
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Tiny, Always-on and Fragile: Bias Propagation through Design Choices in
On-device Machine Learning Workflows

WIEBKE TOUSSAINT HUTIRI*, Delft University of Technology, The Netherlands

AKHIL MATHUR and FAHIM KAWSAR, Nokia Bell Labs, UK

AARON YI DING, Delft University of Technology, The Netherlands

Billions of distributed, heterogeneous and resource constrained IoT devices deploy on-device machine learning (ML) for private, fast and

offline inference on personal data. On-device ML is highly context dependent, and sensitive to user, usage, hardware and environment

attributes. This sensitivity and the propensity towards bias in ML makes it important to study bias in on-device settings. Our study is one

of the first investigations of bias in this emerging domain, and lays important foundations for building fairer on-device ML. We apply a

software engineering lens, investigating the propagation of bias through design choices in on-device ML workflows. We first identify

reliability bias as a source of unfairness and propose a measure to quantify it. We then conduct empirical experiments for a keyword

spotting task to show how complex and interacting technical design choices amplify and propagate reliability bias. Our results validate

that design choices made during model training, like the sample rate and input feature type, and choices made to optimize models, like

light-weight architectures, the pruning learning rate and pruning sparsity, can result in disparate predictive performance across male and

female groups. Based on our findings we suggest low effort strategies for engineers to mitigate bias in on-device ML.

CCS Concepts: • Software and its engineering → Software creation and management; • Computing methodologies → Machine
learning; • Hardware → Analysis and design of emerging devices and systems; • General and reference → Reliability.

Additional Key Words and Phrases: bias, on-device machine learning, embedded machine learning, design choices, fairness, audio

keyword spotting, personal data

ACM Reference Format:
Wiebke Toussaint Hutiri, Akhil Mathur, Fahim Kawsar, and Aaron Yi Ding. 2022. Tiny, Always-on and Fragile: Bias Propagation

through Design Choices in On-device Machine Learning Workflows. 1, 1 (March 2022), 38 pages.

1 INTRODUCTION

Rising concerns about digital privacy and personal data protection [43] are motivating a shift in data processing and

machine learning (ML) from cloud servers to end devices [10]. On-device ML is an emerging computing paradigm that

makes this shift possible [3]. In contrast to ML on centralized cloud-servers, on-device ML processes data directly on

the device that collected them. This has important gains for privacy: if the data never leaves the device, the potential for

unsolicited use or abuse by third parties is greatly reduced. Additionally, by eliminating data transfer during inference,

*The work was partially done while the author was an intern at Nokia Bell Labs.

Authors’ addresses: Wiebke Toussaint Hutiri, w.toussaint@tudelft.nl, Delft University of Technology, Jaffalaan 5, 2628 BX, Delft, The Netherlands; Akhil
Mathur; Fahim Kawsar, Nokia Bell Labs, P.O. Box 1212, Cambridge, UK; Aaron Yi Ding, Delft University of Technology, Jaffalaan 5, 2628 BX, Delft, The
Netherlands.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Hutiri, et al.

on-device ML enables instantaneous, continuous and offline data processing, making it possible to operate devices in an

always-on mode.

From earphones to embedded cameras, billions of tiny devices across the globe deploy on-device ML for inference

on personal data. However, a growing body of research shows that ML systems are prone to bias [40, 46], and can lead

to unfair predictions that favour or are prejudiced against particular groups of people. Bias in ML is concerning, as it

can result in decisions that inflict harm on people, oftentimes vulnerable groups or minority populations [4]. Uber’s fatal

self-driving car crash in 2018 [20] acts as a stark reminder of the consequences of unchecked bias. The crash, which

killed a pedestrian, was attributed to software design decisions which resulted in a series of misclassifications of the crash

victim by Uber’s ML system [32]. In the case of on-device ML, bias affects system reliability, that is to say the ability of

on-device ML to "deliver stable and predictable performance in expected [operating] conditions" [11]. Unexpected system

failures can result in products and services that inflict harm on users or the public. To our knowledge, no prior studies

have considered whether on-device ML systems are equally reliable for all users, that is to say, whether they are biased.

In this paper we study bias in on-device ML. We approach the topic from a software engineering lens, and investigate

the emergence of bias in the on-device ML workflow. On-device ML presents a unique development environment. While

the cloud offers limitless computing resources, on-device ML needs to account for the inherent hardware constraints of

end devices: limited memory, compute and energy resources [14]. Developers aim to retain predictive accuracy while

overcoming these constraints with engineering interventions in the on-device ML workflow. Engineering interventions

demand that developers make design choices during product development.

In previous work we investigated the impact of pre-processing parameter design choices in a keyword spotting task [59].

The study found that pre-processing parameters have a statistically significant impact not only on accuracy, but also on

bias. The effect is more pronounced for light-weight neural network architectures and at lower sample rates, making

this a relevant insight for the development of on-device ML. Informed by that work, we hypothesize that interdependent

engineering design choices and unpredictable operating contexts can result in unexpected performance disparities between

user groups in on-device ML applications. This paper builds on our previous study in three ways: 1) We develop a

decision map of on-device ML to consider design choices in the development workflow systematically. 2) We expand our

keyword spotting experiments on pre-processing parameters to more datasets and languages. 3) We conduct experiments

to study bias due to design choices made during model compression. Our paper is the first study of bias in on-device ML

workflows, and makes the following contributions:

(1) We present a decision map to help developers identify design choices in the on-device ML workflow (§3).

(2) We identify and quantify metrics to evaluate reliability bias (§4).

(3) We empirically show that design choices made during model training (§6.1) and model optimization (§6.2) can

amplify and propagate disparate performance across user groups, and thus reliability bias.

(4) We suggest strategies for mitigating reliability bias without compromising accuracy (§7).

The paper starts with an overview of background knowledge and related work in §2. We then present an overview of

on-device ML and design choices arising during on-device ML development in §3. In §4 we define and quantify reliability

bias. In §5 we introduce an empirical study of an audio keyword spotting task. We present our experimental results in

§6, and propose strategies for mitigating reliability bias in §7. Finally we discuss the implications of our work for the

development of fairer on-device ML in §8 and conclude in §9.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 3

2 BACKGROUND AND RELATED WORK

Bias in ML software engineering is a new area of research. In this section we thus present interdisciplinary background

literature on fairness and bias in ML. We define the concepts that we use in this work, and discuss bias measures and their

limitations. We then highlight perspectives on bias in ML development from software engineering and statistical learning,

with a focus on the impact of design choices.

2.1 Bias and Fairness in Machine Learning

2.1.1 Concepts and Definitions. Fairness in decision-making systems is considered as the "absence of any prejudice

or favouritism toward an individual or a group based on their inherent or acquired characteristics" [40]. Biases in a system

can render it unfair, and result in different individuals or groups of individuals being treated differently. If individuals

belong to a protected class (e.g. based on their nationality, gender, socio-economic status or age) and they experience

differential treatment that disadvantages them based on their membership in that class, this is considered discrimination

and can carry legal consequences [12]. An example of discrimination is denying an individual a home loan based on their

gender. Bias can (but does not necessarily) lead to discrimination. We consider systems to be fairer and more inclusive if

they are less biased. Practically, building ML systems that have no bias is difficult and maybe even impossible. However,

quantifying and reducing bias are attainable and important steps towards building more inclusive and fairer ML systems.

2.1.2 Bias Measures. To measure bias, researchers in ML have quantified fairness measures that operationalize

fairness definitions. Fairness definitions are categorized as measuring individual or group fairness [40]. Individual fairness

measures require that similar people are treated similarly, while group fairness measures require that different groups are

treated similarly. Verma and Rubin [63] broadly categorise fairness measures into statistical (parity) measures, similarity-

based measures and causal reasoning. Most statistical measures rely on metrics that calculate various ratios from error

rates and prediction outcomes. A bias evaluation then establishes if metrics are equal for members of protected and

unprotected groups. Equalised odds [19], for example, is a fairness measure that establishes if protected and unprotected

groups have the same false negative and false positive error rates.

Fairness measures can be further categorized as bias preserving and bias transforming, based on the measure’s treatment

of historic biases [65]. Parity-based fairness measures require equal error rates between groups of people. They are

considered bias preserving as they propagate historic bias, for example through data labelling decisions which can

replicate a biased world-view. Wachter et al. [65] argue that to support the objective of substantive equality in European

non-discrimination law, fairness measures should be bias transforming. However, if labels can be exactly known, no

historic bias exists, known performance disparities are legally justified or where systems are designed to replicate social

bias, for example for the purpose of debugging, then bias preserving fairness measures are sufficient. In many on-device

ML applications, such as wake-word detection, keyword spotting, object detection and speaker verification, data labels

are exactly known and undisputed. We consider parity-based measures as useful measures of bias in this context. In §4 we

introduce a parity-based bias measure that we use to quantify performance disparities between user groups in on-device

ML.

2.2 Bias in the Machine Learning Workflow

2.2.1 Evidence of Bias in Decision-Making Systems. The algorithmic fairness literature has focused predominantly

on studying bias in ML systems for classification tasks, with a particular view towards the proliferation of decision-making

systems that increasingly dominate public life [40]. Many studies have revealed evidence of bias in ML applications,
Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Hutiri, et al.

ranging from natural language processing [5] and gender classification [6] to face recognition [49] and automatic speech

recognition [31, 58]. As on-device ML is used for similar tasks, and leverages algorithmic approaches and data processing

techniques from ML, it is necessary to investigate bias in on-device ML.

2.2.2 Bias as a Concern for ML System Quality. Recent work in software engineering has highlighted the need to

model quality aspects of ML systems in detail [54]. Bias has been identified as a new concern affecting ML software

quality that should be considered as a non-functional requirement during development [25]. In requirements engineering

and quality modeling, bias considerations are allocated to data-related aspects [54, 64]. However, from the perspective of

statistical learning problems, bias can come from the training data, the predictive model and the evaluation mechanism [41].

The engineering and design nature of on-device ML requires an expanded view on bias to what is currently offered

by the software engineering and statistical learning perspectives individually. Firstly, the bias of a component cannot

be considered in isolation but must be considered within the evolving and dynamic system in which it is incorporated.

Secondly, bias is not only a data concern. In reality, bias can emerge at different stages in the ML workflow and create

reinforcing feedback loops [53]. This paper expands current perspectives on bias in software engineering by studying how

design decisions in the ML workflow influence bias.

2.2.3 Bias Propagation through Design Choices and System Composition. Design choices play an important

role in mitigating or propagating bias in the ML workflow. Mehrabi et. al [40] consider bias mitigation measures at

different stages of the ML workflow: during pre-processing, in-processing and post-processing. This perspective aligns

well with studies that consider the effects of design choices on ML bias in software engineering. For example, Hort and

Sarro [26] show how choosing thresholds for categorical data, a pre-processing decision, can impact both the degree of

bias, and which groups are favoured. The Fair-SMOTE algorithm, on the other hand, is a pre-processing intervention that

removes biased data labels and balances the training data distribution based on sensitive attributes and class labels [8]. In

on-device ML settings, trained ML models also undergo multiple post-processing steps to overcome resource constraints

for on-device deployment and distribution shifts due to context heterogeneity. Some of these post-processing steps, like

domain adaptation [55] and model compression [24], have been found to be biased.

Holstein et. al [23] have observed that developers can feel a sense of unease at the societal impacts that their technical

choices have, while Toussaint et. al [60] have shown that early collaboration between clinical stakeholders and AI

developers is important to guide design decisions to support social objectives within the public health sector. Dobbe et.

al [16] examine the impact of design choices on safety in AI systems for socio-technical decision-making in high-stakes

social domains. Rather than looking at specific low-level technical choices in the ML workflow, they consider situations

in which technical choices that promote different values are difficult to compare. They argue that developers ought to

adopt diagnostic practices to proactively anticipate these choices and resolve them through feedback with stakeholders.

Neglecting to do this, the authors further argue, gives rise to socio-technical gaps, where the technical functions do not

satisfy the social requirements of AI systems. Drawing on these perspectives, this paper considers pre- and post-processing

design decisions that arise in the inherently constrained on-device ML context, and examines the extent to which a

relatively comprehensive set of design choices can support the social requirement for inclusive on-device ML.

3 ON-DEVICE MACHINE LEARNING SYSTEMS

Having laid the foundations for bias in ML, and the importance of design choices in propagating or mitigating bias

in ML development, we turn our focus to on-device ML. Heterogeneous devices, diverse users and unknown usage

environments make the performance of on-device ML highly context dependent. During development, engineers are
Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 5

faced with a large number of decisions to choose interventions that overcome hardware constraints and meet operational

demands. Collectively, constraints and context-dependency make on-device ML development a complex engineering

undertaking that requires mastery of hardware, software engineering and data processing techniques, alongside an in-depth

understanding of the application context. In this section we provide an overview of the data processing workflow for

on-device ML systems, and highlight the various constraints, intervention strategies and design choices that an engineer

encounters while designing on-device ML systems in practice.

3.1 Data Processing Workflow for On-device ML

The key processing steps during on-device ML development are model training, interventions, and inference. A typical data

processing pipeline for on-device ML, as shown in Figure 1, consists of familiar ML processing steps for model training,

evaluation, selection and inference. Key differences between on-device ML and cloud-based ML development arise due

to the low compute, memory and power resources of end devices [14]. To enable on-device inference, interventions are

needed to optimize a trained model and its data processing pipeline for on-device deployment. These aspects are described

in greater detail below.

Model
training

Real-​time
on-​device
inference

Model
optimization

Training
data

Feature
extraction

Pre-​trained
model

Deploy model
to device

Evaluation &
model

selection

Evaluation

Data
input

Data
gathering

Model Training Interventions Inference

Fig. 1. Data processing pipeline for on-device machine learning development

3.1.1 Training. The dominant approach for developing on-device ML is to delegate resource-intensive model training

to the cloud, and to deploy trained and optimized models to devices [14]. The approach for training models is similar to

typical ML pipelines: input data is gathered and undergoes a number of pre-processing operations to extract features from

it. Thereafter, ML models are trained, evaluated and selected after optimizing a loss function on the data. Pre-trained

models can also be downloaded and used if training data or training compute resources are not available.

3.1.2 Interventions. The key differences between on-device ML and cloud-based ML development arise due to the

low compute, memory and power resources of end devices [14]. To enable on-device deployment of the trained model,

various interventions are needed to optimize the model and its data processing pipeline. Common interventions include

techniques such as model pruning, model quantization, or input scaling; all of which are aimed at optimizing device-

specific performance metrics such as response time or latency [2], memory consumption [17], or energy expenditure [68]

with minimal impact on the model’s accuracy. We elaborate on these intervention approaches in §3.2.

3.1.3 Inference. Once deployed, the trained and optimized model is used to make real-time, on-device predictions.

On-device inference performance is determined by the model training process, from data collection to model selection,

and the real-time sensor data input, but also by deployment constraints and interventions applied to the model.
Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Hutiri, et al.

3.2 Design Choices in On-device ML Engineering

Building on the on-device data processing workflow that we described, we now discuss the key design choices that an

engineer has to make in this workflow. We first explain the constraints of on-device ML that necessitate these design

choices, and thereafter discuss the various interventions that can be taken to satisfy these constraints. We also highlight

how these interventions could impact the accuracy and bias of on-device ML models.

3.2.1 Deployment Constraints. On-device ML development needs to take into account the limited memory, compute

and energy resources of the end devices [14]. The available storage and runtime memory on a device limits the size

of the ML models that can be deployed on it. The execution speed of inferences on the device is directly tied to the

available compute resources. Moreover, the amount of computations required by a model has a direct relation to its energy

consumption; given that many end devices are battery powered with limited energy resources, it becomes imperative

that ML models operate within a reasonable energy budget. In addition to these resource constraints, on-device ML also

has to deal with variations in the hardware and software stacks of heterogeneous user devices [3]. For instance, prior

research [38] has shown that different sensor-enabled devices can produce data at different sampling rates owing to their

underlying sensor technology and real-time system state. Such variations can impact the quality of sensor data that is fed

to the ML model, which in turn can impact its prediction performance.

3.2.2 Interventions. Research in on-device ML is largely concerned with overcoming these constraints and satisfying

hardware-based performance metrics while achieving acceptable predictive performance [14]. Prior works have developed

interventions to overcome memory and compute limitations, such as weight quantization [17] and pruning [35]. Other

approaches such as input filtering and early exit [27], partial execution and model partitioning [13] allow for dynamic

and conditional computation of the ML model depending on the available system resources. Another commonly used

alternative to satisfy resource constraints is to design light-weight architectures that reduce the model footprint [7, 68].

Finally, solutions have been proposed to make ML models robust to different resolutions of the input data [42], which is a

key to dealing with sampling rate variations in end devices. Common to all these interventions is that they trade-off a

model’s resource efficiency with its prediction performance. For example, model pruning or the use of light-weight neural

architectures can result in a model with smaller memory footprint and faster inference speed, however it comes at the

expense of a slight accuracy degradation [7, 35, 68].

3.2.3 Design choices. To build on-device ML, software engineers need to navigate deployment constraints and

interventions alongside ML training and deployment. This is technically challenging, and charges engineers with the

responsibility to take design actions and make design choices at each development step. Importantly, as on-device

deployment constraints require interventions in the development process, design choices like the choice of model

architecture, sample rate, input features and model compression techniques affect predictive and hardware performance,

as well as bias [59]. Even though some design choices can be optimized through automated experimentation, iterating

through all possible values requires extensive computing resources and time. This increases the cost of training. In

countries and contexts where the low cost of on-device ML is a key enabler and driver for technology adoption [29]

increased training costs reduce technology access. Moreover, each design choice can introduce bias into the system. If

time or compute are limited, engineers may need to limit the extent of their experimentation and only focus on a small set

of choices.

We visualize some of the key design choices as a decision map in Figure 2. The availability of training data is a logical

starting point during development, as it determines whether a new model can be trained, or if a pre-trained model must be
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 7

Legend

Train new model Download pre-​
trained model

Enough
training
data?

YES NOsample rate

input
features

hyper-​
parameters

Model fits
hardware

?

Optimize model

Deploy
modelNO YESlight-

weight
architecture

model
compression

pruning

predictions design
choices

con-​
straint

question

output

design action

algorithms

pre-​
processing

params

Start

quantization

explored
in this
study

Fig. 2. Decision map of design choices during on-device ML engineering. Yellow chart elements are design choices studied
in this paper.

downloaded. Once an engineer commits to the design action of training a new model, they are confronted with design

choices to select an algorithm, hyper-parameters, input features, pre-processing parameters and a data sample rate. After

training or downloading the model, the engineer needs to determine if it fits within the memory, compute and power

budget. If it does, they can deploy the model to make predictions. If the model does not fit within the hardware budget,

the engineer must take design actions to optimize the model and reduce its resource requirements. This can be done

through interventions like training a more light-weight architecture or compressing the model. These choices present

further sub-choices, for example model compression can be done with pruning, quantization or both. In comparison

to quantization, pruning involves more hyper-parameters and thus requires more design choices. Each design choice

modifies the model, and has the potential of introducing bias in its predictions.

4 BIAS IN ON-DEVICE ML

On-device ML systems are deployed on billions of personal and low resource devices that continuously capture and

monitor individuals or groups of people and the environment. In such cyber-physical systems (CPS) of distributed

devices, ML functions mechanistically and is constructed from and activated by personal data collected with sensors.

ML models can be seen as technical components of CPS, which along with other hardware and software components

affect the system’s functionality. Adopting a well-established definition1 of reliability for trustworthy CPS [11], we

posit that in order to be reliable and trustworthy, on-device ML should "deliver stable and predictable performance in

expected [operating] conditions". Instead, if ML components fail unexpectedly, devices become unreliable and users can

be inconvenienced or even harmed.

Thus, we define an on-device ML model as biased if it causes devices to have disparate performance across user groups

based on their personal or sensitive attributes. This can lead to devices that unexpectedly fail for some users, even if they

deliver stable and predictable performance for others. If unexpected failures systematically affect particular users, these

users are subjected disproportionately to harms that result from device failure. Biased on-device ML components thus

1This definition has been adopted in the Cyper-Physical Systems Framework proposed by the National Institute of Standards and Technology in the United
States

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Hutiri, et al.

lead to reliability bias of a device, which then becomes a source of unfairness in the CPS. While a number of factors can

lead to biased ML components, the focus of this work is to study how design choices during on-device ML development

(see Figure 2) impact the model’s accuracy for different demographic user groups, and thus propagate reliability bias.

4.1 Quantifying Reliability Bias

We consider an on-device ML model a reliable device component for a group if the group’s predictive performance equals

the model’s overall predictive performance across all groups. If a model performs better or worse than average for a group,

we consider it to be biased, showing favour for or prejudice against that group. Both favouritism and prejudice increase

reliability bias. We want to operationalize reliability bias with a measure that captures these definitions and penalizes

favouritism and prejudice equally. Additionally, the measure should be able to score models as being more or less biased,

and should consider positive and negative prediction outcomes. Given these requirements, we first define bias of a model

with respect to a group 𝑖 (𝑖 = 1 . . . 𝑁) as:

𝑏𝑖𝑎𝑠𝑖 = 𝑙𝑛

(
𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖

𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙

)
(1)

where 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖 is a metric computed for data samples belonging to the 𝑖𝑡ℎ group, and 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is

computed for all samples in the test set. 𝑏𝑖𝑎𝑠𝑖 is 0 when a model is unbiased towards group 𝑖, negative when it performs

worse than average and positive when it performs better than average for the group. The magnitude of the measure is equal

for a performance ratio and it’s inverse, as 𝑙𝑛(𝑥) = −𝑙𝑛(1𝑥). This has intuitive appeal that supports the interpretability of

our measure: 𝑏𝑖𝑎𝑠𝑖 is equal in magnitude but has opposing signs for groups that perform half as good and twice as good as

average. Given the group bias scores, reliability bias is the sum of absolute score values across all groups:

𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑖𝑎𝑠 =

𝑁∑
𝑖=1

|𝑏𝑖𝑎𝑠𝑖 | (2)

In this paper we assume that all groups are equally important. The 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑖𝑎𝑠 measure is thus unweighted and

does not take group size into consideration. 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑖𝑎𝑠 has a lower bound of 0, and an infinite upper limit. Lower

scores are preferred and signify that the performance across all groups is similar to the overall performance. We now turn

towards an empirical audio keyword spotting (KWS) study to show how design choices in the on-device ML workflow

propagate reliability bias.

5 A STUDY ON BIAS IN ON-DEVICE AUDIO KEYWORD SPOTTING

In the remainder of the paper we examine the propagation of bias through design choices in on-device audio keyword

spotting (KWS). KWS systems, which activate voice-based interactions with digital services [50] on smart speakers and

smart phones, are a prominent use case of on-device ML [2]. Voice-based service activation can be particularly beneficial

for increasing access to digital services for individuals who suffer from restricted vision, mobility and movement, and for

emergency response, home and elderly care. Many commercial products now exist that provide voice-activated urgent

response with on-device KWS (e.g. "call help") [47, 62]. Users place confidence in these products to support them

in moments of crisis and provision them with access to critical care services. Despite the evident societal promise of

on-device KWS, human speech signals exhibit variability based on social and physiological attributes of the speaker [18].

This makes it essential to ensure that systems work reliably for all users irrespective of their personal attributes such as

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 9

age and gender. A starting point for ensuring inclusive on-device audio KWS is to evaluate inference performance for

speaker groups with different attributes. In this study we consider groups based on gender.

Fig. 3. Audio processing pipeline during training and inference

5.1 Overview of Audio Keyword Spotting Task

An audio keyword spotting system as shown in Figure 3 takes a raw speech signal as input and outputs the keyword(s)

present in the signal from a set of predefined keywords. Next we describe the end-to-end training and inference pipeline

for a KWS system, while highlighting (in bold) the various design choices (ref. Figure 2) available to an ML engineer in

this task.

First, a raw speech signal is sampled from the microphone at a predefined sample rate (e.g., 8KHz, 16KHz) and split

into overlapping, short time duration frames using a sliding window approach. This framing operation requires specifying

a number of pre-processing parameters, which include i) Frame length that defines the duration of each frame, ii)

frame step that indicates the step size by which the sliding window is moved, and iii) window function which helps in

reducing spectral leakage in Discrete Fourier Transform (DFT). Thereafter, each frame of the speech signal is transformed

into input features: first, we apply a DFT to each frame to obtain log-scaled filter bank features known as log Mel

spectrograms. Optionally, log Mel spectrograms can be de-correlated using a Discrete Cosine Transform to generate Mel

Frequency Cepstral Coefficiencts (MFCCs). The number of log Mel spectrograms and MFCCs is also a designer-chosen

parameter, often tuned empirically. Finally, the frame-level features (log Mel spectrograms or MFCCs) are concatenated

across frames and mean-normalized to form a two-dimensional representation of the speech signal which is used to train

a deep neural network classifier, as described in [9]. This process also involves choosing an appropriate neural network
architecture that satisfies the resource constraints of the deployment device. Optionally, an ML engineer can also choose

to optimize the trained neural network by applying various model compression techniques such as weight pruning (see

§3.2)

5.2 Impact of Design Choices and Choice Variables

We now contextualize the design choices in KWS along the lines of the on-device ML workflow presented in §3, and

explain how prior literature has navigated them.

Firstly, the sample rate can be seen as a deployment constraint due to hardware limitations such as microphone capabili-

ties [42]. Prior works [15, 57] have also used sample rate as a tunable parameter to adjust the power consumption on

an embedded device during data collection. However, to our knowledge, there has been no study on how the choice of

sample rate affects bias of ML models, other than our prior work [59] which is extended by this research.
Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Hutiri, et al.

The choice of audio pre-processing parameters is known to have an impact on the performance of a KWS model in

an embedded system [42]. Frame length and frame step together determine the temporal dimension of the 2D features

that are fed to a DNN, and the number of log Mel spectrogram or MFCC features determine the length of features

in each time segment. Together, these features influence the dimensions of the input data to the model, which in turn

impacts the number of computations during inference. This insight was used in a recent work named ePerceptive [42],

wherein the authors experimented with different values of frame step to achieve a good trade-off between inference

accuracy and latency. However, there has been no prior work which has explored potential accuracy-bias trade-offs due to

pre-processing parameters.

Unsurprisingly, the model architecture plays an important role in the performance of a KWS system. Performing inferences

on model architectures with fewer parameters takes less time, but could lead to accuracy degradation. On the contrary,

deeper models with a large number of parameters might provide better accuracy, at the expense of higher inference latency.

Prior KWS works [1, 9, 21, 22, 61, 69] have experimented with different architectures to achieve a good accuracy-latency

trade-off. However none of these studies have evaluated bias in KWS systems due to the choice of model architecture.

Finally, while compressing a trained model for deployment using model pruning, a developer needs to specify a number

of parameters such as final sparsity, pruning frequency, schedule, and learning rate. Final sparsity, specified in percentage,

determines the proportion of weights that will be set to 0 during model pruning. Indeed, a high ‘final sparsity’ leads to

more compressed models, which result in lower storage requirements and reduced inference latency on the device [33].

A pruning frequency of ‘n’ indicates that the model should be pruned after every ‘n’ training steps. Pruning Schedule

can take two values: i) constant sparsity, which indicates the fixed sparsity level of the model throughout the training, or

ii) polynomial decay, where the pruning sparsity grows rapidly in the beginning from initial_sparsity, but then plateaus

slowly to the final sparsity. Finally, Pruning Learning Rate controls the step size taken by the model optimizer (e.g., Adam

or Stochastic Gradient Descent) during backpropagation. Prior literature on neural network pruning primarily investigates

the impact of final sparsity on model accuracy [33] and does not shed light on the impact of other pruning parameters.

However, given that these parameters also constitute important design decisions during model optimization, we choose to

include them in our experiments. To our knowledge, the effect of pruning parameters on KWS models running on-device

has not been studied.

5.3 Experiment Design

Having established that prior KWS literature has not adequately studied the impact of design choices on bias, we set up

experiments to investigate design choices related to important design actions for on-device ML: model training and model

optimization. Guided by the on-device ML development workflow presented in §3 and our prior work [59], we aim to

answer the following research questions within the context of an audio KWS task:

(1) How does the choice of architecture affect reliability bias and accuracy?

(2) How does the audio sample rate affect reliability bias and accuracy?

(3) How do pre-processing parameters affect reliability bias and accuracy?

(4) How do pruning parameters affect reliability bias and accuracy?

The various design choices and choice variables are summarized in Table 1 and explained next.

As discussed earlier, the neural network architecture is an important design choice during model training. We experiment

with two convolutional neural network (CNN) architectures for KWS, originally proposed in [51] and later implemented
Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 11

Design action Design choice Choice variable (unit) Variable values

Train new model input features | sample rate sample rate (kHz) 8, 16

Train new model input features | pre-processing feature type log Mel spectrogram, MFCC
Train new model input features | pre-processing # Mel filter banks 20, 26, 32, 40, 60, 80
Train new model input features | pre-processing # MFCCs None, 10, 11, 12, 13, 14
Train new model input features | pre-processing frame length (ms) 20, 25, 30, 40
Train new model input features | pre-processing frame step (% frame length) 40, 50, 60
Train new model input features | pre-processing window function Hamming, Hann

Optimize model light-weight architecture model architecture CNN, low latency CNN [51]

Optimize model model compression | pruning final sparsity (%) 20, 50, 75, 80, 85, 90
Optimize model model compression | pruning pruning frequency 10, 100
Optimize model model compression | pruning pruning schedule constant sparsity, polynomial decay
Optimize model model compression | pruning pruning learning rate 1e-3, 1e-4, 1e-5

Table 1. Overview of design choice variables and values for the audio keyword spotting study

in the TensorFlow framework. The architecture that we refer to as CNN consists of two convolutional layers followed by

one dense hidden layer, while the low-latency CNN (llCNN) consists of one convolution layer followed by two dense

hidden layers. The authors in [51] showed that the llCNN architecture, by virtue of having less convolution operations, is

more optimized for on-device KWS.

Next, we study choices that affect the input features of the model, namely sample rate and pre-processing parameters.

Audio keyword spotting developer benchmarks often use a 16kHz audio input [39, 67]. In practice many devices collect

data at a lower sample rate of 8kHz [42] due to hardware constraints. We thus train models with audio data at two sample

rates, 16kHz and 8kHz, for both architectures.

For studying the impact of pre-processing parameters, we take inspiration from prior KWS literature [1, 9, 21, 22, 61, 69],

and experiment with two feature types, log Mel spectrograms and MFCCs. More specifically, we vary the dimensionality

of log Mel spectrograms from 20 to 80, and of MFCCs from 10 to 14. We also consider log Mel spectrograms that are

used directly as input features, with no MFCCs. Further, we experiment with three temporal pre-processing parameters:

frame length (20-40 ms), frame step (40%-60% overlap) and the window type (Hamming/Hann); these values are based

on prior on-device KWS works [1, 21, 22, 42, 69].

With regards to model optimization, we focus on model compression, in particular parameter choices during post-training

pruning. Based on prior literature [33, 34], we vary the pruning sparsity from 20% to 90%. For pruning schedule, we

experiment with both constant sparsity and polynomial decay as explained in §5.2. For learning rate, we choose three

values based on prior KWS literature on model training [1, 9, 21, 22, 61, 69]. For pruning frequency, we used two values:

100 (the default frequency in TensorFlow) and a faster option of 10, wherein the pruning operation takes place after every

10 training steps.

5.4 Experiment Setup

5.4.1 Datasets. We trained and evaluated models on the following five spoken keywords datasets spanning four

languages — English, German, French, and Kinyarwanda:

Google Speech Commands (google_sc) [67] is an English language dataset consisting of 104,541 spoken keywords

from 35 keyword classes such as Yes, No, One, Two, Three, recorded by volunteer contributors and released at a 16kHz

sample rate. We labeled every utterance as male or female using a crowd-sourced data labelling campaign conducted on
Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Hutiri, et al.

Amazon Mechanical Turk. We used the same train, validation and test set splits of 85%, 10%, 5% respectively from the

original dataset. Female speakers constituted 30% of the original training data, 32% of the validation and 29% of the test

data. During training we thus ensured that mini-batches have an equal balance of male and female speakers by randomly

sampling from the male training set.

Multilingual Spoken Words Corpus Datasets [39]. The Multilingual Spoken Words Corpus (MSWC) is a large corpus

of spoken words in 50 languages, originally sampled at 48KHz. Each language partition contains hundreds of hours

of audio data with tens of thousands of keyword classes. MSWC has been derived from Mozilla Common Voice2 by

splitting the crowd-sourced, read-speech corpus into individual words. We chose four of the languages with the largest

data resources in MSWC to create four keyword spotting datasets in different languages: MSWC English (mswc_en),

MSWC German (mswc_de), MSWC French (mswc_fr) and MSWC Kinyarwanda (mswc_rw). Each of the MSWC

datasets was created with data from its language partition, and a consistent approach to select keywords, balance data

across male and female speakers, and split the dataset into train, validation and test splits.

For each dataset, we selected keywords from the 35 largest keyword classes to create training datasets that are equivalent

to Google Speech Commands. Following the keyword selection strategy of the authors of the MSWC dataset, we only

selected keywords with more than 3 characters. Additionally, if two words started with the same 3 letters, we only selected

the first occurring word. This resulted in a total of 200 628 keyword utterances for MSWC English, 85 572 keyword

utterances for MSWC German, 75 644 keyword utterances for MSWC French and 53 608 keyword utterances for MSWC

Kinyarwanda. The dataset sizes vary based on the language representation in the Mozilla Common Voice corpus.

dataset split MSWC English MSWC German MSWC French MSWC Kinyarwanda

female training 79002 (39%) 34728 (41%) 31127 (41%) 20713 (39%)
male training 79611 (40%) 34329 (40%) 30276 (40%) 21786 (41%)

female validation 10496 (5.2%) 4613 (5.4%) 2790 (3.7%) 3580 (6.7%)
male validation 10238 (5.1%) 3976 (4.6%) 3601 (4.8%) 1801 (3.4%)

female test 10816 (5.4%) 3445 (4%) 3905 (5.2%) 2511 (4.7%)
male test 10465 (5.2%) 4481 (5.2%) 3945 (%) 3217 (6%)

total 200628 85572 75644 53608
Table 2. Audio keyword utterance count (and % of total dataset) across dataset splits for MSWC English, MSWC German,
MSWC French and MSWC Kinyarwanda datasets.

To ensure gender-balanced datasets, we only used keyword utterances where the gender metadata field was male

or female. The gender metadata in Mozilla Common Voice has been provided by data donors and thus corresponds

with the self-identified gender of the speaker. For each keyword we counted the utterances per gender. We included

all utterances/keyword of the gender with fewer utterances/keyword, and randomly sampled the same number of

utterances/keyword from the gender with more utterances/keyword. We joined the selected data for both genders and all

keywords, before splitting the data into train, validation and test sets. To create the dataset splits, we followed the protocol

described in [39] as closely as possible while enforcing gender-balance. We first created a list of unique keyword-speaker

pairs so that train, validation and test sets are separate. Next, we randomly sampled 80% of keyword-speaker pairs for

training. We then randomly sample 10% of keyword-speaker pairs for validation, excluding pairs already in the training

set and rounding to the nearest integer. Finally, we allocated the remaining keyword-speaker pairs to the test set. The

2https://commonvoice.mozilla.org/

Manuscript submitted to ACM

https://commonvoice.mozilla.org/

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 13

keyword utterance count and representation for male and female genders across dataset splits are shown in Table 2. During

training we ensured that mini-batches have an equal balance of male and female speakers.

5.4.2 Training Details. Our training setup is implemented in Tensorflow 2.0 and we used a Nvidia V100 GPU to train

the models. For each dataset we iteratively trained models with all combinations of model architectures, sample rates

and pre-processing parameters listed in Table 1. This resulted in 3456 candidate models per dataset, and a total of 17280

experiments across 5 datasets. We used the TF HParams API3 for tuning the training-time learning rate for each model

from the following three options: {1e-2, 1e-3, 1e-4}. We used the Adam optimizer for training, with a fixed batch size

of 128 samples. Each model was trained for 10 epochs, which was chosen based on empirical evidence that the model

performance did not improve beyond 10 epochs.

Thereafter, we used model selection criteria that consider accuracy and bias (discussed in detail in §7.1) to select

baseline models for model compression. Table 3 lists the number of baseline models selected per dataset for the pruning

experiments. For the Google SC and MSWC Kinyarwanda datasets we could not find models that met all our selection

criteria across architectures and sample rates, which is why fewer baseline models were selected for these datasets. We

then obtained the compressed version of the baseline models under each combination of pruning parameters listed in

Table 1. As with training, we also used 10 epochs for pruning. Our pruning experiments resulted in 72 pruned models for

each baseline model, and a total of 12168 experiments.

Google SC MSWC German MSWC English MSWC French MSWC Kinyarwanda

16kHz CNN 9 9 9 9 6
16kHz llCNN 8 9 9 9 7
8kHz CNN 9 9 9 9 7
8kHz llCNN 9 9 9 9 6

Table 3. Number of baseline models pruned per dataset, architecture and sample rate

5.4.3 Evaluation Protocol. As ground truth labels in audio KWS can be exactly known and are unambiguous, we

assume that labels are correct and unbiased. We can thus evaluate bias with the parity-based reliability bias measure which

we defined in Equation 2. For our experiments we compute two evaluation metrics for each model on the held-out test set:

i) reliability bias and ii) accuracy. For accuracy, we compared five different metrics: Cohen’s kappa coefficient, precision,

recall, weighted F1 score and the Matthews Correlation Coefficient (MCC). The trends we observed are consistent across

metrics. Thus, we only report accuracy results for the MCC, which is a robust metric for multiclass classification.

6 EMPIRICAL RESULTS AND ANALYSIS

In this section we present the results of our study and analyze the impact of design choices on reliability bias and accuracy

during different stages of the on-device audio KWS workflow. We start with design choices that arise during model

training, first analyzing the impact of the architecture and sample rate, then the impact of pre-processing parameters. After

that we consider model optimization design choices that arise during model compression, namely the impact of pruning

hyper-parameters.

3https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hparams

Manuscript submitted to ACM

https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hparams

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Hutiri, et al.

6.1 Design Choices during Model Training

To analyze the impact of the pre-processing parameters, we performed factorial ANOVA tests that allow for interac-

tions [44] on our balanced study design. This type of statistical test is used to determine the influence of two or more

independent variables on one dependent variable, which makes it suitable for our study. We coded deviation (or sum)

contrasts and used type 3 sums of squares. The analysis was done in python using the 𝑠𝑐𝑖𝑝𝑦 𝑠𝑡𝑎𝑠𝑡𝑚𝑜𝑑𝑒𝑙𝑠 package and is

available as a jupyter notebook on github 4. Given the large number of possible interactions between our independent

variables (i.e. choice variables in Table 1), we designed the first factorial ANOVA model (see Model 1 in the Appendix) to

consider a subset of interactions that we deemed important for accuracy and reliability bias of KWS models based on prior

visual analysis. We continued to improve the factorial ANOVA models separately for the two dependent variables (MCC

(accuracy) and reliability bias) by removing all non-significant interactions, and then including lower-level interactions.

The final ANOVA models are included in the Appendix, with Models 2 and 3 capturing variables and interactions of

model training design choices on the accuracy score and reliability bias respectively.

Tables 4 and 5 show statistically significant interaction and main effects of the final factorial ANOVA models. For

completeness we have included main effects even if they already contribute to an interaction. The final factorial ANOVA

models are significant (MCC (accuracy): 𝐹 (171) = 2527.2, 𝑝 = 0.0, 𝑅2
𝑎𝑑 𝑗 .

= 0.9615 and reliability bias: 𝐹 (92) = 367.95,

𝑝 = 0.0, 𝑅2
𝑎𝑑 𝑗 .

= 0.6615). For reference, the critical F statistics at p-values less than 0.01 and 0.05 are shown in Table 6.

Based on the F statistics, we reject the null hypothesis that neither design choices made during model training, nor

their interactions affect KWS model accuracy and reliability bias. The 𝑅2 values indicate that the accuracy ANOVA

model (𝑅2 = 0.9619, 𝑅2
𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑

= 0.9615) better captures the effects than the reliability bias ANOVA model (𝑅2 = 0.6633,

𝑅2
𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑

= 0.6615), in which a portion of variance in the dependent variable remains unaccounted for. Next we examine

the impact of the model architecture and sample rate, and of the pre-processing parameters in greater detail.

Factorial ANOVA main and interaction effects SS df F p(<0.05)

model architecture 31.9714 1 6.0103E+04 0.0E+00
sample rate 3.4011 1 6.3938E+03 0.0E+00
dataset 160.1572 4 7.5270E+04 0.0E+00
mfccs 17.2272 5 6.4771E+03 0.0E+00
mel filter banks 3.1283 5 1.1762E+03 0.0E+00
frame step 0.1500 2 1.4103E+02 1.8E-61
model architecture * mel filter banks 0.0202 5 7.6075E+00 3.8E-07
dataset * sample rate * mfccs 0.1425 20 1.3391E+01 7.0E-45
dataset * model architecture * mfccs 0.1056 20 9.9288E+00 3.5E-31
Residual 9.100465 17108 - -

Model - 171 2.5277E+03 0.0E+00
𝑅2: 0.9619

Adjusted 𝑅2: 0.9615

Table 4. Significant main and interaction effects of model training design choices on MCC (accuracy). SS=sum of squares,
df=degrees of freedom

6.1.1 Impact of Model Architecture and Sample Rate. The results of the statistical tests in Tables 4 and 5 show that

model architecture and sample rate contribute to significant interaction effects that impact accuracy and reliability bias.

We now examine how these two metrics are affected by variable values and their interactions.
4https://github.com/akhilmathurs/fair-ondevice-ML

Manuscript submitted to ACM

https://github.com/akhilmathurs/fair-ondevice-ML

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 15

Factorial ANOVA main and interaction effects SS df F p(<0.05)

model architecture 0.96734 1 469.248554 1.10E-102
sample rate 0.477009 1 231.393075 6.45E-52
dataset 62.4386 4 7.5721E+03 0.0E+00
mel filter banks 0.1225 5 1.1887E+01 1.7E-11
dataset * sample rate 0.7840 4 9.5078E+01 3.9E-80
dataset * mel filter banks 0.3758 20 9.1140E+00 5.1E-28
dataset * model architecture * mfccs 0.9662 20 2.3436E+01 1.8E-85
Residual 35.4366 17190 - -

Model - 92 3.6795E+02 0.0E+00
𝑅2: 0.6633

Adjusted 𝑅2: 0.6615

Table 5. Significant main and interaction effects of model training design choices on reliability bias. SS=sum of squares,
df=degrees of freedom

df 1 2 4 5 8 10 20 40

𝐹𝑐𝑟𝑖𝑡 (p<0.01) 4052.1807 98.5025 21.1977 16.2582 11.2586 10.0443 8.0960 7.3141
𝐹𝑐𝑟𝑖𝑡 (p<0.05) 161.4476 18.5128 7.7086 6.6079 5.3177 4.9646 4.3512 4.0847

Table 6. Critical F-values for determining significance at p<0.01 and p<0.05 for different degrees of freedom (df)

Fig. 4. Experimental results of MCC (accuracy) and reliability bias for CNN and low latency CNN model architectures with
16kHz and 8kHz sample rates trained on 5 different datasets.

Figure 4 shows a boxplot of accuracy and reliability bias for CNN and light-weight low latency CNN (llCNN)

architectures trained on 16kHz and 8kHz audio data. A higher MCC score implies better prediction performance. The
Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Hutiri, et al.

Fig. 5. Disaggregated MCC (accuracy) scores for males (x-axis) and females (y-axis) for a single model trained with a
unique combination of pre-processing parameters. On the black diagonal the performance is equal for both subgroups.

trends in accuracy scores for models trained with different architectures and sample rates are consistent across datasets.

CNN and llCNN architectures trained at 8kHz have a lower median accuracy score (i.e. they are worse) than those trained

at 16kHz, and CNN architectures have higher scores than their light-weight counterparts. While models trained on the

MSWC-rw dataset still follow this trend, their performance, in general, is considerably worse than that of the other models.

Possible reasons for this are that less training data was available for these models, and Kinyarwanda is a different language

family than the languages in the other datasets. It is out of the scope of this study to consider bias due to language and

accent, which remains an important area for future work.

For reliability bias we observe that median scores are higher (i.e. worse) for models trained at 8kHz than those for

models trained at 16kHz. For the Google Speech Commands (Google SC), the MSWC-de and the MSWC-fr datasets,

models trained at lower sample rates also have a higher interquartile range (IQR) in reliability bias scores. The light-weight

llCNN architecture tends to have a higher median reliability bias and greater IQR than the CNN architecture, but the

effect is not as pronounced as for accuracy. Models trained on the MSWC-rw dataset do not follow these trends. While

median reliability bias of CNN models is lower than that of llCNN models, 8kHz models are also less biased than 16kHz

models. We anticipate that the deviation between trends observed for the MSWC-rw models and the remaining models

contributes significantly to the large effect size of the dataset variable that we observe in Tables 4 and 5.

Delving deeper into these findings, we analyze the relationship between male and female MCC scores across archi-

tectures and sample rates in Figure 5. Each data point represents the disaggregated male and female accuracy scores of

a single model trained with a unique combination of pre-processing parameters. The dotted black diagonal represents

equal performance for male and female speakers. Points above the diagonal perform better for females, and points below

perform better for males. For the MSWC-de, -en and -fr datasets it is evident that accuracy scores are biased to favour

male speakers. For the MSWC-rw dataset, models always favour female speakers. For the Google SC dataset the results

are more nuanced. Models trained with CNN architectures tend to favour male speakers, whereas models trained with

llCNN tend to favor female speakers. This figure shows that the nature of the training data contributes significantly to bias.

We also observe that for each dataset there exist models that lie on or very close to the diagonal. These models have a

lower reliability bias than the remaining models. We hypothesize that pre-processing parameters contribute to reliability

bias, and thus the distance of experiments from the diagonal. This leads us to the next section, where we analyze the role

of pre-processing parameters on accuracy and reliability bias.

Key insights: Model accuracy is lower at lower sample rates and for light-weight architectures. Median and IQR

of reliability bias tend to be greater at lower sample rates and for light-weight architectures. The direction of bias is

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 17

strongly influenced by the training dataset. Overall, male speakers are favoured by models. An exception to this are

models trained on the MSWC-rw dataset, which have considerably lower accuracy and favour female speakers.

6.1.2 Impact of Pre-processing Parameters. Having studied the effect of the architecture and sample rate, we now

turn to pre-processing parameters, the next design choice listed in Table 1. The F statistics and p-values in Tables 4 and 5

indicate that the dimensions of log Mel spectrograms and MFCC features significantly affect accuracy and reliability

bias. For accuracy there exist interaction effects between Mel filter banks and architecture, between MFCCs, dataset and

sample rate, and between MFCCs, dataset and architecture. The latter interaction effect also exists for reliability bias, as

well as an interaction effect between Mel filter banks and dataset. Figure 6 visualizes accuracy and reliability bias for the

six MFCC and log Mel spectrogram dimensions across all datasets for the 8kHz low latency CNN models. As highlighted

earlier, the lower sample rate and light-weight architecture result in models that experience greater decline in accuracy

and reliability bias. We thus anticipate that the impact of pre-processing parameters is more pronounced for these models.

In Figure 6 the number of MFCC dimensions implies the choice of input feature type. Models with no MFCCs (i.e. #

MFCCs = None) use only log Mel spectrograms as input features. It is clear from the figure that the accuracy of models

trained with log Mel spectrograms (i.e. the blue boxes) is significantly worse than that of models trained with MFCC

input features. For models trained with MFCC features, fewer dimensions (i.e. # MFCCs = 10 or 11) tend to result in a

higher median accuracy than more dimensions. However, the impact of this is much smaller than that of using log Mel

spectrograms. For reliability bias we observe mixed results that depend on the training dataset. Google SC, MSWC-en and

MSWC-rw have a lower median reliability bias when using log Mel spectrograms. On the other hand, for the MSWC-de

and MSWC-fr datasets the median reliability bias is lower for models trained with MFCC input features. Figure 13 in the

Appendix shows comparable results for 16kHz CNN models. Here we still observe that the median accuracy is lower for

log Mel spectrogram input features, except for the Google SC dataset. This dataset also has a lower median and smaller

IQR of reliability bias scores when using log Mel spectrograms. Overall, the impact of the number of MFCC dimensions

and by association the input feature type is less pronounced for CNN models trained at 16kHz.

Figure 7 visualizes the impact of the number of Mel filter banks on accuracy and reliability bias for low latency

CNN architectures. Figure 14 in the Appendix visualizes results for CNN architectures, which show similar trends. It is

clear that when models use log Mel spectrograms directly as input features (left column), the number of Mel filter bank

dimensions has a critical impact on accuracy: MCC scores deteriorate rapidly as the number of Mel filter banks increases.

The impact on reliability bias is more varied. For the MSWC-en and -fr datasets the Mel filter bank dimensions pose a

trade-off between accuracy (models with more filter banks are less accurate) and reliability bias (models with more filter

banks are less biased). Models trained with the Google SC and MSWC-de datasets show no clear trend. Only models

trained with the MSWC-rw dataset have lower reliability bias for fewer Mel filter banks, thus allowing developers to

choose Mel filter bank dimensions that increase accuracy while reducing bias.

When used with MFCCs, log Mel spectrograms serve a purpose of dimensionality reduction. In contrast to log Mel

spectrogram input features, MFCC features (right column) are robust to the number of Mel filter banks used across all

datasets. Interestingly, when comparing the results of the low latency CNN models trained with MFCCs in this figure and

the CNN models in Figure 14 in the Appendix, the distributions of accuracy scores for the Google SC and MSWC-en

datasets have a smaller IQR for the light-weight architecture. This suggests that the dimensionality reducing effect of the

spectrograms can be particularly advantageous for smaller model architectures. As fewer input dimensions reduce the

computational overhead during training and inference, our results present an opportunity for on-device ML developers:

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Hutiri, et al.

Fig. 6. Effect of MFCC dimensions on accuracy and reliability bias for 8kHz low latency CNN models. Models without
MFCC features (blue), i.e. models that directly use log Mel spectrograms as input features, perform considerably worse than
those that use MFCC features.

Fig. 7. Effect of log Mel spectrogram dimensions (# Mel fbanks) on accuracy and reliability bias, disaggregated by input
feature type for low latency CNN architectures. The number of Mel filter banks clearly impacts models that directly use log
Mel spectrograms as input features.

MFCCs that use log Mel spectrograms with fewer filter banks (e.g. 20) can improve computational efficiency without

compromising accuracy or reliability bias.

To gain an appreciation of how pre-processing parameters affect the performance of KWS models for male and female

subgroups, we show the impact of feature type on male and female subgroup accuracy in Figure 8. For MSWC-de, -en and

-fr accuracy is always greater for males, irrespective of the feature type. For MSWC-rw the opposite holds true: accuracy

is almost always greater for females, irrespective of the feature type. For the Goolge SC dataset log Mel spectrograms

generate models that have higher accuracy for females than for males, while MFCC features generate models with lower

accuracy for females than males. For the MSWC datasets MFCC features clearly result in more accurate models for both

subgroups while for the Google SC dataset both feature types generate models with similar maximum accuracy. When

training on this dataset the choice of feature type can thus be a source of reliability bias.
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 19

As highlighted by a recent study in the speaker recognition domain [37], only limited feature extractors have been

considered since the adoption of deep neural networks for speech processing tasks. Some prior studies have noted the limits

of log Mel and MFCC based features, and have proposed alternatives. For example, per-channel energy normalization

features have been proposed for robust keyword spotting [66] and power-normalized cepstral coefficients for robust

speech recognition [30]. However, while these studies consider robustness in noisy and far-field environments, they do

not consider bias in their analysis of robustness. Based on our findings we consider further characterisation of the effect

of input features on reliability bias across a wider range of feature extractors an important area of future work.

Fig. 8. Accuracy scores for males (x-axis) and females (y-axis) for log Mel spectrogram (left) and MFCC (right) feature types
for 8kHz low latency CNN models.

Key insights: Feature type and dimensions impact KWS accuracy and reliability bias. Their effect is further

influenced by the training dataset. In general, MFCC type features perform better than log Mel spectrograms.

However, they can also increase reliability bias, prejudicing models against females and favouring males. For MFCC

features, fewer dimensions (i.e. cepstral coefficients and Mel filter banks) can reduce computational demands with

a negligible impact on accuracy and reliability bias.

6.2 Design Choices during Model Optimization

We focused our study of model optimization design choices on model compression and in particular model pruning.

Pruning increases model sparsity, which reduces storage, memory and bandwidth requirements when downloading models

to devices. We followed the experimental setup described in §5.4.2 to prune a subset of the most accurate and least biased

models.

To analyze the impact of the pruning hyper-parameters, we performed factorial ANOVA tests to determine the effects

of pruning hyper-parameters on change in reliability bias and change in accuracy due to pruning. The factorial ANOVA

tests were designed following the same process as described for pre-processing parameters in the previous section. The

first factorial ANOVA model (see Model 4 in the Appendix) considers interactions between all the independent variables,

including pruning hyper-parameters, dataset, architecture, sample rate, the baseline model accuracy and baseline model

reliability bias. We continued to improve the factorial ANOVA models separately for change in accuracy and change in

reliability bias by removing all non-significant interactions, and then including lower-level interactions. The final ANOVA

models are included in the Appendix, with Models 5 and 6 capturing variables and interactions of pruning design choices

on the change in MCC score and change in reliability bias respectively.
Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Hutiri, et al.

Tables 7 and 8 show statistically significant interaction and main effects of the final factorial ANOVA models. For

completeness we have included main effects even if they already contribute to an interaction. The final factorial ANOVA

models are significant (change in MCC (accuracy): 𝐹 (274) = 555.74, 𝑝 = 0.0, 𝑅2
𝑎𝑑 𝑗 .

= 0.9259 and change in reliability

bias: 𝐹 (148) = 110.70, 𝑝 = 0.0, 𝑅2
𝑎𝑑 𝑗 .

= 0.5717). We again point the reader to Table 6 for reference of the critical F

statistics at p-values less than 0.01 and 0.05. Based on the F statistics, we reject the null hypothesis that KWS model

accuracy and reliability bias are unaffected by pruning hyper-parameters and their interactions during model optimization.

As with the statistical analysis of the pre-processing parameters, we found that the 𝑅2 values of the change in accuracy

ANOVA model (𝑅2 = 0.9276, 𝑅2
𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑

= 0.9259) indicate that this model captures the effects better than the change in

reliability bias ANOVA model (𝑅2 = 0.5769, 𝑅2
𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑

= 0.5717). In the latter model a portion of the variance in the

dependent variable remains unaccounted for. We now examine the impact of the pruning interaction effects in greater

detail. Throughout the analysis we use the terms change in and delta interchangeably.

Factorial ANOVA main and interaction effects SS df F p(<0.05)

pruning schedule 6.2660 1 2.9467E+03 0.0E+00
reliability bias baseline model 0.7614 1 3.5805E+02 1.1E-78
dataset 6.4134 4 7.5402E+02 0.0E+00
pruning learning rate 89.6026 2 2.1069E+04 0.0E+00
final sparsity 143.5794 5 1.3504E+04 0.0E+00
dataset * pruning schedule * final sparsity 0.2113 20 4.9694E+00 1.9E-12
sample rate * pruning learning rate * final sparsity 0.2759 10 1.2974E+01 7.2E-23
dataset * pruning learning rate * pruning schedule 0.1467 8 8.6237E+00 8.5E-12
dataset * pruning learning rate * final sparsity 2.7539 40 3.2377E+01 3.7E-232
model architecture * pruning learning rate * pruning schedule * final sparsity 0.2685 10 1.2625E+01 3.6E-22
dataset * model architecture * sample rate * final sparsity 0.1929 20 4.5357E+00 6.2E-11
Residual 25.2897 11893 - -

Model - 274 5.5574E+02 0.0E+00
𝑅2 0.9276

Adjusted 𝑅2 0.9259

Table 7. Significant main and interaction effects of pruning hyper-parameters on change in MCC (accuracy). SS=sum of
squares, df=degrees of freedom

6.2.1 Impact of Pruning Hyper-Parameters. The interaction effect between final sparsity and pruning schedule is

visualized in Figure 9. This interaction significantly affects change in reliability bias due to pruning (as per Table 8). The

interaction between final sparsity, pruning schedule and dataset also have a significant effect on change in accuracy (as

per Table 7). The figure highlights several interesting observations. When final sparsities are low (i.e. 0.2 and 0.5), the

median delta MCC and delta reliability bias are close to zero. Furthermore, the delta MCC and delta reliability bias IQR

of models pruned to these sparsities are small. This indicates that these pruned models have low variability in accuracy

and reliability bias and that scores lie close to those of the baseline models. However, as the final sparsity increases, the

median delta MCC becomes more negative (implying lower accuracy due to pruning) and the IQR increases (indicating

greater variability in accuracy due to pruning). Likewise, the median delta reliability bias and the IQR increase, indicating

that models become more biased and that reliability bias scores become more variable. For all sparsities there are some

models that have a positive change in MCC, thus becoming more accurate, and a negative change in reliability bias, thus
Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 21

Factorial ANOVA main and interaction effects SS df F p(<0.05)

model architecture 2.0088 1 2.2874E+02 3.3E-51
pruning learning rate 15.0129 2 8.5475E+02 0.0E+00
final sparsity 23.8760 5 5.4374E+02 0.0E+00
reliability bias baseline model 8.5336 1 9.7171E+02 3.3E-205
dataset 22.9815 4 6.5421E+02 0.0E+00
pruning schedule * final sparsity 1.0450 5 2.3798E+01 6.8E-24
model architecture * final sparsity 2.8381 5 6.4633E+01 8.5E-67
dataset * pruning learning rate * final sparsity 10.8173 40 3.0794E+01 3.2E-220
dataset * model architecture * sample rate * pruning learning rate 1.1197 8 15.937276 1.3E-23
Residual 105.508229 12014 - -

Model - 148 1.1070E+02 0.0E+00
𝑅2 0.5769

Adjusted 𝑅2 0.5717

Table 8. Significant main and interaction effects of pruning hyper-parameters on change in reliability bias. SS=sum of
squares, df=degrees of freedom

becoming less biased, due to pruning. The polynomial decay pruning schedule results in higher median delta MCC scores

and lower median delta reliability bias. Polynomial decay also results in smaller IQR of delta reliability bias. These

effects become more apparent as final sparsity increases. For developers polynomial decay is thus a more robust pruning

schedule to choose.

Fig. 9. Interaction effect of final sparsity and pruning schedule on change in MCC (accuracy) (left) and change in
reliability bias (right). The polynomial decay (orange) pruning schedule results in higher median change in MCC scores
and lower median change in reliability bias. Polynomial decay also results in smaller IQR of reliability bias. These effects
become more significant as final sparsity increases.

Figure 10 visualizes the interaction effect of final sparsity and the pruning learning rate. As shown in Table 8 this

interaction significantly affects the change in reliability bias due to pruning. Final sparsity and pruning learning rate also

have a significant effect on change in accuracy through interactions with sample rate and with dataset (see Table 7). At

a low final sparsity of 0.2 the learning rate has no impact on the accuracy and bias of pruned models. As the sparsity

increases, this changes dramatically. The smaller the learning rate, the lower the median delta MCC and the larger its IQR.
Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Hutiri, et al.

A lower delta MCC results in a greater accuracy drop due to pruning. Similarly, the smaller the learning rate, the higher

the median delta reliability bias and the larger its IQR. A higher delta reliability bias results in increase in reliability bias

due to pruning. At 90% sparsity the median MCC score of models pruned with a learning rate of 0.00001 reduces by more

than 0.5 (maximum value of the MCC metric is 1). This means that the accuracy of pruned models with 90% sparsity

is less than half that of baseline models. At the same final sparsity and learning rate the median delta reliability bias

increases by 0.18, indicating that substantial performance discrepancies exist between the male and female subgroups.

A possible explanation for our results is that the learning rate optimizes the discovery of structure in the training data to

favour one subgroup over the other. This intuition aligns with recent empirical work that shows that top performing deep

neural networks can have very similar accuracy, but large variance in other performance aspects such as inference latency

due to hyper-parameter tuning [33]. Similarly, a recent study on fixed-seed training of deep learning systems shows high

variance in fairness measures if experiments consist of a single run with a fixed seed [48]. Based on our results, developers

can choose a larger pruning learning rate, like 0.001, during model optimization to reduce the likelihood of unintended

bias and unexpected accuracy degradation, especially when pruning models to high sparsities. While this rule-of-thumb is

useful given our current knowledge, further research is needed to fully characterize the impact of the pruning learning

rate on model performance and bias. We thus suggest that developers empirically validate and optimize the learning rate

during pruning.

Fig. 10. Interaction effect of final sparsity and pruning learning rate on change in accuracy (left) and change in reliability
bias (right). At final sparsities above 0.5 smaller learning rates significantly reduce MCC scores and increase reliability bias.

To conclude our detailed analysis of interaction effects arising during model pruning, we examine how the interactions

between dataset, architecture, sample rate and pruning learning rate affect change in reliability bias in Figure 11. Across

datasets, architectures and sample rates we observe the general trend which we have already identified in the previous

figure: the smaller the learning rate, the more biased models become. Careful examination of the results across architectures

and sample rates also reveals trends similar to those we observed with pre-processing parameters: the increase in reliability

bias due to pruning is greater for the light-weight low latency CNN architecture and the lower sample rate of 8kHz, as

indicated by higher medians and larger IQRs. This trend is stronger at smaller learning rates. As with the pre-processing

parameters, the MSWC-rw dataset presents an exception to this observation. For this dataset median delta reliability bias

across learning rates shows no clear trend, while the IQRs are always large when compared to the IQRs of the other

datasets.
Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 23

Figure 11 reveals a further insight when comparing results across datasets. The reliability bias of models trained on

the Google SC and MSWC-en datasets is less affected by the pruning learning rate than what is the case for models

trained on the remaining datasets. These two English language datasets have low median delta reliability bias values and a

small IQR. A likely contributor to these results is that English is the best resourced language, with the largest available

quantity of data. The English datasets in our study thus include more utterances per keyword, more unique speakers

per keyword and better representation of speakers and utterances across keywords in the validation and test sets. Data

quantity and representation, however, may not explain the entire effect. The MSWC-de and MSWC-fr datasets have

very similar statistics across the keywords, genders and dataset splits, with the MSWC-de dataset being 13% larger than

the MSWC-fr dataset. Yet, the change in reliability bias for MSWC-de models is larger and more variable than that of

MSWC-fr models. Further research is needed to understand the source of this variability. For developers, our results

highlight that training, validation and test datasets need to be large enough and representative across groups of users to

ensure robust results and avoid bias. Considering that German and French are, after English, two of the best resourced

languages in the Mozilla Common Voice corpus5, this may mean in practice that developers need to collect context and

application specific datasets to evaluate bias.

Fig. 11. Interaction effect between dataset, architecture, sample rate and pruning learning rate on change in reliability
bias. Across datasets the general trend indicates that the smaller the learning rate, the more biased models become. The
median change in reliability bias of the Google SC and MSWC-en datasets is less affected by the pruning learning rate than
that of the remaining datasets.

Key insights: Polynomial decay is a more robust pruning schedule than constant sparsity, and a larger pruning

learning rate, like 0.001, reduces the likelihood of unintended bias and unexpected accuracy degradation. These

design choices are particularly important when pruning models to sparsities greater than 50%, beyond which

accuracy and reliability bias can deteriorate dramatically. The increase in reliability bias due to pruning is greater for

smaller architectures and at lower sample rates. This trend is stronger at smaller learning rates. Training, validation

and test datasets need to be large enough and representative across groups of users to ensure robust results and

avoid bias.

5https://commonvoice.mozilla.org/en/languages

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Hutiri, et al.

6.3 Summary of Results

We conducted empirical experiments for an audio KWS task to investigate the impact of a comprehensive set of design

choices on accuracy and reliability bias during model training and optimization. During model training we investigated

design choices related to the data sample rate and pre-processing parameters. We also considered how models trained

with a light-weight architecture are affected by the sample rate and pre-processing parameters. Analyzing the results of

17280 experiments on 5 datasets showed that median and interquartile range (IQR) of reliability bias tend to be greater at

lower sample rates and for light-weight architectures. Whether reliability bias favours or is prejudiced against a group of

people was strongly influenced by the training dataset. Overall, male speakers were favoured by models. Model accuracy

was lower at lower sample rates and for light-weight architectures. An exception to the overall trends were models trained

on the MSWC-rw dataset, which had considerably lower accuracy and favoured female speakers.

With regards to pre-processing parameters, we found feature type and dimensions to impact KWS accuracy and

reliability bias. These effects were further influenced by the training dataset. In general, MFCC type features performed

better than log Mel spectrograms. However, in some instances they also increased reliability bias, prejudicing models

against females and favouring males. For MFCC features, reducing the feature dimensions by using fewer Mel filter banks

and fewer cepstral coefficients had a negligible impact on accuracy and reliability bias. This presents an opportunity to

reduce computational demands for on-device ML applications.

During model optimization we investigated design choices related model compression, and specifically pruning.

Analyzing the results of 12168 experiments on 5 datasets, we found polynomial decay to be a more robust pruning

schedule than constant sparsity. The smaller the pruning learning rate, the more pruning increased reliability bias and

decreased accuracy of baseline models. We found that a larger pruning learning rate, like 0.001, reduced the change in

reliability bias and accuracy. These design choices were particularly important when models were pruned to sparsities

greater than 50%. Beyond this, accuracy and reliability bias deteriorated dramatically. As with pre-processing parameters,

the increase in reliability bias due to pruning was greater for light-weight architectures and at lower sample rates. This

trend was stronger at smaller learning rates. Finally, we found that pruning results varied across datasets, with English

language datasets showing a smaller increase in reliability bias due to pruning than other languages. One take-away from

this is that training, validation and test datasets need to be large enough and representative across groups of users to ensure

robust results and avoid bias.

7 STRATEGIES TO MITIGATE RELIABILITY BIAS

In the previous section we presented empirical results and an analysis of the impact of design choices on accuracy and

reliability bias for an audio KWS task. Taking the insights gained through the study into consideration, we now offer low

effort strategies for mitigating reliability bias. We first consider strategies for model selection and then discuss approaches

for supporting design choices with targeted experimentation.

7.1 Model Selection

In the decision map presented in Figure 2 model selection can occur after training a new model, downloading pre-trained

models or optimizing a model. We consider model selection strategies that account for accuracy and reliability bias after

model training and after model optimization. Rather than considering reliability bias and accuracy as a trade-off, we seek

approaches that enable engineers to navigate multi-objective search scenarios where high accuracy and low reliability

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 25

bias are desired. In contrast to multi-objective criteria that have been proposed during model training [36, 45], here we

focus on multi-objective model selection as a post-processing intervention.

7.1.1 Model Selection After Training. In §6.1 we explored in depth how model training design choices impact

reliability bias and accuracy. While our analysis presented important insights of trends that exist across datasets and

architectures, we also found that models exist that are accurate and that perform equally well for male and female

subgroups. A visual appreciation for this can be gained from Figure 5. Across datasets, architectures and sample rates

there are models that lie on or close to the diagonal on which male and female accuracy is equal. This suggests that

pre-processing parameters may exist that produce models with high accuracy and low bias. However, these models do not

necessarily have the highest accuracy score. We thus considered search criteria for selecting models based on accuracy

and reliability bias. Listed below are three criteria we used to select model 𝑑 from 𝑛 trained models 𝐷 by optimizing for:

(1) high accuracy: select 𝑑 if 𝑀𝐶𝐶𝑑 =𝑚𝑎𝑥 (𝑀𝐶𝐶1, ..., 𝑀𝐶𝐶𝑛) for 𝑛 in 𝐷

(2) low bias: select 𝑑 if 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑖𝑎𝑠𝑑 =𝑚𝑖𝑛(𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑖𝑎𝑠1, ..., 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑖𝑎𝑠𝑛) for 𝑛 in 𝐷

(3) low bias + high accuracy: select 𝑑 if 𝑀𝐶𝐶𝑑 >= 0.985 ∗𝑚𝑎𝑥 (𝑀𝐶𝐶1, ..., 𝑀𝐶𝐶𝑛) for 𝑛 in 𝐷 and
𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑖𝑎𝑠𝑑 =𝑚𝑖𝑛(𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑖𝑎𝑠1, ..., 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑖𝑎𝑠𝑘) for 𝑘 where𝑀𝐶𝐶𝑘 >= 0.985∗𝑚𝑎𝑥 (𝑀𝐶𝐶1, ..., 𝑀𝐶𝐶𝑛)
for 𝑛 in 𝐷

We consider the high accuracy criteria as a baseline, as this is the typical strategy followed by engineers that do not

consider bias. The low bias criteria presents the opposite scenario, where only reliability bias informs model selection.

Finally, the low bias + high accuracy criteria considers accuracy as a satisficing metric while minimizing reliability

bias. This criteria selects the model with the lowest reliability bias, provided that it has an accuracy score within a 1.5%

threshold of the maximum accuracy. A reasonable threshold value should be selected in accordance with the application

requirements. The multi-objective approach allows us to explore alternative models for deployment.

Table 9 shows the MCC (accuracy) score and reliability bias for the best models trained on the Google SC dataset,

selected according to the three criteria. We find that the low bias + high accuracy criteria selects models with a low

reliability bias across architectures, while retaining an MCC score close to the high accuracy criteria. For the CNN

architectures, this criteria reduces reliability bias by 15.7 and 1.7 fold for models trained with 16kHz and 8kHz sample

rates respectively. For the 8kHz low latency CNN model, reliability bias is reduced 22.3 fold. For the 16kHz low latency

CNN architecture the model with the highest accuracy also has the lowest reliability bias and thus experiences no reduction.

By comparison, models selected using only low bias as selection criteria have a very low reliability bias. However, this

comes at the cost of an accuracy drop between 3.2% and 6.1%, which is considerably greater than the desired 1.5%

threshold and will degrade performance for both subgroups.

Instead of selecting maximum or minimum values, the selection criteria can be modified to select the𝑚 best models

under that criteria. We followed this approach choosing𝑚 = 3 best models for a dataset, model architecture and sample

rate triplet to select baseline models for the pruning experiments. The low bias + high accuracy criteria did not return

valid models for all triplets, which is the reason for the unequal number of baseline models in Table 3. Next we consider

how these selection criteria hold up after pruning.

7.1.2 Model Selection After Pruning. For the pruning experiments in §6.2 we selected the top 3 models per

architecture and sample rate for each model selection criteria. We now consider the post-pruning performance of models

selected with different criteria. In Figure 12 we show the delta (i.e. change in) MCC score (top) and delta reliability bias

(bottom) after pruning, for models selected under the three criteria after training. In the density distributions in the figure
Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Hutiri, et al.

model selection
criteria metric

16kHz
CNN

8kHz
CNN

16kHz
low latency CNN

8kHz
low latency CNN

high accuracy MCC score 0.877 0.868 0.804 0.778
reliability bias 1.2e-2 9.8e-3 6.6e-4 4.1e-2

low bias MCC score 0.849 0.815 0.762 0.740
reliability bias 1.8e-4 1.9e-4 1.2e-4 1.6e-4

low bias + high accuracy MCC score 0.872 0.861 0.804 0.775
reliability bias 7.7e-4 5.9e-3 6.6e-4 1.8e-3

Table 9. Table of MCC (accuracy) scores and reliability bias for models trained on the Google SC dataset and selected
for top performance based on three criteria: 1) high accuracy 2) low bias 3) low bias + high accuracy. Comparison across
metrics shows that the low bias + high accuracy criteria, which accepts a marginal drop in accuracy of up to 1.5%, selects
models with considerably lower bias than the high accuracy strategy.

accuracy increases in the direction of positive change, meaning that delta MCC distributions that peak to the right of

zero are desirable. Conversely, reliability bias decreases in the direction of negative change, meaning that delta reliability

bias distributions with peaks to the left of zero are desirable. The delta MCC distributions peak just left of zero (CNN

architectures) or on zero (low latency CNN architectures), indicating that the majority of models with these architectures

experience a decline in accuracy. The shape of the distributions is similar for different selection criteria under the same

architecture and sample rate, with the accuracy of low bias models (which have lower baseline accuracy) increasing

slightly more after pruning.

The shapes and peaks of the delta reliability bias distributions vary across model selection criteria. This indicates

that the model selection criteria impact reliability bias after pruning. A further confirmation of this is presented in the

statistical analysis in Table 8, where the reliability bias of the baseline model has a statistically significant effect on

delta reliability bias due to pruning. Analyzing the distributions, we can see that the distributions of models selected

for low bias (blue) lie furthest to the right. This means that the reliability bias of these models increases the most after

pruning. This is not surprising, as the lower bound of the reliability bias measure is zero and models with low bias are

very sensitive to small changes in reliability bias. However, this can also indicate that models selected for low bias may

loose some of their good bias properties during pruning. The distributions of models selected for high accuracy (orange)

lie furthest to the left. These models typically started out with higher reliability bias after training, which makes them less

sensitive to changes in reliability bias and thus better able to retain their reliability bias scores.

In Figure 15 in the Appendix we visualize the distribution of MCC scores and reliability bias for the selection criteria.

Right of the peak (i.e. in the higher accuracy range), the MCC score distributions for the high accuracy criteria and the

low bias + high accuracy criteria lie very close to each other. After pruning models selected for high accuracy and for low

bias + high accuracy thus have similar MCC scores. For reliability bias the distribution of the low bias + high accuracy

criteria lies between the low bias and high accuracy distributions. The low bias + high accuracy criteria thus results in

models with lower bias after pruning than the high accuracy criteria. Overall, this makes the low bias + high accuracy

criteria a good choice to select a range of models for pruning.

Finally we reapply the same model selection criteria that we previously applied after training, after pruning. Table 10

shows the mean and standard deviation of accuracy and reliability bias across sparsities for the three selection criteria for

pruned models trained on Google SC. We observe that mean reliability bias can be improved by an order of magnitude

by choosing the low bias + high accuracy criteria rather than the high accuracy criteria. Models selected with the low

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 27

Fig. 12. Change in MCC (accuracy) score and change in reliability bias of models after pruning. Models were selected
based on three selection criteria: high accuracy (orange), low bias (blue), and high accuracy + low bias (green). Delta MCC
is better when greater, delta reliability bias is better when smaller. The selection criteria has no evident effect on delta MCC,
but does affect delta reliability bias.

bias criteria suffer a large drop in accuracy. While the low bias criteria offers lower reliability bias than the low bias +

high accuracy criteria, the latter already has a low mean and variance in reliability bias, making additional reductions

less impactful. For all models the variance of metrics across sparsities is relatively low, which is supported by our earlier

observation that models trained on the Google SC dataset are less affected by pruning hyper-parameters (see Figure 11).

Across all datasets the low bias + high accuracy criteria selects models with similar accuracy and lower reliability bias

than the high accuracy criteria. This outcome is not surprising, as the purpose of a multi-objective criterion is precisely

to satisfy multiple objectives. The value of our analysis lies in empirically validating the obvious rather than in finding

surprise: engineers can reduce bias in audio KWS with little effort by applying a multi-objective criterion during model

selection, choosing models that satisfy an accuracy condition while minimizing bias.

criteria high accuracy low bias + high accuracy low bias
metric MCC score reliability bias MCC score reliability bias MCC score reliability bias

mean var mean var mean var mean var mean var mean var

16kHz CNN 0.885 1.2e-02 1.4e-02 9.6e-03 0.879 1.1e-02 4.0e-03 5.5e-03 0.823 5.3e-02 6.5e-04 4.0e-04
8kHz CNN 0.876 9.2e-03 6.5e-03 1.8e-03 0.870 8.9e-03 1.1e-03 6.7e-04 0.851 1.9e-02 2.9e-04 2.6e-04

16kHz llCNN 0.808 1.8e-02 8.9e-03 7.0e-03 0.804 1.7e-02 1.4e-03 1.1e-03 0.772 2.3e-02 4.9e-04 4.1e-04
8kHz llCNN 0.785 2.5e-02 1.0e-02 7.6e-03 0.781 2.4e-02 1.8e-03 2.1e-03 0.761 3.5e-02 4.9e-04 4.9e-04

Table 10. Mean and variance of MCC scores and reliability bias across pruning sparsities (0.2, 0.5, 0.75, 0.8, 0.85, 0.9)
for the three model selection criteria. Models have been trained on the Google SC dataset. Models with lower bias can be
selected for all sparsities at an accuracy cost of less than 1.5%.

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Hutiri, et al.

7.1.3 Summary of Model Selection Strategy. Engineers should use a multi-objective criterion that considers accuracy

and reliability bias to select models that have high accuracy and low bias after training or after pruning. We propose that

engineers set a tolerance that controls the drop in accuracy from the maximum value, thus using accuracy as a satisficing

metric while minimizing reliability bias. The tolerance value should be determined from application requirements. If

model training is followed by pruning, a small number of top models should be selected for pruning using high accuracy

and low bias + high accuracy strategies.

7.2 Supporting Design Decisions with Targeted Experimentation

In §3 we presented a map of design choices arising in the on-device ML workflow. We then showed empirically that

these design choices can lead to disparate performance of audio KWS models for males and females. Our analysis in

§6 demonstrates that even when engineers make reasonable decisions about training and optimization parameters (see

Table 1) their choices can lead to models with widely different accuracy and bias properties. Especially when training

light-weight architectures or processing data at low sample rates, systematic experimentation is a necessary strategy to

support design decisions and mitigate bias. We have demonstrated that iterating over pre-processing parameters during

training, and pruning hyper-parameters during model compression can help engineers train models with high accuracy

and low bias. However, experimentation comes at a cost: each iteration requires computational resources, takes time and

consumes energy. Where a single audio KWS model takes only a couple of minutes to train, we trained 17280 models,

pruned 12168 models and ran our experiments for several days. This is a costly undertaking.

Design action Design choice Choice variable (unit) Variable values

Train new model input features | sample rate sample rate (kHz) determined by application

Train new model input features | pre-processing feature type MFCC
Train new model input features | pre-processing # Mel filter banks 20, 32
Train new model input features | pre-processing # MFCCs 10, 11
Train new model input features | pre-processing frame length (ms) 20, 25, 30, 40
Train new model input features | pre-processing frame step (% frame length) 40, 50, 60
Train new model input features | pre-processing window function Hamming

Optimize model light-weight architecture model architecture determined by application

Optimize model model compression | pruning final sparsity (%) determined by application
Optimize model model compression | pruning pruning frequency 10, 100
Optimize model model compression | pruning pruning schedule polynomial decay
Optimize model model compression | pruning pruning learning rate 1e-4, 1e-5 for sparsities < 50%; 1e-3 for

sparsities > 50%

Model selection selection strategy criteria high accuracy, low bias + high accuracy
Model selection selection strategy # best models 3

Table 11. Recommended design choice variables and values for audio KWS to mitigate bias while reducing resource
consumption during experimentation

Rather than replicating our approach, engineers should take the resource footprint and cost of model training into

account, and target their experiments to iterate over values that are likely to yield high accuracy, low bias models. To

this end we propose revised design choice variable values based on the insights we gained through our experiments in

Table 11. Given these reduced options, engineers only need to train 48 models per sample rate and architecture, and run at
Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 29

most 24 pruning experiments for low sparsities (12 experiments for higher sparsities of more than 50%). This targeted

approach to experimentation is thus a feasible strategy for engineers to use data-driven decision making to mitigate bias

in on-device ML workflows.

8 DISCUSSION

We now take a higher level perspective to reflect on the overarching implications of our work on bias in on-device ML. We

first discuss reliability bias as a source of unfairness and discrimination in on-device ML and then reflect on limitations of

the study.

8.1 Reliability Bias as a Source of Unfairness and Discrimination in On-device ML

On-device ML applications are becoming increasingly prevalent in our day-to-day lives, as consumers’ privacy concerns

and large volumes of sensor data are motivating a shift to run deep neural networks on devices rather than the cloud. Despite

the prevalence of on-device ML applications, known bias challenges in ML systems, and the material consequences of

system failure, bias in on-device ML is understudied. In this paper we set out to study sources of bias in on-device ML

that have not been considered in the domain, and that are overlooked in current research on ML fairness.

When interacting with services that make use of on-device ML, users are justified to expect reliable performance,

irrespective of their demographic, social or economic attributes. We defined reliability bias as systematic device failures

due to on-device ML performance disparities across user groups. Reliability bias is a particular concern for on-device ML

as it counter-acts the promise of technology-enabled service access, an important value proposition of on-device ML. If

reliability bias remains unidentified and is not accounted for, it can be a source of unfairness in on-device ML systems.

Unfair on-device ML systems that are deployed at scale can lead to a discriminatory service infrastructure that restricts

who has access to services, and how these services can be accessed.

Our empirical study shows that design choices made by engineers in each stage of the on-device ML workflow can

introduce reliability bias when deploying ML as a system component. While bias in on-device ML can be cast as an AI

ethics concern, we consider it important to also approach it as a matter of responsible design. Based on our findings we do

not consider reliability bias as an immutable property of a particular model or system. Instead, we position that reliability

bias arises from design choices that amplify or reduce disparate predictive performance across groups of users based on

their personal attributes. Engineers thus have an active role to play to detect and mitigate reliability bias. While some

design choices may lie beyond the immediate control of engineers, they have full control over others. Measuring bias in

the on-device ML development workflow is the first step that engineers should take to practice responsible design and

make a commitment to building fairer technology systems.

We have focused our evaluation of reliability bias on performance discrepancies in predictive accuracy. In on-device

ML applications, system efficiency is another important performance metric that interacts with accuracy. For example, a

KWS system with poor predictive performance can require several user attempts to activate the system. This can increase

computations, which leads to increased power consumption and faster drainage of a device’s battery. Reliability bias

should thus also be considered for system efficiency. The bias measure that we have proposed can be extended easily to

characterize reliability bias due to system (in)efficiency. We will investigate this in future work. Additionally, we note

that our empirical study is focused on audio-based ML. Although audio is a prominent data modality in on-device ML,

we are cognizant that other data types (e.g. images) are also used. Future work can extend our methodology to different

modalities and new learning tasks to investigate reliability bias in them.

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Hutiri, et al.

8.2 Limitations

In quantifying an unobservable, abstract construct like fairness, bias measures often make assumptions about what is

fair. Yet, fairness is a contested construct [28] that is underpinned by the values of those that define it. This makes it

important to state assumptions explicitly to avoid mismatches between the construct that is measured, and its quantified

operationalization. In this study we have made the assumption that false positive and false negative error rates are

equally important across all keyword classes. We have operationalized this assumption by using the Matthews Correlation

Coefficient (MCC) to quantify reliability bias. While the MCC is an accepted metric for multiclass classification, it does

not capture the disparate impact that false positives and false negatives may carry in particular application scenarios. For

example, a KWS system in an emergency care application that has a high false negative rate for the keyword "help" is

likely to have a more detrimental impact on affected users than a home entertainment system with a high false positive

rate for the keyword "lights on". Characterising harms associated with applications and identifying acceptable error rates

is an important area for future research.

We motivated our use of a parity-based bias measure by claiming that ground truth labels in KWS are exactly known

and undisputed. While this avoids bias propagation through labelling choices, constructing groups remains a normative

design decision that requires careful consideration. In our audio KWS study we constructed groups based on a speaker’s

gender. Our approach to labelling voice samples with gender was limited to a binary gender classification system and a

crowd-sourced labelling campaign. Even though the MSWC gender labels are self-annotated, binary gender representation

removes individuals that do not fit within this classification system from the bias evaluation. Crowd-sourced labelling can

introduce further misclassification [52]. Male and female voices can be higher or lower pitched than what a data worker

perceives as normal for that gender, and misclassified accordingly. Gender is also just one of many demographic attributes

that influences the human voice [56]. Subgroups established along other speaker attributes can reveal further dimensions

of bias and should be investigated in future work.

While dataset representation was not the focus of this study, it oftentimes is an important contributor to bias. We

took this into consideration and carefully constructed gender-balanced dataset splits when we designed our experiments.

Our gender-balancing protocol resulted in balanced datasets across keyword-speaker pairs (see Table 2) but unequal

utterances/keyword across dataset splits and genders. When the number of unique speakers and utterances/keyword in a

dataset are small, it becomes difficult to construct representative datasets, which can affect the reliability of results. In this

study, our dataset construction choices may explain some of the performance deviations we observed for the MSWC

Kinyarwanda dataset (see Figure 11), which contained an order of magnitude fewer different speakers than the other

datasets. Finding ways for creating balanced datasets and evaluating bias when data availability across groups is variable

remains an important open challenge.

We note that our study is limited to investigating bias in CNN architectures. These architectures are very popular

for speech and vision related tasks in on-device ML. We chose to focus on one architecture to study how light-weight

architectures, a model optimization design choice to reduce the model size, impacts reliability bias. Future work should

also examine reliability bias in other architectures. Furthermore, while this study investigates the design choices that we

deemed most likely to impact bias, future work should examine the impact of design choices that we did not examine,

such as quantization. Despite these limitations, our investigation of performance disparity provides necessary insights that

highlight the need of addressing bias in on-device settings. Studying bias in the emerging field of on-device ML is thus an

important research direction for the software engineering community.

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 31

9 CONCLUSION

Billions of devices deploy on-device ML today. Despite bias and fairness being a major area of concern in machine

learning (ML), they have not been considered in on-device ML settings. Biased performance impacts device reliability,

and can result in systematic device failures due to performance disparities across user groups. This can inconvenience and

even harm users. Our study is the first investigation of bias in development workflows in the emerging on-device ML

domain, and lays an important foundation for building fairer on-device ML systems.

In this study we investigate the propagation of bias through design choices in the on-device ML workflow, and identify

reliability bias as a potential source of unfairness. Reliability bias arises from disparate on-device ML performance due to

demographic attributes of users, and results in systematic device failure across user groups. Drawing on definitions of

group fairness, we quantify reliability bias and use the measure in empirical experiments to evaluate the impact of design

choices on bias in an audio keyword spotting (KWS) task, a dominant application of on-device ML. Our results validate

that seemingly innocuous design choices – a light-weight architecture, the data sample rate, pre-processing parameters of

input features, and pruning hyper-parameters for model compression – can result in disparate predictive performance

across male and female groups.

Given their context dependence and ubiquitous nature, developing inclusive on-device ML systems ought to be an

important priority for engineers. Our findings caution that design choices in the development workflow can have major

consequences for the propagation of reliability bias and consequently fairness of on-device ML. Based on our findings,

we suggest strategies for model selection and targeted experimentation to help engineers navigate the gap between

technical choices, deployment constraints, accuracy and bias during on-device ML development. Taken together, our work

highlights that engineers and the decisions they make have an important role to play to ensure that the social requirement

of inclusive on-device ML is realized within the constrained on-device setting.

ACKNOWLEDGMENTS

This research is partially supported by SPATIAL project that has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No.101021808. We thank Roel Dobbe, Sem Nouws and

Dewant Katare for their feedback and useful suggestions on the work.

REFERENCES
[1] Raziel Alvarez and Hyun Jin Park. 2019. End-to-end streaming keyword spotting. In ICASSP, IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). 6336–6340.
[2] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries, Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed,

Danilo Pau, Urmish Thakker, Antonio Torrini, Peter Warden, Jay Cordaro, Giuseppe Di Guglielmo, Javier Duarte, Stephen Gibellini, Videet Parekh,
Honson Tran, Nhan Tran, Niu Wenxu, and Xu Xuesong. 2021. MLPerf Tiny Benchmark. (2021). http://arxiv.org/abs/2106.07597

[3] Colby R. Banbury, Vijay Janapa Reddi, Max Lam, William Fu, Amin Fazel, Jeremy Holleman, Xinyuan Huang, Robert Hurtado, David Kanter, Anton
Lokhmotov, David Patterson, Danilo Pau, Jae-sun Seo, Jeff Sieracki, Urmish Thakker, Marian Verhelst, and Poonam Yadav. 2020. Benchmarking
TinyML Systems: Challenges and Direction. (2020). http://arxiv.org/abs/2003.04821

[4] Abeba Birhane. 2022. The unseen Black faces of AI algorithms. Nature 610, 7932 (2022), 451–452. https://doi.org/10.1038/d41586-022-03050-7
[5] Tolga Bolukbasi, Kai-wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. 2016. Man is to Computer Programmer as Woman is to

Homemaker ? Debiasing Word Embeddings. In NIPS’16: Proceedings of the 30th International Conference on Neural Information Processing Systems.
4356 – 4364.

[6] Joy Buolamwini and Timnit Gebru. 2018. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. In Proceedings of
Machine Learning Research: Conference on Fairness, Accountability, and Transparency, Vol. 81. 1889–1896.

[7] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. 2020. TinyTL: Reduce memory, not parameters for efficient on-device learning. Advances in
Neural Information Processing Systems 2020-Decem, NeurIPS (2020).

Manuscript submitted to ACM

http://arxiv.org/abs/2106.07597
http://arxiv.org/abs/2003.04821
https://doi.org/10.1038/d41586-022-03050-7

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Hutiri, et al.

[8] Joymallya Chakraborty, Suvodeep Majumder, and Tim Menzies. 2021. Bias in machine learning software: Why? how? what to do? Vol. 1. Association
for Computing Machinery. 429–440 pages. https://doi.org/10.1145/3468264.3468537

[9] Guoguo Chen, Carolina Parada, and Georg Heigold. 2014. Small-Footprint Keyword Spotting Using Deep Neural Networks. In ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing - Proceedings. IEEE.

[10] Jiasi Chen and Xukan Ran. 2019. Deep Learning With Edge Computing: A Review. Proc. IEEE 107, 8 (8 2019), 1655–1674. https://doi.org/10.1109/
JPROC.2019.2921977

[11] CPS Public Working Group. 2017. Framework for Cyber-Physical Systems : Volume 1 , Overview. Technical Report. National Institute of Standards
and Technology. https://doi.org/doi.org/10.6028/NIST.SP.1500-201

[12] Brian D’Alessandro, Cathy O’Neil, and Tom Lagatta. 2017. Conscientious Classification: A Data Scientist’s Guide to Discrimination-Aware
Classification. Big Data 5, 2 (2017), 120–134. https://doi.org/10.1089/big.2016.0048

[13] Swarnava Dey, Arijit Mukherjee, Arpan Pal, and P. Balamuralidhar. 2019. Embedded deep inference in practice: Case for model partitioning.
SenSys-ML 2019 - Proceedings of the 1st Workshop on Machine Learning on Edge in Sensor Systems, Part of SenSys 2019 (2019), 25–30. https:
//doi.org/10.1145/3362743.3362964

[14] Sauptik Dhar, Junyao Guo, Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and Mohak Shah. 2021. On-Device Machine Learning: An Algorithms and
Learning Theory Perspective. ACM Transactions on Internet of Things 2, 3 (2021). http://arxiv.org/abs/1911.00623

[15] William R Dieter, Srabosti Datta, and Wong Key Kai. 2005. Power reduction by varying sampling rate. In Proceedings of the 2005 international
symposium on Low power electronics and design. 227–232.

[16] Roel Dobbe, Thomas Krendl Gilbert, and Yonatan Mintz. 2021. Hard choices in artificial intelligence. Artificial Intelligence 300 (2021), 103555.
https://doi.org/10.1016/j.artint.2021.103555

[17] Song Han, Huizi Mao, and William J. Dally. 2016. Deep compression: Compressing deep neural networks with pruning, trained quantization and
Huffman coding. 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings (2016), 1–14.

[18] John H.L. Hansen and Taufiq Hasan. 2015. Speaker recognition by machines and humans: A tutorial review. IEEE Signal Processing Magazine 32, 6
(2015), 74–99. https://doi.org/10.1109/MSP.2015.2462851

[19] Moritz Hardt, Eric Price, and Nathan Srebro. 2016. Equality of opportunity in supervised learning. Advances in Neural Information Processing
Systems Nips (2016), 3323–3331.

[20] Andrew J. Hawkins. 2019. Serious safety lapses led to Uber’s fatal self-driving crash, new documents suggest. https://www.theverge.com/2019/11/6/
20951385/uber-self-driving-crash-death-reason-ntsb-dcouments

[21] Yanzhang He, Rohit Prabhavalkar, Kanishka Rao, Wei Li, Anton Bakhtin, and Ian McGraw. 2017. Streaming Small-Footprint Keyword Spotting
Using Sequence-to-Sequence Models. In 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU).

[22] Takuya Higuchi, Mohammad Ghasemzadeh, Kisun You, and Chandra Dhir. 2020. Stacked 1D convolutional networks for end-to-end small
footprint voice trigger detection. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH.
https://doi.org/10.21437/Interspeech.2020-2763

[23] Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé, Miroslav Dudík, and Hanna Wallach. 2019. Improving fairness in machine learning
systems: What do industry practitioners need? Conference on Human Factors in Computing Systems - Proceedings (2019), 1–16. https://doi.org/10.
1145/3290605.3300830

[24] Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton. 2020. Characterising Bias in Compressed Models. https:
//arxiv.org/abs/2010.03058

[25] Jennifer Horkoff. 2019. Non-functional requirements for machine learning: Challenges and new directions. Proceedings of the IEEE International
Conference on Requirements Engineering 2019-Septe (2019), 386–391. https://doi.org/10.1109/RE.2019.00050

[26] Max Hort and Federica Sarro. 2022. Privileged and Unprivileged Groups : An Empirical Study on the Impact of the Age Attribute on Fairness. Vol. 1.
Association for Computing Machinery. https://doi.org/10.1145/3524491.3527308

[27] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens Van Der Maaten, and Kilian Weinberger. 2018. Multi-scale dense networks for resource
efficient image classification. 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings (2018), 1–14.

[28] Abigail Z. Jacobs and Hanna Wallach. 2021. Measurement and fairness. FAccT 2021 - Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency (2021), 375–385. https://doi.org/10.1145/3442188.3445901

[29] Vijay Janapa Reddi, Brian Plancher, Susan Kennedy, Laurence Moroney, Pete Warden, Lara Suzuki, Anant Agarwal, Colby Banbury, Massimo Banzi,
Matthew Bennett, Benjamin Brown, Sharad Chitlangia, Radhika Ghosal, Sarah Grafman, Rupert Jaeger, Srivatsan Krishnan, Maximilian Lam, Daniel
Leiker, Cara Mann, Mark Mazumder, Dominic Pajak, Dhilan Ramaprasad, J Evan Smith, Matthew Stewart, Dustin Tingley, and Harvard University.
2022. Widening Access to Applied Machine Learning With TinyML. (2022). https://doi.org/10.1162/99608f92.762d171a

[30] Chanwoo Kim and Richard M. Stern. 2016. Power-Normalized Cepstral Coefficients (PNCC) for Robust Speech Recognition. IEEE/ACM Transactions
on Audio Speech and Language Processing 24, 7 (2016), 1315–1329. https://doi.org/10.1109/TASLP.2016.2545928

[31] Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion Mengesha, Connor Toups, John R. Rickford, Dan Jurafsky, and
Sharad Goel. 2020. Racial disparities in automated speech recognition. PNAS 117, 14 (2020), 7684–7689. https://doi.org/10.1073/pnas.1915768117/-
/DCSupplemental.y

[32] Timothy B. Lee. 2019. How terrible software design decisions led to Uber’s deadly 2018 crash. https://arstechnica.com/cars/2019/11/how-terrible-
software-design-decisions-led-to-ubers-deadly-2018-crash/

Manuscript submitted to ACM

https://doi.org/10.1145/3468264.3468537
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/doi.org/10.6028/NIST.SP.1500-201
https://doi.org/10.1089/big.2016.0048
https://doi.org/10.1145/3362743.3362964
https://doi.org/10.1145/3362743.3362964
http://arxiv.org/abs/1911.00623
https://doi.org/10.1016/j.artint.2021.103555
https://doi.org/10.1109/MSP.2015.2462851
https://www.theverge.com/2019/11/6/20951385/uber-self-driving-crash-death-reason-ntsb-dcouments
https://www.theverge.com/2019/11/6/20951385/uber-self-driving-crash-death-reason-ntsb-dcouments
https://doi.org/10.21437/Interspeech.2020-2763
https://doi.org/10.1145/3290605.3300830
https://doi.org/10.1145/3290605.3300830
https://arxiv.org/abs/2010.03058
https://arxiv.org/abs/2010.03058
https://doi.org/10.1109/RE.2019.00050
https://doi.org/10.1145/3524491.3527308
https://doi.org/10.1145/3442188.3445901
https://doi.org/10.1162/99608f92.762d171a
https://doi.org/10.1109/TASLP.2016.2545928
https://doi.org/10.1073/pnas.1915768117/-/DCSupplemental.y
https://doi.org/10.1073/pnas.1915768117/-/DCSupplemental.y
https://arstechnica.com/cars/2019/11/how-terrible-software-design-decisions-led-to-ubers-deadly-2018-crash/
https://arstechnica.com/cars/2019/11/how-terrible-software-design-decisions-led-to-ubers-deadly-2018-crash/

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 33

[33] Lizhi Liao, Heng Li, Weiyi Shang, and Lei Ma. 2022. An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization
on the Performance Properties of Deep Neural Networks. ACM Transactions on Software Engineering and Methodology 31, 3 (2022), 1–40.
https://doi.org/10.1145/3506695

[34] Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus. 2021. Lost in pruning: The effects of pruning neural networks
beyond test accuracy. Proceedings of Machine Learning and Systems 3 (2021), 93–138.

[35] Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and Mohak Shah. 2020. Pruning Algorithms to Accelerate Convolutional Neural Networks for Edge
Applications: A Survey. (2020). http://arxiv.org/abs/2005.04275

[36] Suyun Liu and Luis Nunes Vicente. 2022. Accuracy and fairness trade-offs in machine learning: a stochastic multi-objective approach. Computational
Management Science 19, 3 (2022), 513–537. https://doi.org/10.1007/s10287-022-00425-z

[37] Xuechen Liu, Md Sahidullah, and Tomi Kinnunen. 2020. A comparative Re-assessment of feature extractors for deep speaker embeddings.
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH 2020-Octob (2020), 3221–3225.
https://doi.org/10.21437/Interspeech.2020-1765

[38] Akhil Mathur, Tianlin Zhang, Sourav Bhattacharya, Petar Velickovic, Leonid Joffe, Nicholas D Lane, Fahim Kawsar, and Pietro Lió. 2018. Using deep
data augmentation training to address software and hardware heterogeneities in wearable and smartphone sensing devices. In 2018 17th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN). IEEE, 200–211.

[39] Mark Mazumder, Sharad Chitlangia, Colby Banbury, Yiping Kang, Juan Ciro, Keith Achorn, Daniel Galvez, Mark Sabini, Peter Mattson, David
Kanter, Greg Diamos, Pete Warden, Josh Meyer, and Vijay Janapa Reddi. 2021. Multilingual Spoken Words Corpus. In Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks 1 pre-proceedings (NeurIPS Datasets and Benchmarks 2021).

[40] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2019. A survey on bias and fairness in machine learning.
arXiv (2019). https://arxiv.org/abs/1908.09635

[41] Shira Mitchell, Eric Potash, Solon Barocas, Alexander D’Amour, and Kristian Lum. 2021. Algorithmic fairness: Choices, assumptions, and definitions.
Annual Review of Statistics and Its Application 8 (2021), 141–163. https://doi.org/10.1146/annurev-statistics-042720-125902

[42] Alessandro Montanari, Manuja Sharma, Dainius Jenkus, Mohammed Alloulah, Lorena Qendro, and Fahim Kawsar. 2020. ePerceptive: energy reactive
embedded intelligence for batteryless sensors. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems. 382–394.

[43] Pardis Emami Naeini, Sruti Bhagavatula, Hana Habib, Martin Degeling, Lujo Bauer, Lorrie Cranor, Norman Sadeh, Santa Clara, Pardis Emami-naeini,
Sruti Bhagavatula, Hana Habib, Martin Degeling, Lujo Bauer, Lorrie Faith Cranor, and Norman Sadeh. 2017. Privacy Expectations and Preferences in
an IoT World This paper is included in the Proceedings of the Privacy Expectations and Preferences in an IoT World. Thirteenth Symposium on Usable
Privacy and Security (SOUPS 2017) Soups (2017). https://www.usenix.org/conference/soups2017/technical-sessions/presentation/naeini

[44] Danielle J. Navarro, David R. Foxcroft, and Thomas J. Faulkenberry. 2019. Factorial Anova. In Learning Statistics with JASP: A Tutorial for
Psychology Students and Other Beginners. online, Chapter Chapter 13, 327 – 380. https://doi.org/10.1002/9781119121077.ch10

[45] Kirtan Padh, Diego Antognini, Emma Lejal-Glaude, Boi Faltings, and Claudiu Musat. 2021. Addressing Fairness in Classification with a Model-
Agnostic Multi-Objective Algorithm. 37th Conference on Uncertainty in Artificial Intelligence, UAI 2021 Uai (2021), 600–609.

[46] Dana Pessach and Erez Shmueli. 2022. A Review on Fairness in Machine Learning. Comput. Surveys 55, 3 (2022), 1–44. https://doi.org/10.1145/
3494672

[47] ProKNX. 2022. Smart Home technology keeps people happy at home for longer. https://www.proknx.com/en/news/2020/smart-home-technology-
keeps-people-happy-at-home-for-longer/

[48] Shangshu Qian, Hung Viet Pham, Thibaud Lutellier, Zeou Hu, Jungwon Kim, Lin Tan, Yaoliang Yu, Jiahao Chen, J P Morgan, and Sameena Shah.
2021. Are My Deep Learning Systems Fair? An Empirical Study of Fixed-Seed Training. In 35th Conference on Neural Information Processing
Systems (NeurIPS 2021). https://github.com/lin-tan/fairness-variance/

[49] Inioluwa Deborah Raji, Timnit Gebru, Margaret Mitchell, Joy Buolamwini, Joonseok Lee, and Emily Denton. 2020. Saving Face: Investigating the
ethical concerns of facial recognition auditing. AIES 2020 - Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (2020), 145–151.
https://doi.org/10.1145/3375627.3375820

[50] Apple Inc (Press release). 2021. Apple advances its privacy leadership with iOS 15, iPadOS 15, macOS Monterey, and watchOS 8. https:
//www.apple.com/newsroom/2021/06/apple-advances-its-privacy-leadership-with-ios-15-ipados-15-macos-monterey-and-watchos-8/

[51] Tara N. Sainath and Carolina Parada. 2015. Convolutional neural networks for small-footprint keyword spotting. Proceedings of the Annual Conference
of the International Speech Communication Association, INTERSPEECH 2015-Janua (2015), 1478–1482. https://doi.org/10.21437/interspeech.2015-
352

[52] Susumu Saito, Yuta Ide, Teppei Nakano, and Tetsuji Ogawa. 2021. VocalTurk: Exploring feasibility of crowdsourced speaker identification.
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH 4 (2021), 2932–2936. https:
//doi.org/10.21437/Interspeech.2021-464

[53] D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and
Dan Dennison. 2015. Hidden Technical Debt in Machine Learning Systems. Advances in Neural Information Processing Systems (2015).

[54] Julien Siebert, Lisa Joeckel, Jens Heidrich, Adam Trendowicz, Koji Nakamichi, Kyoko Ohashi, Isao Namba, Rieko Yamamoto, and Mikio Aoyama.
2021. Construction of a quality model for machine learning systems. Software Quality Journal 0123456789 (2021). https://doi.org/10.1007/s11219-
021-09557-y

Manuscript submitted to ACM

https://doi.org/10.1145/3506695
http://arxiv.org/abs/2005.04275
https://doi.org/10.1007/s10287-022-00425-z
https://doi.org/10.21437/Interspeech.2020-1765
https://arxiv.org/abs/1908.09635
https://doi.org/10.1146/annurev-statistics-042720-125902
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/naeini
https://doi.org/10.1002/9781119121077.ch10
https://doi.org/10.1145/3494672
https://doi.org/10.1145/3494672
https://www.proknx.com/en/news/2020/smart-home-technology-keeps-people-happy-at-home-for-longer/
https://www.proknx.com/en/news/2020/smart-home-technology-keeps-people-happy-at-home-for-longer/
https://github.com/lin-tan/fairness-variance/
https://doi.org/10.1145/3375627.3375820
https://www.apple.com/newsroom/2021/06/apple-advances-its-privacy-leadership-with-ios-15-ipados-15-macos-monterey-and-watchos-8/
https://www.apple.com/newsroom/2021/06/apple-advances-its-privacy-leadership-with-ios-15-ipados-15-macos-monterey-and-watchos-8/
https://doi.org/10.21437/interspeech.2015-352
https://doi.org/10.21437/interspeech.2015-352
https://doi.org/10.21437/Interspeech.2021-464
https://doi.org/10.21437/Interspeech.2021-464
https://doi.org/10.1007/s11219-021-09557-y
https://doi.org/10.1007/s11219-021-09557-y

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Hutiri, et al.

[55] Harvineet Singh, Rina Singh, Vishwali Mhasawade, and Rumi Chunara. 2021. Fairness violations and mitigation under covariate shift. FAccT 2021 -
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (2021), 3–13. https://doi.org/10.1145/3442188.3445865

[56] Rita Singh. 2019. Profiling Humans from their Voice. https://doi.org/10.1007/978-981-13-8403-5
[57] Scott Small, Sara Khalid, Paula Dhiman, Shing Chan, Dan Jackson, Aiden Doherty, and Andrew Price. 2021. Impact of reduced sampling rate on

accelerometer-based physical activity monitoring and machine learning activity classification. Journal for the Measurement of Physical Behaviour 4, 4
(2021), 298–310.

[58] Rachael Tatman. 2017. Gender and Dialect Bias in YouTube’s Automatic Captions. (2017), 53–59. https://doi.org/10.18653/v1/w17-1606
[59] Wiebke Toussaint, Akhil Mathur, Aaron Yi Ding, and Fahim Kawsar. 2021. Characterising the Role of Pre-Processing Parameters in Audio-based

Embedded Machine Learning. In The 3rd International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things
(AIChal- lengeIoT 21). Association for Computing Machinery, Coimbra, Portugal, 439–445. https://doi.org/10.1145/3485730.3493448

[60] Wiebke Toussaint, Dave Van Veen, Courtney Irwin, Yoni Nachmany, Manuel Barreiro-Perez, Elena Díaz-Peláez, Sara Guerreiro de Sousa, Liliana
Millán, Pedro L. Sánchez, Antonio Sánchez-Puente, Jesús Sampedro-Gómez, P. Ignacio Dorado-Díaz, and Víctor Vicente-Palacios. 2020. Design
Considerations for High Impact, Automated Echocardiogram Analysis. In International Conference on Machine Learning (ICML) 2020 ML for Global
Health Workshop. http://arxiv.org/abs/2006.06292

[61] George Tucker, Minhua Wu, Ming Sun, Sankaran Panchapagesan, Gengshen Fu, and Shiv Vitaladevuni. 2016. Model compression applied to
small-footprint keyword spotting. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
08-12-Sept (2016), 1878–1882. https://doi.org/10.21437/Interspeech.2016-1393

[62] Jennifer Pattison Tuohy. 2021. Amazon Alexa’s new elder care service launches today. https://www.theverge.com/2021/12/7/22822026/amazon-
alexa-together-elder-care-price-features-release-date

[63] Sahil Verma and Julia Rubin. 2018. Fairness definitions explained. In Proceedings - International Conference on Software Engineering. 1–7.
https://doi.org/10.1145/3194770.3194776

[64] Hugo Villamizar, Marcos Kalinowski, and Helio Lopes. 2022. A Catalogue of Concerns for Specifying Machine Learning-Enabled Systems. (2022).
http://arxiv.org/abs/2204.07662

[65] Sandra Wachter, Brent Mittelstadt, and Chris Russell. [n. d.]. Bias Preservation in Machine Learning : The Legality of Fairness Metrics Under EU
Non- Discrimination Law. West Virginia Law Review, Forthcoming ([n. d.]), 1–51. https://ssrn.com/abstract=3792772

[66] Yuxuan Wang, Pascal Getreuer, Thad Hughes, Richard F. Lyon, and Rif A. Saurous. 2017. Trainable frontend for robust and far-field keyword
spotting. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings 1 (2017), 5670–5674. https:
//doi.org/10.1109/ICASSP.2017.7953242

[67] Pete Warden. 2018. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. (2018). https://arxiv.org/abs/1804.03209
[68] Tien Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and Hartwig Adam. 2018. NetAdapt: Platform-aware

neural network adaptation for mobile applications. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 11214 LNCS (2018), 289–304. https://doi.org/10.1007/978-3-030-01249-6{_}18

[69] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. 2017. Hello edge: Keyword spotting on microcontrollers. arXiv (2017), 1–14.

Manuscript submitted to ACM

https://doi.org/10.1145/3442188.3445865
https://doi.org/10.1007/978-981-13-8403-5
https://doi.org/10.18653/v1/w17-1606
https://doi.org/10.1145/3485730.3493448
http://arxiv.org/abs/2006.06292
https://doi.org/10.21437/Interspeech.2016-1393
https://www.theverge.com/2021/12/7/22822026/amazon-alexa-together-elder-care-price-features-release-date
https://www.theverge.com/2021/12/7/22822026/amazon-alexa-together-elder-care-price-features-release-date
https://doi.org/10.1145/3194770.3194776
http://arxiv.org/abs/2204.07662
https://ssrn.com/abstract=3792772
https://doi.org/10.1109/ICASSP.2017.7953242
https://doi.org/10.1109/ICASSP.2017.7953242
https://arxiv.org/abs/1804.03209
https://doi.org/10.1007/978-3-030-01249-6{_}18

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 35

A APPENDIX

A.1 Experiment Setup: Datasets

Google Speech Commands keyword classes: ’bed’:0, ’bird’:1, ’cat’:2, ’dog’:3, ’down’:4, ’eight’:5, ’five’:6, ’four’:7,

’go’:8, ’happy’:9, ’house’:10, ’left’:11, ’marvin’:12, ’nine’:13, ’no’:14, ’off’:15, ’on’:16, ’one’:17, ’right’:18, ’seven’:19,

’sheila’:20, ’six’:21, ’learn’:22, ’stop’:23, ’three’:24, ’tree’:25, ’two’:26, ’up’:27, ’wow’:28, ’yes’:29, ’zero’:30, ’back-

ward’:31, ’follow’:32, ’forward’:33, ’visual’:34

MSWC English keyword classes: ’about’: 0, ’after’: 1, ’also’: 2, ’been’: 3, ’could’: 4, ’first’: 5, ’from’: 6, ’have’: 7,

’however’: 8, ’just’: 9, ’know’: 10, ’like’: 11, ’many’: 12, ’more’: 13, ’most’: 14, ’only’: 15, ’other’: 16, ’over’: 17,

’people’: 18, ’said’: 19, ’school’: 20, ’some’: 21, ’that’: 22, ’they’: 23, ’this’: 24, ’three’: 25, ’time’: 26, ’used’: 27, ’were’:

28, ’what’: 29, ’when’: 30, ’will’: 31, ’with’: 32, ’would’: 33, ’your’: 34

MSWC German keyword classes: ’aber’: 0, ’alle’: 1, ’auch’: 2, ’dann’: 3, ’dass’: 4, ’diese’: 5, ’doch’: 6, ’durch’: 7,

’eine’: 8, ’gibt’: 9, ’haben’: 10, ’hauptstadt’: 11, ’heute’: 12, ’hier’: 13, ’immer’: 14, ’jetzt’: 15, ’kann’: 16, ’können’: 17,

’mehr’: 18, ’muss’: 19, ’nach’: 20, ’nicht’: 21, ’noch’: 22, ’oder’: 23, ’schon’: 24, ’sein’: 25, ’sich’: 26, ’sind’: 27, ’wenn’:

28, ’werden’: 29, ’wieder’: 30, ’wird’: 31, ’wurde’: 32, ’zwei’: 33, ’über’: 34

MSWC French keyword classes: ’alors’: 0, ’aussi’: 1, ’avec’: 2, ’bien’: 3, ’cent’: 4, ’cette’: 5, ’comme’: 6, ’c’est’: 7,

’dans’: 8, ’deux’: 9, ’donc’: 10, ’elle’: 11, ’fait’: 12, ’huit’: 13, ’mais’: 14, ’mille’: 15, ’monsieur’: 16, ’même’: 17, ’nous’:

18, ’numéro’: 19, ’plus’: 20, ’pour’: 21, ’quatre’: 22, ’saint’: 23, ’sept’: 24, ’soixante’: 25, ’sont’: 26, ’tout’: 27, ’trois’: 28,

’très’: 29, ’vingt’: 30, ’vous’: 31, ’également’: 32, ’était’: 33, ’être’: 34

MSWC Kinyarwanda keyword classes: ’abantu’: 0, ’ariko’: 1, ’avuga’: 2, ’bari’: 3, ’benshi’: 4, ’buryo’: 5, ’cyane’:

6, ’gihe’: 7, ’gukora’: 8, ’gusa’: 9, ’hari’: 10, ’ibyo’: 11, ’icyo’: 12, ’igihe’: 13, ’imana’: 14, ’imbere’: 15, ’kandi’: 16,

’kuba’: 17, ’kugira’: 18, ’kuko’: 19, ’kuri’: 20, ’mbere’: 21, ’muri’: 22, ’ndetse’: 23, ’neza’: 24, ’ntabwo’: 25, ’nyuma’:

26, ’perezida’: 27, ’rwanda’: 28, ’ubwo’: 29, ’umuntu’: 30, ’umwe’: 31, ’yagize’: 32, ’yari’: 33, ’yavuze’: 34

A.2 Statistical Analysis: Design Choices Arising During Model Training

Model 1. First factorial ANOVA interaction model for model training design choices

model_inital = 'metric ~ C(dataset_name, Sum)+C(model_arch, Sum)C(resample_rate, Sum)+C(mfccs, Sum)+C(

mel_bins, Sum)+C(frame_length, Sum)+C(frame_step, Sum)+C(window_fn, Sum)+C(dataset_name, Sum)*C(

model_arch, Sum)*C(resample_rate, Sum)*C(mfccs, Sum)*C(mel_bins, Sum)+C(dataset_name, Sum)*C(

model_arch, Sum)*C(resample_rate, Sum)*C(frame_length, Sum)*C(frame_step, Sum)*C(window_fn, Sum)'

Model 2. Final factorial ANOVA interaction model for effect of model training design choices on MCC

model_final_mcc = 'mcc ~ C(dataset_name, Sum)+C(model_arch, Sum)+C(resample_rate, Sum)+C(mfccs, Sum)+C

(mel_bins, Sum)+C(dataset_name, Sum)*C(resample_rate, Sum)*C(mfccs, Sum)+C(model_arch, Sum)*C(

mfccs, Sum)*C(mel_bins, Sum)+C(dataset_name, Sum)*C(model_arch, Sum)*C(mfccs, Sum)+C(frame_length

, Sum)+C(frame_step, Sum)+C(model_arch, Sum)*C(frame_length, Sum)*C(frame_step, Sum)'

Model 3. Final factorial ANOVA interaction model for effect of model training design choices on reliability bias

model_final_bias = 'reliability_bias ~ C(dataset_name, Sum)+C(model_arch, Sum)+C(resample_rate, Sum)+C

(dataset_name, Sum)*C(resample_rate, Sum)+C(mfccs, Sum)+C(mel_bins, Sum)+C(dataset_name, Sum)*C(

model_arch, Sum)*C(mfccs, Sum)+C(dataset_name, Sum)*C(mel_bins, Sum)+C(frame_length, Sum)'

Manuscript submitted to ACM

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Hutiri, et al.

A.3 Impact of Pre-processing parameters

Fig. 13. Effect of MFCC dimensions on accuracy and reliability bias for 16kHz CNN models. Models without MFCC features,
i.e. models that directly use log Mel spectrograms as input features, tend to perform worse than those that use MFCC
features.

Fig. 14. Effect of log Mel spectrogram dimensions (# Mel fbanks) on accuracy and reliability bias, disaggregated by
input feature type for CNN architectures. The number of Mel filter banks clearly impacts models that directly use log Mel
spectrograms as input features.

Manuscript submitted to ACM

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

Tiny, Always-on and Fragile: Bias Propagation in On-device ML Workflows 37

A.4 Statistical Analysis: Design Choices Arising During Model Optimization

Model 4. First factorial ANOVA interaction model for pruning hyper-parameters

model_inital = 'delta_metric ~ mcc_baseline + reliability_bias_baseline + C(dataset_name, Sum)+C(

model_arch, Sum)+C(resample_rate, Sum)+C(pruning_learning_rate, Sum)+C(pruning_schedule, Sum)+C(

pruning_frequency, Sum)+C(pruning_final_sparsity, Sum)+C(dataset_name, Sum)*C(model_arch, Sum)*C(

resample_rate, Sum)*C(pruning_learning_rate, Sum)*C(pruning_schedule, Sum)*C(pruning_frequency,

Sum)*C(pruning_final_sparsity, Sum)'

Model 5. Final factorial ANOVA interaction model for effect of pruning design choices on change in MCC

model_final_delta_mcc = 'delta_mcc ~ mcc_baseline + reliability_bias_baseline + C(dataset_name, Sum)+C

(model_arch, Sum)+C(resample_rate, Sum)+C(pruning_learning_rate, Sum)+C(pruning_schedule, Sum)+C(

pruning_frequency, Sum)+C(pruning_final_sparsity, Sum)+C(model_arch, Sum)*C(pruning_learning_rate

, Sum)*C(pruning_schedule, Sum)*C(pruning_final_sparsity, Sum)+C(dataset_name, Sum)*C(model_arch,

Sum)*C(resample_rate, Sum)*C(pruning_final_sparsity, Sum)+C(dataset_name, Sum)*C(

pruning_learning_rate, Sum)*C(pruning_schedule, Sum)+C(dataset_name, Sum)*C(pruning_schedule, Sum

)*C(pruning_final_sparsity, Sum)+C(dataset_name, Sum)*C(pruning_learning_rate, Sum)*C(

pruning_final_sparsity, Sum)+C(resample_rate, Sum)*C(pruning_learning_rate, Sum)*C(

pruning_final_sparsity, Sum)'

Model 6. Final factorial ANOVA interaction model for effect of pruning design choices on change in reliability bias

model_final_delta_bias = 'delta_reliability_bias ~ mcc_baseline+reliability_bias_baseline+C(

dataset_name, Sum)+C(model_arch, Sum)+C(resample_rate, Sum)+C(pruning_learning_rate, Sum)+C(

pruning_schedule, Sum)+C(pruning_frequency, Sum)+C(pruning_final_sparsity, Sum)+C(dataset_name,

Sum)*C(model_arch, Sum)*C(resample_rate, Sum)*C(pruning_learning_rate, Sum)+C(dataset_name, Sum)*

C(pruning_learning_rate, Sum)*C(pruning_final_sparsity, Sum)+C(pruning_schedule, Sum)*C(

pruning_final_sparsity, Sum)+C(model_arch, Sum)*C(pruning_final_sparsity, Sum)'

Manuscript submitted to ACM

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

38 Hutiri, et al.

A.5 Model Selection After Pruning

Fig. 15. MCC (accuracy) score and reliability bias of models after pruning. Models were selected based on three selection
criteria: high accuracy, low bias, and high accuracy + low bias. After pruning MCC is greatest for models selected with a
criteria that considers high accuracy. Similarly, reliability bias is lower for criteria that consider low bias.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Bias and Fairness in Machine Learning
	2.2 Bias in the Machine Learning Workflow

	3 On-Device Machine Learning Systems
	3.1 Data Processing Workflow for On-device ML
	3.2 Design Choices in On-device ML Engineering

	4 Bias in On-device ML
	4.1 Quantifying Reliability Bias

	5 A Study on Bias in On-device Audio Keyword Spotting
	5.1 Overview of Audio Keyword Spotting Task
	5.2 Impact of Design Choices and Choice Variables
	5.3 Experiment Design
	5.4 Experiment Setup

	6 Empirical Results and Analysis
	6.1 Design Choices during Model Training
	6.2 Design Choices during Model Optimization
	6.3 Summary of Results

	7 Strategies to Mitigate Reliability Bias
	7.1 Model Selection
	7.2 Supporting Design Decisions with Targeted Experimentation

	8 Discussion
	8.1 Reliability Bias as a Source of Unfairness and Discrimination in On-device ML
	8.2 Limitations

	9 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Experiment Setup: Datasets
	A.2 Statistical Analysis: Design Choices Arising During Model Training
	A.3 Impact of Pre-processing parameters
	A.4 Statistical Analysis: Design Choices Arising During Model Optimization
	A.5 Model Selection After Pruning

