Bibliography
Why deep learning?

Ridge Bifurcation Lake Independent Point or Spur Crossover
ending ndge Island

_— e = e 0 el DT

b)

Figure 2: a) Example of key features in fingerprints ( “minutiae” ).
b) Once features are detected, their relative locations are stored to be compared with other fingerprints.

Fingerprint recognition existed long before deep learning using classic computer vision
techniques. How does this work? Why not use the same methods for violin recognition, and what
are the advantages of deep-learning for this specific task?

Fingerprints are identified using feature extraction and matching [1]. Some specific features
(see figure 1a) are detected using classical computer vision techniques, such as filters, thresholding,
skeletonization, and pixel pattern detection.

Once these features are detected, their relative positions are stored as numeric codes (see
figure 1b). If a few of these features and locations fit another fingerprint, then it's a match. This
method is robust enough to identify an individual using a partial fingerprint, like those found on a
crime scene. In another field, the famous song-identifying application Shazam uses the same method
to some extent [2], with sound frequencies instead of visual features.

Figure 3: Illustration of the variety of wood aspects in violins.




If this method is so effective for fingerprints, why not use it for violins? Theoretically, it
could be possible. But the aspect of a fingerprint is always roughly the same, while violin wood
appearance varies widely. Figure 3 shows a few examples of different violin backs: the classic wood
flames, plain wood with almost no visible flames, the complex "bird's eye" patterns, etc. Writing a
single algorithm that can extract features and uniquely identify these very different violins might be
very complex and time consuming.

Luckily, this task is perfect for deep learning, specifically convolutional neural network
(CNN) architectures. It is not the purpose of this paper to explain in depth how CNN operates. But
in a nutshell, a CNN is composed of several convolutional layers (CL), each of which extracts
features from the preceding CL. Therefore, the extracted features can become more and more
complex as the network gets deeper (see figure 4). A CNN can focus on simple small-scale features
as well as larger complex ones, and combine said features to achieve the desired result. The scale,
complexity, and combination of extracted features will depend entirely on the training process.
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Figure 4: Different levels of feature complexity on different stages of a CNN (image source).

In the last decades, face recognition has been a subject of intense research for biometrics,
surveillance, and other more or less desirable applications. Techniques used in face recognition are
interesting regarding violin recognition, as they are based on CNN training. Moreover, the
challenges encountered by face recognition applications are very similar to our own. Indeed, face
recognition applications are open-set classifications.

Typical deep learning classifiers are closed-set classifiers. Such a classifier can only
recognise classes found in the training dataset. For example, adding new instruments to a violin
recognition model implies retraining the model with these new violins in the dataset. In our case
Cozio, the violin database, is regularly updated, with batches of new instruments added several
times yearly. Therefore, a closed-set classifier is really not a practical option.

An open-set classifier can recognise classes that were not in the training dataset. For violin
recognition, it means that as soon as a new violin is "shown" to the model, from that point on, the
model can recognise it without any retraining. Therefore, updating the database does not require
model retraining.

While classical classifiers are relatively simple to build and train, open-set classifiers are
much more complex and rely on deep metric learning (DML). In the next chapter, we will explain
what DML is. We will also show and compare two training methods tested for this project: triplet
loss and arcface.
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Deep Metric Learning.

A classical closed-set classifier is straightforward: the model takes an image as an input and
outputs a class (i.e. an instrument's ID). An open-set classifier must be able to classify an indefinite
number of classes. The model’s output cannot, therefore, be a class, as we cannot simply add new
classes in the last layer of the model without retraining. Instead, open-set classifiers rely on deep
metric learning (DML).

In computer vision, the idea behind DML is to use a CNN to transform an image into
an embedding and not into a class. Embeddings can be thought of as the coordinates of a point, like
GPS coordinates. However, GPS coordinates are 2-dimensional (latitude and longitude), while
embeddings are N-dimensional vectors. An embedding represents the coordinates of a point in an
N-dimensional space called the embedding space. The location of embeddings in this space
depends on the aspect of input images, according to the features extracted by the CNN.
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Figure 5: Deep metric learning transformation of violin images into embeddings, with an untrained
(a) and a trained (b) model.

As shown in figure 5a, an untrained model will place images randomly in the embedding
space. The objective of DML is to train the model so that similar images end up close to one
another while different images end up far apart. But it cannot just be any visual similarity, as
illustrated in Figure 5b. Here, the two pictures of violin A are very different in appearance, one
being black and white and grainy, the other in color with light reflections and a background. Violin
B picture is studio-quality with perfect lighting. We want the model to focus on meaningful
features, like wood flame patterns, and ignore details like background, light reflections, or picture
graininess to determine the location of the embeddings.
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Figure 6: lllustration of how a trained model locates embeddings of a new violin, and of an existing
violin, in a 2D embedding space containing embeddings from the database.

Then, how can DML models using embeddings be used as classifiers? Let's imagine an
ideally trained model for violins. Such a model would assign a small part of the embedding space to
one and only one violin, regardless of the quality or variations of the pictures. This location will
depend on meaningful visual features the model learned to see during training. If new violins are
added to the database, the model will assign them to new unoccupied locations in the embedding
space, away from existing violins. Finally, when end users take a picture of a violin to check what
this violin is, all they have to do is get this picture through the model and transform it into an
embedding. If the violin exists in the database, this embedding will be situated right next to
embeddings of an existing violin (see violin B in figure 6). If not, the model will put this picture’s
embedding far away from all other embeddings.

With an ideal model, a simple computer program that checks the distance between
embeddings is enough to determine: 1. if a violin exists in the database and 2. what the violin ID is.
Unfortunately, in the real world, even the best model isn't guaranteed to be ideal. Therefore, it is
preferable to introduce some manual confirmation. For example, a computer program can fetch the
five embeddings closest to the user's picture embedding. The user can then compare pictures to see
if one corresponds to his violin.

Training methods: triplet loss and arcface.

For over a decade, research in DML has produced multiple training methods to achieve the
results described in the previous chapter. Two of these methods were tested and used for our violin
recognition project. These methods are triplet loss and arcface.

We will describe these techniques as clearly and concisely as possible. However, these descriptions
might get technical, especially for arcface, which relies on softmax loss. Therefore, basic
knowledge of loss functions and neural network training is preferable.



Triplet loss:

Triplet loss is perhaps the most well-known training method in DML. It was also considered
the most reliable method until the emergence of angular-softmax based losses like SphereFace,
CosFace, and ArcFace. Even if the concept has existed since the early 2000s, it has only been
introduced in the field of face recognition in the 2015 paper "FaceNet: A Unified Embedding for
Face Recognition and Clustering" by Schroft & al [3]. The principle of triplet loss is
straightforward, as depicted in figure 7.
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Figure 7: triplet loss principle. a) before training, the negative image is closer to the anchor than the
positive. b) after training, the positive has been brought closer and the negative farther from the anchor,
leaving a distance m between the positive and the negative.

To calculate the loss function, the model transforms three images into embeddings. The first image
is named the anchor, the point of reference. The second image is the positive image, which belongs
to the same class as the anchor (i.e. same violin). The third image, the negative image, is from a
different class. The training's goal is to minimize the distance between the anchor and positive
embeddings and to maximize the distance between the anchor and negative embeddings.
The loss formula is:

Ezmax( 0, dAp—dAN+m) (0)

Where dAP is the distance between the anchor and the positive embeddings, dAN the distance

between the anchor and the negative embedding, and m is the margin. Using this loss function, an
ideally trained model will organize embeddings into same-labeled clusters like in figure 6, with
every cluster separated by at least the margin m.

While the triplet loss theory is relatively simple, its implementation presents many
difficulties. One difficulty is the selection of relevant triplets, called triplet mining. Triplet mining
refers to the process of selecting triplets fed to the model. Indeed, the number of triplet
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combinations increases exponentially with the number of samples in the dataset, and most of these
triplets are irrelevant. For a triplet to be relevant, it has to satisfy at least the following requirements:
1. The positive sample is the same class as the anchor.
2. The negative is from a different class than the anchor.
3. The loss has to be greater than 0.
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Figure 8: The three kinds of triplets according to the position of the
negative embedding, given an anchor (A) and a positive (P).

Triplets with a loss lower than 0 are named "easy triplets" (see figure 8). These triplets’ negative
embedding distance from the anchor is greater than the positive distance plus the margin. Among
the valid triplets, we can distinguish between hard and semi-hard triplets. Hard triplets have the
negative closer to the anchor than the positive, while semi-hard triplets have the negative within
the margin. Choosing which triplets appear during training has a significant impact on the results.
One can feed the model only hard triplets, hard and semi-hard triplets, use only the hardest triplets
in the whole dataset, etc. Some papers even argued that choosing assortments of easy positive/hard
negative and hard positive/easy negative can result in a more robust model [4,5]. The possibilities
are numerous, but it requires control over the batches' content. Moreover, converting images into
embeddings is necessary to know the nature of a triplet (easy, hard, or semi-hard). The process of
triplet mining makes triplet loss harder to implement than classical classifiers.

Several mining strategies exist. Offline mining requires computing all embeddings of the
training set at the beginning of each epoch. Using these embeddings it is possible to create a list of
triplets of interest (e.g. the hardest triplets or any desired combination) and to form training batches
according to this list. Thus, offline mining offers complete control over the batches' content.
However, this process presents two main drawbacks: 1. computing all images embeddings from the
dataset is excessively time-consuming, and 2. the model weights change after each batch, therefore
the nature of triplets can also change during an epoch. There is no guarantee that a hard triplet at the
beginning of an epoch doesn't become easy by the end of that epoch.

Online mining is another method that doesn't require computing every training embeddings
at the beginning of each epoch. Instead, batches are generated randomly, like in regular batch
gradient descent. The relevant triplet selection then occurs within each batch. This process is
simpler and faster. However, the possible triplets combinations are limited to the batches’ content
and depend entirely on a random process.



Apart from triplet mining, another downside of using triplet loss is that the model is prone to
embedding collapse, a phenomenon comparable to overfitting. Models trained using triplet loss tend
to give all embedding the exact same value. To avoid this, we can use the same techniques usually
used to avoid overfitting: regularization, dropout, control over the learning rate, etc. Another
practice that is very effective regarding embedding collapse is to project all embeddings onto a
hypersphere using L2 normalization on the embedding layer.

ArcFace:

Because of triplet mining and embedding collapse, training a model using triplet loss is
time-consuming, hard to implement and unstable. To overcome these problems, face recognition
researchers found new training methods. The most notable new techniques are derived
from softmax loss and are often grouped under the designation "angular softmax loss". This term
generally refers to SphereFace, CosFace and ArcFace [6, 7, 8], three approaches based on the same
concept.

Before we describe angular softmax losses, we must explain what softmax loss is. Softmax
loss is a well-known loss function typically used for multi-class deep learning classifiers. It is the
combination of softmax activation function and cross-entropy loss.

A softmax function transforms the raw output of a neural network into a vector of
probabilities. This transformation ensures that all of the vector's components are positive and their

sum adds up to 1. This function is:

o\zi) = 15;72 la
()= v (1a)

Where o is the softmax function, N is the number of classes/number of neurons in the input vector,

and  is the i component of this input vector.

Cross entropy measures the distance between the predicted probability distribution of a
classification model and the real distribution. This function outputs a number between O and 1, 0
being a perfect prediction. The goal is to get the model's output as close to 0 as possible. It is

formulated as:
Z yilog(9:) Z yilog(o (2a)

With ¥i the predicted probability and Yi the true probability value for the i™ class € .

Softmax loss is ideal for multi-class closed-set classifiers, but cannot perform open-set
classification. However, by performing relatively small changes to the classic softmax loss, angular
softmax losses (ASL) have proven very effective at this task. Figure 9 (source: [3]) illustrates the
concept of ASL. In this figure, each point represents a two-dimensional embedding from a face
recognition toy dataset. This dataset has 8 different classes/identities, each represented by a color.
The first and second rows present the embeddings distribution in Euclidean and angular space,
respectively.
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Figure 9: lllustration from CosFace paper [7]. “A toy experiment of different loss functions on 8
identities with 2D features. The first row maps the 2D features onto the Euclidean space, while the second
row projects the 2D features onto the angular space.” a) softmax loss, b) c¢) and d) CosFace with increasing
margin value.

Figure 9a shows embeddings for a model trained with a classical softmax loss. In this
model, the embedding layer precedes the softmax layer. We can observe that features learned by
softmax-loss have intrinsic angular distribution. The boundaries between classes, also known as
decision boundaries, are intrinsically angular. That is why the embeddings are shown in the angular
space in the lower part of Fig. 9. We can observe that embeddings tend to spread across the angular
space. That's because there is no incentive in softmax-loss for intra-class compactness or inter-class
discrepancy. This is why softmax-loss cannot perform open-set classification: any embedding from
a new class will get projected in a region of the embedding space already occupied by another class.
The idea of ASL is to introduce an angular margin in the softmax loss formula. To explain this, we
will have to delve further into mathematical explanations... and it will involve vector calculation.

Let’s go back to equation (1a). i is the i component of a fully connected layer, which has
the embedding layer as an input. By definition, 2 can be expressed as :
(3)

zi = WIx+b
With Wi the weight vector associated with the ith class/neuron, bi the bias, and x the embedding
vector. Using (3), (1a) becomes:

T .
Z;'V—l eVt

(1b)

O'(Zl) =

If the model is given an image from the i class, the real label vector Y in equation (2a) becomes 0
except for the i™ class where ¥i = 1. Therefore, (2a) becomes:
eW?x—i—bi
L = —log(o(z;)) = —log ~

J=1

(2b)

T ]
ij X+b;
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We introduce the angle 05 between the embedding vector X and the weight vector for the j " class

T, _
Wiixi = [[WlllIxill cos(6;) . To make the model only depend on i, we can set

W; using
individual weight norms Wil =1 (¥j) using L2 normalization and fix the bias bj = 0. We also
project all embeddings onto a hypersphere of radius s using L2 normalization on x. The formula

(2b) then becomes:
’ | es cos(0;) (2 )
- Og i N S cos i ¢
escos(f;) + Zj:l,j;éi e (65)
As a reminder, the purpose of any loss function is to decrease to 0. In (2c), it means the loss
function goal is:

s es0) > eseoslli) o cog(6;) > cos(6;) Vi #i (4)
with 0 the angle between the embedding vector and the correct class, and 0; the angle for any other

class. The idea is to introduce a constant m which will add a constraint on ;. For example,

CosFace loss is defined as:
p | es(cos(¢9i)—m)
ges(cos(gi)—m) + Zé\le’j# s cos(6;) (5)

As €0s(0;) —m < cos(6;) , the model will have to constrain i even more to achieve (4).
Therefore the intra-class discrepancy is reduced. Figure 9b), ¢) and d) show the result of a model
trained with CosFace loss. It can be observed that embeddings occupy a smaller region of the
angular space for larger values of m.
ArcFace uses the same concept, but with the margin applied directly to the angle 0;:
es(cos(ei—i—m))
L= —loges(cos(9i+m)) + Zé\f:l’j# o5 cos(6;) (6)
Compared to triplet-network, building and training these losses is easier. For this, it is
necessary to
1. L2-normalize the embedding layer.
2. build a custom softmax layer with the bias set to 0 and each weight vector L2-normalized.
3. build a custom loss function that computes the loss with the scale factor s and the margin m

The model can then be trained like any classic softmax classifier.
In this project, ArcFace was preferred to other losses like SphereFace or CosFace because

ArcFace was successfully used in Kaggle competitions (humpback whale identification) and
achieved 2° and 3™ place.
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