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Abstract: 

 In this paper, we discussed
2

n
P , Cn and Wn.  Further we introduce the new concept weak edge set of super magic labeling 

at the end.  

Key Words:  Super Magic Labeling, Super Magic & Weak Edge Set  

1. Introduction:  

 We consider finite undirected graphs without loops and multiple edges.  We denote by V(G) and E(G) the set of vertices 

and the set of edges of a graph G, respectively.   The set of vertices adjacent to x in G is denoted by NG(x) and degG(x) = | NG(x)| 

is the degree of x in G. Let G be a graph with p vertices and q edges.  A bijection f from V(G)E(G) to {1, 2, …., p+1} is called 

an edge – magic labeling of G if there exists a constant s (called the magic number of f ) such that f(u) + f(v) + f(uv)=S for any 

edge uv of G.  An edge magic labeling f is called super edge magic if f(U(G)) = {1, 2, ….p} and f(E(G)) = {p+1,…., p+q}.  A 

graph G is called edge – magic if there exists an edge – magic labeling of G.     

2. Preliminaries: 

Definition 1: An edge magic labeling of a graph G(V, E) is called a super edge magic labeling of graph G, if 

},...,2,1{)( pVf   and },...,2,1{)( qpppEf   

Example: 

   

 

 

 

 

 

 

 

 

Definition 2: A graph is said to be super edge magic if it has a super edge magic labeling.  

Definition 3: The super edge magic strength of a graph G, sm(G) is defined as the minimum of all c(f) where the minimum is 

taken over all super edge magic labeling f of G if there exists atleast one such super edge magic labeling. That is 

ffcGsm :)(min{)(   is a super edge magic labeling of G}. 

Definition 4: An edge magic labeling of a graph ),( EVG  is called super magic labeling of G if },...,2,1{)( qEf   and 

},...,2,1{)( qpqqVf  . 

Example: 
 

 

 

 

 

 

 

 

 

 

Definition 5: The super magic strength of a graph G, sms(G) is defined as the minimum of all )( fc   where the minimum is 

taken over all super magic labeling f of G if there exist atleast one such super magic labeling. That is 

ffcGsms :)(min{)(   is a super magic labeling of G}. 

3. Basic Results: 

Theorem 1: )37(
2

1
)(  nCsms

n  where 3n odd and .1,12  mmn  
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Proof: Let the vertex sequence of 
n

C
 
be 

01210
,,...,,, vvvvv

n 
and let edge sequences be .1,...,1,0;

1



nivv

ii
 

Consider a super magic labeling }2,...,2,1{)()(: nGUEGVf  defined by 


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Let us find the magic constant )( fc   

)()()())((
111 


iiiiii

vvfvfvfvvfc  

         ]22/)1(4[  im 1]22/)1(3[  iim  57  m  

 Thus f is super magic labeling with magic constant )( fc   

57  m )37(
2

1
 n  

 Thus 
n

C is super magic and ).37(
2

1
)(  nCsms

n  

 In the next part we prove that )37(
2

1
)(  nCsms

n suppose there exists a super magic labeling  f of 
n
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         Thus 
2

)37(
)(




n
Csms

n  

Lemma 1: If a non trivial graph G is super magic then .32  pq  

Theorem 2: A wheel  
1

KCW
nn
  is not a super magic. 

Proof: Lemma 1 is significant in the sense that it eliminates huge number of graphs from being super magic graphs. It is 

interesting to find families of super magic graph that satisfy .32  pq  Since 
n

W  has ,2,1 nqnp   

,123)1(232  nnp  does not satisfy the above in equality. Thus wheel is not a super magic. 

Theorem 3: Disjoint union of 2 copies of 
3

c  is not super magic  

Proof: Suppose that f be a super magic labeling of 
3

2 c  with the magic constant ).( fc    

 In 
3

2 c  there are 6 vertices as well as 6 edges. 

 Adding all the constants, we get 
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




EeVv

efvfvdc )()()(6  

     )121110987(2)654321(   

     )57(221   

    11421   

          135  

Since c 6  is an even number, it is not possible to obtain a super magic labeling for .2
3

c   

Theorem 4: 66)(
2

 nPsms
n

.  

Proof:  Let 
n

vvv ,...,,
21

 be the vertices of 
2

n
P .  

Then }.21:;11:{)(
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2
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Define super magic labeling f of 
2

n
P  as follows: 

 )2(3)( invf
i

  for ,1 ni   
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Let us find the magic constant ).( fc   
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)32)(66(  nn . 

 Thus 66)(  nfc  and hence sms 66)(
2

 nP
n

.  ...(2) 

From equations (1) and (2).  

sms 66)(
2

 nP
n

 

 Motivated by theorem 4  we introduce the concept weak edge set of super magic labeling.  

Definition 6: Let G be any graph having atleast one super magic labeling set of non pendant edges whose removal decrease the 

super magic strength is called weak edge set.  

Example: Consider the path )(
6543216

vvvvvvP   on 6 vertices. We know that 20)(
6

Psms  

 Deleting the set of edges },{
5432

vvvvs   from ,
6

P  we get .3
2

P   

By theorem 4, .153
2
Psms  Thus s is the weak edge set of .

6
P   

4. Conclusion: 

 In this paper, we proved that wheel 
n

W  ad 2 copies of 
33

2, CC  are not super magic graph. Further we introduce the 

new concept weak edge set of super magic labeling. 
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