially observable processes that may suffer
from the slow convergence of the learning agent. We aim
to address this problem in this work by using GMs to
transform a POMDP into a FOMDP. Since our proposed
framework is designed for multipath systems, it provides
not only a scheduling mechanism but also traffic protection.
We schedule traffic by steering and splitting it over multiple
paths to increase the probability of good reception leveraging
the different path properties as in [25]. Our framework also
avoids delays caused by traffic protection systems such as
Automatic Repeat reQuest (ARQ) that uses retransmissions
to compensate for the loss, which may be unsuitable for
satellite communications with large propagation delays. In
addition, our system limits the waste of bandwidth like some
layered Forward Error Correction (FEC)-based systems do
[26], which are difficult to use with fixed coding rates in
dynamic contexts, and avoids introducing delays due to the
encoding-decoding chain [27] as well as further complexity.

B. Deep Generative Models
Deep generative models have attracted much attention and
found several applications, especially in computer vision,
including the generation of realistic images, videos, music
relics, texts, and language processing. In [28], [29], and [30],
GANs are used for image generation, while the authors
in [31] use VAE and GANs to generate videos from texts.
GMs are used in [32] to improve the quality of the training
dataset for Electrocardiogram (ECG) signal classification.
Although the application of GMs for communication is still
being explored, some work has already been proposed. For
example, in [33], the authors use VAE to generate channel
parameters such as path loss, delay, and arrival and departure
angles. They first estimate the LOS and NLOS state of a link
using a ray tracer and use these estimates to train VAE and
generate other channel parameters. The use of VAEs and
GANs to improve the LOS estimation was also discussed
and compared in [34], with a similar scenario, while the
use of a federated approach with VAEs was introduced in
[35], and investigated for the first time. The Conditional
GAN (cGAN) is used in [36] to model channel effects
in an E2E wireless network and optimize receiver gain
and decoding. In particular, the cGAN is used to support
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FIGURE 2: ATSSS Functionalities in a UE model. The EU connects to the Internet via two access networks: 3GPP and
non-3GPP. With upper-layer functionality (MPTCP and MPQUIC) the data flow is split above the network layer while

with lower-layer functionality (ATSSS-LL) flow splitting is done at the link layer. [9]

the learning of the Deep Neural Networks (DNNs)-based
communication system when the CSI is unknown. This work
is similar to our study in which we use the CTGANs and
TVAEs to generate missing LOS estimates for the AC-based
transmission system to improve the QoS by reducing E2E
losses.

IV. System Model
The WP5D group has recommended that the existing 3GPP
architecture for integrating terrestrial IMT and NTN also be
used for the integration of 6G mobile networks with NTN,
where the Base Station (BS) is split into Distributed Unit
(DU) and Centralized Unit (CU) [1]. Although the WP5D
group has not specified the placement of the DU and CU,
the existing 3GPP [4] provides that the DU can be mounted
on the satellite, while the CU forms part of the terrestrial
infrastructure. As shown in Figure 1, the two satellites have a
DU on board to provide BS functionalities. The UE accesses
the network via these satellites in a multi-connectivity mode
and connects to the CN and the DN via a common CU on
the ground. We use the StarLink LEO satellite constellations
[37].

A. Channel Model
In this work, we adopt the channel model provided by
ITU [38] for designing Earth-space communication systems.
We simplify this model using the Lutz approach [39], [40]
and assume two channel states: the good state (G) and
the bad state (B). The good state is characterized by the

presence of the LOS, and good traffic reception and is
modeled by a Rician fading model for unshadowed areas.
The bad state, on the other hand, is marked by NLOS, losses
or bad reception and is modeled using the Rayleigh fading
model. We adopt these models to compute the channel state
transition probabilities which we use to create the dataset
to train our learning agent and the generative models. For
the sake of simplicity, in this work, we did not consider
interference.

Computation of the Link State Transition Probabilities
We define the transition matrix as follows [27]:

Ψ =

[
1− Pb Pb

Pg 1− Pg

]
where Pb is the probability to transition from good state

to bad state and Pg from bad state to good state. It follows
that,

Tg = 1/Pb;Tb = 1/Pg (1)

where Tg and Tb indicate the time duration of the good
and bad states respectively and are given as follows:

Tb =
r

v · k
dg; Tg =

r

v · k
db, (2)

where, dg and db are the mean duration of the good and
bad states [39]; v is the speed of the UE in (m/s) transmitting
packets of size k bits at a rate r.

Since the LOS probability depends on the elevation angle
of the satellite, the ITU recommendation [38] provides sta-
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TABLE 1: Earth-Space Link parameters at 2.2 GHz in
France [38]

Elevation angle µg,b σg,b tming,b

20◦ 2.0042, 3.6890 1.2049, 0.9796 3.9889, 10.3114
30◦ 2.7332, 2.7582 1.1030, 1.2210 7.3174, 5.7276
45◦ 3.0639, 2.9108 1.6980, 1.2602 10.0, 6.0
60◦ 2.8135, 2.0211 1.9595, 0.6568 10.0, 1.9126
70◦ 4.2919, 2.1012 2.4703, 1.0341 118.3312, 4.8569

TABLE 2: Earth-Space Link LOS transition probabilities
Elevation angle P (Bad → Good) (Pg) P (Goog → Bad) (Pb)
20◦ 0.00014310 0.00047466
30◦ 0.00024460 0.00027570
45◦ 0.00020318 0.00007556
60◦ 0.00105161 0.00010797
70◦ 0.00052923 2.76683× 10−6

tistical parameters to determine the mean duration dg and db
of the good and bad states respectively at different elevation
angles, frequency, and different propagation environments,
such as urban and rural. In this work, we use the parameters
for the urban environment at 2.2GHz as reported in Table
1. These parameters are the statistics of the duration of
the good and bad states which include the mean µG,B , the
standard deviation σG,B , and the minimum duration dmin of
each state. Substituting these parameters in equation (3), we
calculate the mean duration dg and db.

dg,b = exp

(
µg,b +

σ2
g,b

2

) erf

(
1−

logdmin,g,b−(µg,b+σ2
g,b)

σ
√

2

)

erf

(
1−

logdmin,g,b−µg,b

σ
√

2

)
(3)

Finally, we combine equations (1) and (2) to obtain the
transition probabilities Pb and Pg as follows.

Pb = (
r

v · k
dg)

−1; Pg = (
r

v · k
db)

−1 (4)

We report the computed transition probabilities in Table
2 and use these probabilities to create Markov states dataset
with LOS/NLOS traces to train our models.

B. Deep Generative Neural Networks
Deep Generative AI refers to unsupervised and semi-
supervised Machine Learning (ML) Algorithms that use
Neural Networks (NNs) to learn and model the distribution
of the true data and generate new synthetic data with
a similar distribution to the true data. GMs are used to
produce high-quality images, videos, sounds, and text that
closely resemble the original data. They are also used
to augment data and generate large amounts of data for
training other ML algorithms, using only a small amount
of real data. There are many types of deep GMs, but two

are most commonly used: The GAN and the VAEs. There
are many variants of these two as well. In this work, we
use the CTGANs, which is a variant of the GAN, and the
TVAEs, which is the variant of the VAE. They are built in
the TensorFlow library and belong to the Synthetic Data
Vault (SDV) package. The choice of the CTGAN and TVAE
was motivated by the fact that these two models can handle
tabular data and therefore allow us to train only one model
that can generate synthetic data for any number of available
service links since they can learn the data distribution in
each column of the training dataset. For training the GMs,
we considered three elevation angles: 70◦, 60◦, and 45◦ and
organized the training dataset into a table of three columns
with each column containing the LOS/NLOS traces of one
of the elevation angles or channels. Thus, knowing the data
distribution in each column, a single CTGAN or TVAE
model can generate synthetic data for all the columns at
once, which would otherwise require training one model for
each channel. Below is a brief description of the structures
and functionalities of the CTGAN and TVAE.

1) CTGAN-Conditional Tabular GAN
The Generative Adversarial Network (GAN) [28] is a type
of generative neural network that has become popular due to
its ability to produce high-quality synthetic data. The basic
architecture of the GAN consists of two neural networks,
the generator and the discriminator. The generator generates
synthetic data that resembles real data, while the discrimina-
tor is a classifier that attempts to distinguish fake data from
real data. The generator and discriminator are trained in an
adversarial way based on a two-player game theory that aims
to find a Nash equilibrium [41] in which the generator tries
to fool the discriminator by generating data that looks like
real data, while the discriminator tries to catch the generator
by distinguishing real data from fake data generated by the
generator. After training, the generator is able to generate
data that is too real for the discriminator to distinguish
from real data. The discriminator is trained to maximize the
equation shown in (5)

logD(x) + log(1−D(G(z))) (5)

while the generator minimizes the equation shown in (6),

log(1−D(G(z))) (6)

in both previous equations D and G are functions of the
generator and discriminator networks, respectively, and z and
x are noise and real data samples, respectively.

The Conditional Tabular GAN (CTGAN) is a type of
GAN developed by [12] for dealing with tabular data. The
original GANs were developed primarily for images and
could not handle tabular data. The CTGAN is conditional
in that, unlike the general GANs, it can produce data
with a particular property or distribution. For example, the
basic or vanilla GANs trained to generate human faces
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can only generate random faces as found in the training
data. It cannot generate a specific face. To condition the
model to generate data with specific features, patterns,
or distribution, the generator, and discriminator are given
additional information about the data as input. This may
be labels of the training data or a particular distribution.
This allows the generator to produce data with a desired
distribution or property.

2) TVAE - Tabular Variational Auto-Encoders
Variational autoencoders are among the widely used unsu-
pervised deep GMs. Like autoencoders, VAEs have a two-
network structure, the encoder and the decoder. However,
unlike autoencoders, VAEs are used to generate new data.
The encoder maps the input real data into a compressed
latent vector and the decoder generates new data from the
latent vector. The VAEs differ from autoencoders because
in VAEs the latent vector is regularized for generating new
data. Instead of encoding an input into a single point,
it is encoded as a distribution, which is then regularized
by parameterization, using a normal distribution such as a
Gaussian distribution so that the decoder can use any sample
from it to generate new data. Equation (7) gives the loss
function used to train the VAE [42].

L(θd, θe) = −Eqθe (z|xi)

[
log pθd(xi|z)

]
+KL(qθe(z|xi)∥p(z)) (7)

The VAE is trained to minimize the reconstruction error
(the first term of the expression) between the input data
and the generated data, and to maximize the likelihood
of the parameters of the Gaussian distribution (the second
term of the expression) that defines the latent space. The
second term acts as a regularizer to measure the loss when
qθe(z|xi) is used to represent the distribution p(z) of the
latent space z. qθe(z|x) is the distribution of the input
variables x and pθd(x|z) represents the distribution of the
decoded variables, while θe and θd are the parameters of
the encoder and decoder, respectively. This paper adopts the
TVAEs a version of VAE available in the same package as
CTGAN for handling tabular data as described above.

V. Training the CTGAN and TVAE Models
The generative models were trained in two ways. We first
trained the models offline using the training data generated
according to the transition probabilities in Table 2. Then,
we simulated the real-time training, i.e., training the GMs
when the RL is in operation. In this case, the training data
is acquired by the RL as it learns the channel states. In the
following, we describe the two training methods in detail
and evaluate the accuracy of the GMs in each case. The
training parameters are shown in Table 3. Two performance
evaluation metrics were used to evaluate the performance
of the trained GMs: the Kolmogorov-Smirnov Test (KS-
test) and the Kullback-Leibler divergence (KL -divergence).

TABLE 3: Simulation Parameters.
Name Value
Size of the training dataset 3000k traces
Number of epochs 100
Batch size 50
Generator and discriminator dimensions 256,256
Generator and discriminator learning rates 2e-4
TVAE encoder and decoder dimensions 128,128
Number of Transmission links (channels) 2
Number of hidden layers 3
Learning rate for the critic, α 0.03
Number of neurons for hidden layer 64
Discount Factor, γ 0.96
Learning rate for the actor, β 0.01
Optimizer ADAM
E2E loss threshold (ξ) 0.0001, 0.0005, 0.001, 0.01

Total number of iterations L 1000k
Number of iterations in an episode M 1000

The KS-test measures the distance between two empirical
Cumulative Density Function (CDF) and is usually presented
as a complementary measure, i.e., 1 - the difference in
CDF. Thus, the higher the KS-test value, the more similar
the two CDFs are. In our case, we compare the CDFs
of the real and synthetic data. The KL divergence, on the
other hand, measures the difference between two probability
distributions. The lower the KL divergence, the greater the
similarity between the two distributions.

A. Training Dataset
The datasets to train the GMs and the AC-RL agent were
created as follows: we used the transition probabilities com-
puted in Section III and reported in Table 2 to create the
Markov States for the LOS and NLOS for different elevation
angles. The LOS was coded as 1 and NLOS as -1. Thus, the
dataset consisted of a set of traces [-1,1...] for each elevation
angle according to the state transition probabilities. The
datasets created in this way were used to train the AC-agent
in a partially observable Markov process, and the generative
models in offline mode, while the dataset for real-time
training of GMs consisted of the channel states collected
during the learning process of the agent. The dataset to
train the AC-agent in a FOMDP is a combination of the
traces obtained by using the state transition probabilities (for
the channels selected by the agent) and the synthetic states
generated by the trained GMs (for the channels not selected
by the learning agent. See Algorithms 1 and 2). The training
datasets have different sizes depending on the model to be
trained as described in the appropriate sections below.

B. Offline Training of generative models
The offline training involved two ways: using separate
dataset and combined dataset. In the separate dataset, we
used the transition probabilities given in Table 2 to create
LOS/NLOS traces for each of the three channels or elevation
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TABLE 4: CTGAN and TVAE accuracy and training time
on separate training datasets

Elevation angle KS-Test KL-Divergence Training Time (s)
CTGAN TVAE CTGAN TVAE CTGAN TVAE

70◦ 0.95696 0.9541 0.0478 0.0624
60◦ 0.9828 0.9634 0.0023 0.0119 5427.84 5313.05
45◦ 0.9831 0.9582 0.0006 0.0040

angles (70◦, 60◦, 45◦). The traces were organized in a
tabular form of three columns with each channel traces
for each column. The CTGANs and TVAEs models were
trained to generate new traces for each column or for each
channel. For the combined dataset, all the traces for the three
elevation angles were combined into a one-column dataset
and reshuffled to balance the data.

Generative models performance evaluation (offline training)
The accuracy of the models trained on the separate dataset
was evaluated by comparing the generated traces for each
channel or column with the real traces of the corresponding
channel. In the case of the combined dataset, the comparison
was made between the combined generated traces with the
of each channel or column. Then, the two training models
were compared in terms of model accuracy and training time.
The aim is to find out which training mode achieves high
accuracy in a short time and which model between CTGAN
and TVAE performs better than the other in each training
mode. Table 4 and Table 5 show the accuracy and training
time for the two models trained with separate and combined
datasets respectively. Accuracy is measured by the distance
between the real and generated data. Figure 3 shows the
comparison between the distribution (PDF) of the real and
generated data for the two models trained with the separate
and the combined dataset for the three channels. The results
show that our models achieved very high accuracy in all
scenarios, with KT -test up to 98% and KL -divergence up to
0.0006. Both models show similar performance with minor
differences in all scenarios. However, the models perform
better when trained on the separate dataset than on the
combined dataset. This may be due to the fact that the
three channels are not correlated, so combining the channels
does not give good results. This means that training with
a separate data set is suitable for uncorrelated channels and
with a combined data set for correlated channels. In terms of
training time, the results show that both models train faster
with the separate dataset than with the combined dataset,
with TVAEs training relatively faster than CTGANs in both
cases. Based on these results, the models trained with the
separate dataset were used for the remainder of this work to
generate data traces for training our RL agent.

C. Real-time Training of generative models
Real-time training refers to the scenario where the GMs
are trained when the RL agent is already deployed for

TABLE 5: CTGAN and TVAE accuracy and training time
on combined training datasets

Elevation angle KS-Test KL-Divergence Training Time (s)
CTGAN TVAE CTGAN TVAE CTGAN TVAE

70◦ 0.9117 0.9337 0.0405 0.0255
60◦ 0.9423 0.9644 0.0156 0.0007 15925.74 15031.82
45◦ 0.8176 0.7956 0.107 0.1453

FIGURE 3: Comparison between the distributions (PDFs)
of the real and synthetic data generated by CTGAN and

TVAE models trained on separate and combined datasets.
The datasets contain LOS/NLOS traces of satellite links at

70◦, 60◦, and 45◦.

transmission. This is a more realistic scenario that can occur
when the channel model is not known in advance, which
is usually the case, or when there are no LOS datasets for
training the GMs. In this case, the RL agent must transmit
for a certain time on all the available channels to acquire the
CSI of all the channels. Then the acquired traces are used
to train the GMs. Finally, the trained models are used to
generate synthetic states of the channels that the agent does
not select for transmission at each transmission event so that
the RL agent can have a complete observation of the states
of all channels. This is a very challenging scenario due to
the time constraint. First, the time to acquire CSI should be
very short to avoid wasting bandwidth since the agent has
to transmit by duplicating traffic over all available channels.
Second, the training time of the GMs should be very short
because of the limited satellite visibility period. To simulate
this scenario and overcome these challenges, we first created
training datasets with different sizes: 2k, 5k, 10, 20k, 30k,
40k, and 50k to train the GMs. The goal is to determine the
minimum size of the dataset that will train the models in the
shortest possible time and achieve the highest possible model
accuracy. In this way, we can evaluate whether our proposed
approach is feasible for online training. We trained both the

VOLUME , 9



Machumilane, A. et al.: Towards a Fully-Observable Markov Decision Process with Generative Models for Integrated 6G-Non-Terrestrial Networks

FIGURE 4: Comparison in terms of the KS-Test between
the real data and synthetic data generated by CTGAN and
TVAE models trained in real time with training datasets of
different sizes (2k, 5k, 10k, 20k, 30k, 40k, and 50k). The
datasets contain LOS/NLOS traces of the satellite links at

different elevation angles (70◦, 60◦, and 45◦)

CTGANs and TVAEs models with only a single epoch and
recorded the training time for each training dataset.

Generative models performance evaluation (real-time training)
Table 6 shows the accuracy and the training time of the
CTGANs and TVAEs models in terms of the KL-Divergene
and the KS-Test between the real data and the synthetic data
generated by the two models. The models were trained with
datasets of different sizes containing the states of the satellite
links at different elevation angles. The aim was to determine
the minimum size of the atasets that can be used to train
the models and achieve good accuracy. From these results,
it can be seen that training with a 10k dataset is the best
compromise, sine with this size of dataset the models train
within a short time of 3.89 seconds and 2.39 seconds for
CTGAN and TVAE, respectively, achieving relatively good
accuracy at the three elevation angles (70◦, 60◦, and 45◦).
Figure 4 is the graphical representation of the variations
of the KS-Test between the real data and synthetic data
generate by CTGAN and TVAE models trained with datasets
of different sizes. It can also be seen that 10k dataset
achieves good accuracy for both models. The results also
show that increasing the size of the dataset does not have
much effect on the accuracy of the TVAE model. TVAE can
thus be trained with a very small dataset and achieve a good
accuracy. Figure 5 shows the variation of the training time
for CTGAN and TVAE models at different training datasets.
These results show that CTGAN requires longer time to
train than TVAE at all the sizes of the datasets considered.
In the rest of this work, we used the models trained with
the 10k dataset to generate synthetic datasets to evaluate the
performance of the RL agent with real-time trained GMs.

VI. Actor-Critic Reinforcement Learning
After discussing the structure, training, and evaluation of the
CTGAN and TVAE models in the previous sections, in this
section, we present the architecture and the learning pro-

FIGURE 5: Comparison in terms of training time between
CTGAN and TVAE models trained in real time with

training datasets of different sizes (2k, 5k, 10k, 20k, 30k,
40k, and 50k)

cess of our proposed Actor-Critic Reinforcement Learning
framework.

A. Problem Formulation
We formulate the LOS estimation on multiple links as a
POMDP [43] since, the learning agent observes on the
link(s) it selects for transmission. A POMDP is expressed as
{S,A, P (st+∆t|st, at), rt}, where S and A are state space
and action space respectively while P (st+∆t|st, at) is a
transition probability from state st ∈ S to state st+∆t ∈ S
and rt is the immediate reward for the action at.

1) State space: We denote the state space as a set of
vectors S = {st | st = [s1t, . . . , sNt]}, where N is
the total number of available transmission links. In our
case, N = 2. Since a channel can either be in LOS or
NLOS state, we define a state of a channel as follows:

snt =

{
+1 if the nthchannel is in LOS

−1 otherwise.
2) Agent’s state Observation: We denote the agent’s

observation of the channel states as a vector Ωt =
[ω1t, . . . , ωNt] where,

ωnt =

{
snt if the nthchannel is selected

0 otherwise
3) Action space: An action carried out by the actor is

the selection of a subset of the N channels. We,
therefore, define the action space as a set of vectors
A = {at | at = [λ1t, . . . , λNt]}, where λnt = 1
indicates that the nth channel is selected and λnt = 0
otherwise, for n = 1 . . . N . Since in this study, N=2,
A = {[0, 1], [1, 0], [1, 1]}.

4) Reward: The immediate reward rt is expressed as a
penalty whenever the E2E loss exceeds the defined
threshold and is expressed as follows:

rt =

{ −(ξ−ϱ)
ρ if ξ ≥ ϱ

1
ρ otherwise.

(8)
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TABLE 6: CTGAN and TVAE performance at different sizes of the training dataset
Size of the
training dataset

KL-Divergence KS-test Training Time (s)

70◦ 60◦ 45◦ 70◦ 60◦ 45◦

CTGAN TVAE CTGAN TVAE CTGAN TVAE CTGAN TVAE CTGAN TVAE CTGAN TVAE CTGAN TVAE
2k 0.0229 0.2751 0.0088 0.1356 0.7731 0.7731 0.9391 0.9479 0.8796 0.9711 0.1248 0.1248 0.85 0.55
5k 0.0003 0.2751 0.1356 0.1356 0.7731 0.7731 0.9952 0.9479 0.9711 0.9711 0.8752 0.8752 2.28 1.08
10k 0.9297 0.2751 0.0256 0.1356 0.1837 0.4168 0.3617 0.9479 0.9763 0.9711 0.7255 0.8752 3.89 2.39
20k 0.1874 0.2751 0.4077 0.1356 0.7731 0.7731 0.9485 0.9479 0.6183 0.9711 0.8752 0.8752 7.41 4.83
30k 0.2602 0.2751 0.0527 0.1356 0.0277 0.7731 0.9481 0.9479 0.9114 0.9711 0.9092 0.8752 14.17 8.21
40k 0.1816 0.2751 0.0221 0.1356 0.0227 0.7731 0.9485 0.9479 0.9773 0.9711 0.9183 0.8752 22.97 13.37
50k 0.0358 0.2751 0.0381 0.1356 0.0008 0.7731 0.9187 0.9479 0.9292 0.9711 0.9856 0.8752 24.32 15.46

where ξ represents the E2E loss evaluated over an
episode, ϱ is the loss threshold, and ρ is the number
of channels selected by the agent. When the loss is
greater than the threshold, the first term motivates the
agent to use multiple links to overcome the loss while
the second term encourages the use of single link to
conserve bandwidth in good channel conditions.

The basic architecture of the Actor-Critic RL consists of
two networks: The actor and the critic as shown in Figure
6. The actor takes the action and the critic evaluates the
action taken by the actor. In this work, we used two critic
networks. The critic network calculates the current action-
state value while the target-critic network computes the Bell-
man estimates of the future rewards. This approach improves
the stability of the critic network because the target-critic is
updated less often compared to the critic network. The three
networks are updated according to equations (9), (10), and
(12) respectively.

∇ϕaJ(ϕa) = Eπϕa
[∇ϕat

lnπϕat
(st,at)δt] (9)

where ∇ϕaJ(ϕa) is the policy gradient and J(ϕa) is the
policy objective function.

Q∗
ϕc

= argmin
Qϕc

(δ)2 (10)

where ϕa and ϕc are the actor and critic network parameters,
and

δt = rt + γQϕc
(st+∆t,at+∆t)−Qϕc

(st,at) (11)

ϕtc = α ϕtc + (1− α)ϕc. (12)

The choice of the Actor-Critic (AC) was motivated by the
fact that the AC algorithm does not require prior knowledge
of the model underlying the transmission channel. The AC
algorithm searches the optimal policy on a parametrized
family of functions using a gradient-based approach. We
designed the AC networks using fully connected multi-
layer perceptron NN with TensorFlow-2 [44] and Keras [45]
libraries. More design and simulation parameters are given
in Table 3.

FIGURE 6: The proposed learning architecture of the
Actor-Critic Agent. The upper part is the architecture of the
actor-critic algorithm while the lower part is the algorithm

for generating synthetic data using generative models.

B. Transforming a POMDP into a FOMDP with GMs
To accelerate the convergence of the RL agent, we propose
the use of GMs to generate synthetic channel states for the
states that are not accessed by the agent at a given time.
This transforms the POMDP into a FOMDP and gives the
agent complete knowledge of all channels. As a result, the
agent converges faster to maximize the use of the satellite
visibility period. As shown in Figure 7 (a), with POMDP,
the agent only observes the states of the channels it selects
for transmission, marked as 1 if the channel is in LOS and
-1 if it is in NLOS, where 0 indicates that the channel was
not accessed in that time slot and thus the agent has no
state information for that channel. Whenever a channel is not
accessed, its state is generated by the CTGAN and TVAE
models. Therefore, the agent’s observation of the channel
states is modified as shown in Figure 7 (b), where the values
in red mark the synthetic states generated by the GMs. In
Figure 7 (b), the agent has a complete observation FOMDP
of all states at any time slot. These state observations are
fed as input to the actor-network, which learns the LOS
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probability of each channel and estimates the scheduling
policy.

Algorithm 1: The Learning Process of the Actor-Critic
Agent.

1: Set L as the total number of iterations, M the episode
length, and N as the target-critic updating interval. Then,
initialize the actor, critic, and target-critic networks with
parameters ϕa,ϕc ϕtc respectively.

2: τ ← 0;
3: l← 0;
4: while l ≤ L do - The actor selects the action at ∼

πϕa
(st) i.e., the number of transmission links.

5: i← 0
6: while i ≤M do - Transmit the video on the selected

links;
7: if i = M − 1 then - Record the receiver report

(channel states and loss rate) - Calculate the reward
rt using (8); - The critic computes the state value; -
Compute the TD error, δt using (11); - Update the
actor and critic network parameters using (9) and (10)
respectively:

8: ϕa ← ϕa(t)
9: ϕc ← ϕc(t) - Update the Agent’s Observation

of the states according to Algorithm 2;
10: end if
11: i← i+ 1;
12: τ ← τ + 1;
13: end while
14: if τ = N then - Update the target-critic network

using (12);
15: τ ← 0;
16: end if
17: end while

Algorithm 2: Generating Synthetic Channel States using
CTGAN and TVAE

1: Load the trained GMs into the simulation environment.
2:
3: Initialize an array Ω of the Agent’s state observation;
4: i← 0
5: Ω← st+∆t (future states)
6: for i ≤ N do
7: if Ωt[i] = 0 then

- Generate synthetic state (ssyn) using CTGAN or
TVAE model;

8: Ωt[i]← ssyn
9: end if

10: i← i+ 1
11: end for

FIGURE 7: The AC agent’s Observation of the channel
states. (a) POMDP and (b) FOMDP. The FOMDP is

achieved by using synthetic channel states generated by the
trained generative models. The link states are as follows:
1=LOS, -1= NLOS, red=synthetically generated channel

state. In (a), 0 means the agent does not have the state of
the respective link because the link was not accessed in a

previous learning event.

C. Training Procedure
As detailed in Algorithm 1, at the start of an episode, the
actor selects transmission links according to its observation
Ωt of the channel states and transmits the traffic on the
selected links for the entire episode. At the end of the
episode, the agent records the receiver report which contains
the E2E loss rate for that episode and the state (LOS/NLOS)
of each selected link determined by the last bit reception
status. The E2E is used to calculate the reward which is
then used by the critic and the target-critic to compute the
current and future state values respectively. The Temporal
Difference (TD) is found using (11) and is used to update
both the critic and the actor networks. The agent’s state
observation is updated according to Algorithm 2. After a
given number of iterations, the target critic is updated with
a soft-update method; i.e., copying the weights of the critic
network according to a defined update factor, which in our
case is the learning rate of the critic. Figure 6 shows the
schematic representation of the whole training procedure.

VII. Performance Evaluation
The goal of this study is to investigate whether converting
a POMDP of the RL agent to a FOMDP by using GMs
to generate synthetic channel states of the channels that
the agent does not select can accelerate the convergence
rate of the RL agent and allow it to transmit with the
optimal policy for most of the satellite visibility time. To this
end, we ran several simulations to train our agent in four
different cases with different E2E loss thresholds: 0.0001,
0.0005, 0.001, and 0.01. In each of these four cases, the
agent was trained using different channel states. First, we
trained the agent in a partially observable Markov decision
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process (POMDP), where the agent learns from only the
states of the channel it selects for transmission. Then we
trained it in a fully observable Markov decision process
(FOMDP) using real data obtained by using channel models.
Finally, we trained the agent in FOMDP using synthetic data
generated by CTGAN and TVAE models. In total, we ran 16
simulations to test the learning performance of our agent and
the effect of using generative models. Each simulation lasted
1000 episodes with 1000 iterations for each episode. In the
following, we evaluate the performance of the agent in terms
of its learning performance, convergence rate, its ability
to overcome the E2E loss, and the bandwidth used. For
comparison, we also report the performance of the optimal
scheduling policy. This is the policy that assumes that the
LOS states of the channels are known in advance so that the
steady-state probabilities for all available paths are exactly
known.

A. Link Selection Performance
In this part, we evaluate the ability of our AC-agent to select
suitable transmission links in various situations. Figure 8
compares the categorical distributions achieved at conver-
gence by our AC-agent (red) and the optimal policy (blue).
Categorical distributions are the probabilities of transmitting
with satellite 1 (sat1) at 70◦, satellite 2 (sat2) at 60◦, and
both satellites (sat1,2).

1) Effect of E2E Loss Threshold
Four different E2E loss thresholds were considered: 0.0001,
0.0005,0.001,0.01. This means that in each case the learning
agent has to determine the suitable links to use and whether
to use single or double transmissions in order to overcome
the E2E loss rate to meet the predefined threshold. It is
expected that when the threshold is very low the agent
should favor double transmissions compared to when the
threshold is high. The results show that our agent is able
to recognize this pattern and use double transmissions with
redundancy when the E2E loss threshold is low at 0.0001
and 0.0005. Also when the threshold is moderate at 0.001,
the agent still favors double transmission, but it also uses
single transmission more than the previous two cases (0.0001
and 0.0005). However, when the E2E loss threshold is high
at 0.01 the agent uses more single transmission because it
is easy to meet the threshold without using redundancy to
preserve bandwidth.

2) Effect of the Satellite Elevation Angle
Figure 8 shows that in the fourth case when the E2E loss
threshold is 0.01 the agent uses single transmission and
transmits more via satellite 1 than satellite 2 because satellite
1 is at a higher elevation angle of 70◦ compared to satellite 2
which is at 60◦. Thus, satellite 1 is assumed to have a higher
LOS probability than satellite 2 because, in urban areas, there

TABLE 7: Convergence Points of the AC-Agent in
different Scenarios

Loss
Threshold

Without GMs With offline trained models With models trained in real-time

POMDP FOMDP with
real data

FOMDP with
CTGAN

FOMDP with
TVAE

FOMDP with
CTGAN

FOMDP with
TVAE

0.0001 597 319 320 320 325 367
0.0005 532 210 224 209 225 220
0.001 246 20 25 43 96 84
0.01 4 3 3 3 4 4

are fewer obstacles like buildings at higher elevation angles
than at lower elevation angles. These results show that our
agent can learn the LOS probabilities of different links and
select the suitable links that have higher LOS probability and
higher chances of good traffic reception.

3) Effect of using Generative Models
In each of the E2E loss thresholds considered, four different
simulations were performed: using POMDP, FOMDP with
real data, FOMDP with CTGAN model, and FOMDP with
TVAE model as shown in Figure 8. The POMDP and
FOMPD with real data are used as benchmarks to evaluate
the effect of using synthetic data generated by CTGAN and
TVAE models. It can be seen that in all four E2E loss
thresholds, when the AC-agent uses FOMDP with synthetic
data generated by CTGAN and TVAE, it achieves good
performance similar to FOMDP with real data and outper-
forms the POMDP, especially in the fourth case when the
E2E loss threshold is 0.01. This shows that using generative
models to transform a POMDP into a FOMDP increases the
learning performance of the AC agent in selecting suitable
transmission links.

4) Comparison between the AC-Agent and the Optimal Policy
In Figure 8, the categorical distributions achieved by our
agent are shown in red and those achieved by the optimal
policy are shown in blue. The optimal policy is the schedul-
ing policy that is assumed to have prior knowledge of the
satellite LOS probabilities. The results show that in all the
simulation scenarios considered, our learning agent achieves
good performance comparable to the optimal policy which
is assumed to know the channel states in advance.

B. Convergence Rate
In Table 7, we report the episodes in which the agent
achieved convergence, i.e., the episode in which the KL -
divergence between its categorical distributions and those of
the optimal policy is minimal. These results show that for
all E2E loss thresholds considered, using GMs to generate
synthetic channel states increases the convergence rate of
the learning agent compared to the case where the agent
learns with partially observable channel states. For example,
with an E2E loss threshold of 0.0001, the agent converges
after 597 episodes in POMDP while it converges after
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FIGURE 8: Comparison of the categorical distributions achieved by the AC-agent (red) and the optimal policy (blue), i.e.,
the probabilities to transmit with satellite 1 (sat1) at 70◦, satellite 2 (sat2) at 60◦ or both satellites (sat1,2). Four E2E loss
thresholds were considered: 0.0001,0.0005, 0.001, and 0.01, each in four scenarios: POMDP and FOMDP with real data,

CTGAN and TVAE.

320 episodes in FOMDP with CTGAN and TVAE. This
corresponds to a 47% increase in the convergence rate, a
performance similar to the benchmark FOMDP when the
agent uses real datasets and converges after 319 episodes.
Similar improvements in convergence rate can be observed
in all other scenarios. These results show that using GMs to
generate synthetic channel states of the channels not selected
by the agent, thereby converting a POMDP to a FOMDP,
significantly improves the convergence rate of the learning
agent. Figure 9 and Table 7 also show that TVAE converges
faster and is more stable than CTGAN; perhaps because
TVAE directly learns the distribution of the input data, unlike

CTGAN. We also find that as E2E loss threshold increases,
the agent converges relatively faster and arrives at a relatively
better steady-state policy. This shows that our agent can
operate in a wide range of propagation environments with
different QoS requirements. The results in Table 7 also
show that both offline and real-time-trained GMs achieve
comparable performance. For example, at the 0.0001 E2E
threshold, using real-time trained CTGAN and TVAE models
the learning agent converges after 325 and 367 episodes,
only 6 and 48 episodes respectively higher than with the
offline-trained models. It can be concluded that our proposed
approach of using GMs to accelerate the convergence of
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FIGURE 9: KL-Distance between the categorical distributions achieved by the AC-Agent and the optimal policy at
different learning episodes to show the convergence rate of the AC-agent at different E2E loss thresholds:0.0001, 0.0005,

0.001, 0.01 in four scenarios: POMDP and FOMDP with real data, CTGAN and TVAE. KL-Distance decreases as the
AC-agent converges to the optimal policy.

the learning agent can also be used in real-time operations
without slowing down the agent’s rate of convergence.

C. Convergence Time and the Satellite Visibility Period
In this part, we compare the agent convergence time and
satellite visibility period. The results in Table 7 show that
for partially observable states, the maximum convergence
time is reached with a 0.0001 threshold and the agent
converges after 597 episodes, which corresponds to 597k
iterations. One iteration corresponds to the transmission of
one bit. Assuming that the data rate of both the transmitter
and receiver is 1 Mbps, which is feasible for satellite
communications, convergence takes about 1.194 seconds,
considering the time to transmit and receive feedback. This
is about 0.001 times the satellite visibility period of 210

seconds in the considered scenario. In the case of the real-
time trained- GMs, the training dataset of 10k was used,
which can be obtained online in only 0.02 seconds, taking
into account the transmission and feedback time. Table 6
shows that the CTGAN and TVAE models are trained in
3.89 and 2.39 seconds, respectively. Table 7 shows that when
using real-time, the agent converges after 325 episodes with
CTGAN and 367 episodes with TVAE, which correspond to
0.65 and 0.734 seconds, respectively. This means that the
total time required to acquire the training data and train the
GMs, as well as the time required for the learning agent to
converge, is approximately 4.56 seconds for CTGAN and
3.144 seconds for TVAE, corresponding to 0.02 and 0.01
times the satellite visibility period respectively. It can be
concluded that the learning agent can converge fast enough
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to make the best use of the satellite visibility time even when
the GMs are trained in real-time.

Figure 9 is the graphical representation of the convergence
rates of the learning agent in different scenarios. At the
end of each learning episode, we recorded the KL-Distance
between the categorical distributions achieved by the AC-
agent and those achieved by the optimal policy. The results
in Figure 9 show that in all the scenarios described above,
the KL-Distance decreases as the simulation progresses. This
shows that our agent is able to learn the LOS of the channels
and converge to a steady-state scheduling policy when the
KL -Distance approaches 0, i.e., the learning agent achieves
the same categorical distributions as the optimal policy. It
can also be seen that using generative models, in this case,
CTGAN and TVAE, accelerates the convergence. This shows
that our proposed approach of using GMs to transform a
POMDP into a FOMDP can enable the learning agent to
converge faster within the satellite visibility period.

D. E2E Loss Rate
In multipath transmission, traffic is considered lost if the
transmitted traffic cannot be recovered on any of the available
paths. In our case, the loss granularity is the bit. Therefore,
the E2E loss rate (in BER) is defined as follows:

L =

∑M
i=1 υ∑M
i=1 ω

(13)

where M is the number of iterations in an episode, and ω
and υ are the number of bits transmitted and lost per iteration
respectively.

Figure 10 shows the E2E loss rates achieved by the
learning agent compared to the optimal policy at each of the
loss thresholds:0.0001, 0.0005, 0.001, and 0.01 in different
scenarios: POMDP and FOMDP with real data, CTGAN and
TVAE. These results show that in all scenarios, as the agent
continues to learn, the E2E losses decrease toward the end of
the simulation. It can be seen that as intended, using GMs
lowers the E2E loss more than using partially observable
states, as the agent converges faster and transmits with the
best policy most of the time. We also observe that TVAE
shows better performance than CTGAN. Table 8 shows the
numerical values of the average E2E loss rates. The high
loss rates observed may be due to the fact that the reference
city has satellite links with high losses due to low LOS
probabilities, as shown in Table 1. For this reason, even with
the optimal policy, the loss rate is higher than the thresholds,
except for the highest threshold of 0.01.

E. Bandwidth Utilization
Figure 11 shows the bandwidth used in terms of the average
number of bits transmitted by the learning agent and the
optimal policy in each learning episode. It can be seen that
at low loss thresholds (0.0001, 0.0005, and 0.001), both the
learning agent and the optimal policy trade the bandwidth to
overcome the E2E loss. While the optimal policy uses double

TABLE 8: E2E Loss Rate (BER) in different scenarios
Loss
Threshold

POMDP FOMDP with
real data

FOMDP with
CTGAN

FOMDP with
TVAE

Optimal Policy

0.0001 0.0265 0.0258 0.0260 0.0219 0.0049
0.0005 0.0265 0.026 0.0252 0.0260 0.0048
0.001 0.0201 0.0242 0.028 0.0222 0.0056
0.01 0.022 0.021 0.036 0.035 0.017

TABLE 9: Bandwidth used in different scenarios
Loss
Threshold

POMDP FOMDP with
real data

FOMDP with
CTGAN

FOMDP with
TVAE

Optimal Policy

0.0001 2.3265 2.3265 2.325 2.3715 2.985
0.0005 2.319 2.34 2.31 2.355 2.97
0.001 2.289 2.34 2.289 2.355 2.91
0.01 1.833 1.8 1.815 1.8 1.515

transmission most of the time, the learning agent starts with
single transmission and slowly learns and converges towards
double transmissions. However, at the higher loss threshold
of 0.01, both converge to a single transmission. Results in
Figure 8 too, show this behavior of using high bandwidth
at low loss thresholds and low bandwidth at high loss
thresholds. Table 9 shows the average throughput in megabits
per second (Mbps). In our simulations, we assumed 1.5
Mbps as the source rate. These results show that our agent
can learn the link characteristics and proactively transmit
with redundancy to overcome high losses and use single
transmission in low-loss conditions to save bandwidth.

VIII. Conclusion
In this work, we presented an AI-based framework for
the upcoming 6G-NTN integrated networks. The framework
consists of an AC-RL agent and GMs. The RL agent
estimates the LOS probabilities and schedules traffic over
multiple access links connecting the UE to LEO satellites
in a multi-access mode, while the generative models (GANs
and VAEs) are used to transform a POMDP into a FOMDP
to accelerate the learning process of the agent so that it
can converge within the satellite visibility period. Simulation
results have shown that our approach significantly improves
the learning process and shortens the convergence time. As a
result, the agent is able to transmit with an optimal policy for
most of the satellite visibility period, thus satisfying the QoS
requirements by reducing E2E losses without incurring addi-
tional bandwidth costs. In the 6G context, our framework can
offer learning-based LOS estimation and traffic scheduling in
6G-NTN integrated networks to improve link reliability and
availability, increase data rates and throughput, and improve
the QoS and the user Quality of Experience (QoE) which
are among the main pillars of the upcoming 6G mobile
networks. In addition, we have shown that the GMs can
be trained in real-time using network data collected by the
RL agent, eliminating the need for prior knowledge of the
channel model or training data.
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FIGURE 10: E2E loss rate achieved by the AC-Agent and the Optimal policy at different E2E loss thresholds: 0.0001,
0.0005, 0.001, 0.01 in four scenarios: POMDP and FOMDP with real data, CTGAN and TVAE.

Acknowledgments
This work was supported by the European Union un-
der the Italian National Recovery and Resilience Plan
(PNRR) PE00000001 - program ”RESTART”, the Euro-
pean Union under the Italian National Recovery and Re-
silience Plan (PNRR) Mission 4 Issue 2 Investment 1.4
“Potenziamento strutture di ricerca e creazione di ”campioni
nazionali di R&S” CN00000023 – “Sustainable Mobility
Center (CNMS)” and by the HORIZON-CL4-2021-SPACE-
01 project ”5G+ evoluTion to mutioRbitAl multibaNd neT-
wORks” (TRANTOR) No. 101081983

REFERENCES
[1] ITU-R-WP5D, “Future technology trends of terrestrial international

mobile telecommunications systems towards 2030 and beyond,”
International Telecommunication Union, 2022. [Online]. Available:
https://www.itu.int/pub/R-REP-M.2516

[2] R. Liu, R. Y.-N. Li, M. Di Renzo, and L. Hanzo, “A vision and an
evolutionary framework for 6g: Scenarios, capabilities and enablers,”
arXiv preprint arXiv:2305.13887, 2023.

[3] J. Du, C. Jiang, J. Wang, Y. Ren, and M. Debbah, “Machine learning
for 6g wireless networks: Carrying forward enhanced bandwidth,
massive access, and ultrareliable/low-latency service,” IEEE Vehicular
Technology Magazine, vol. 15, no. 4, pp. 122–134, 2020.

[4] 3GPP, “Technical specification group radio access network; solutions
for nr to support non-terrestrial networks (ntn): Tr 38.821 v16.1.0

(2021-05), (release 16),” 2021.
[5] M. Latva-aho, K. Leppänen, F. Clazzer, and A. Munari, “Key drivers

and research challenges for 6g ubiquitous wireless intelligence,” 6G
Flagship white paper, 2020.

[6] X. Zhu and C. Jiang, “Integrated satellite-terrestrial networks toward
6g: Architectures, applications, and challenges,” IEEE Internet of
Things Journal, vol. 9, no. 1, pp. 437–461, 2021.

[7] D. Zhou, S. Gao, R. Liu, F. Gao, and M. Guizani, “Overview of
development and regulatory aspects of high altitude platform system,”
Intelligent and converged networks, vol. 1, no. 1, pp. 58–78, 2020.

[8] E. Juan, M. Lauridsen, J. Wigard, and P. E. Mogensen, “A time-
correlated channel state model for 5g new radio mobility studies
in leo satellite networks,” in 2021 IEEE 93rd Vehicular Technology
Conference (VTC2021-Spring), 2021, pp. 1–5.

[9] 3GPP, “Technical specification group services and system aspects;
system architecture for the 5g system (5gs): Ts 23.501 v18.1.0 (2023-
03), (release 18),” 2023.

[10] A. Machumilane, A. Gotta, P. Cassará, G. Amato, and C. Gennaro,
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