{ "25706243": { "PMID": "25706243", "ArticleTitle": "\u03b1-Glucosidase Inhibitors from a Xylaria feejeensis Associated with Hintonia latiflora.", "AbstractText": "Two new compounds, pestalotin 4'-O-methyl-\u03b2-mannopyranoside (1) and 3S,4R-(+)-4-hydroxymellein (2), were isolated from an organic extract of a Xylaria feejeensis, which was isolated as an endophytic fungus from Hintonia latiflora. In addition, the known compounds 3S,4S-(+)-4-hydroxymellein (3), 3S-(+)-8-methoxymellein (4), and the quinone derivatives 2-hydroxy-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione (5), 4S,5S,6S-4-hydroxy-3-methoxy-5-methyl-5,6-epoxycyclohex-2-en-1-one (6), and 4R,5R-dihydroxy-3-methoxy-5-methylcyclohexen-2-en-1-one (7) were obtained. The structures of 1 and 2 were elucidated using a set of spectroscopic and spectrometric techniques. The absolute configuration of the stereogenic centers of 1 and 2 was determined using ECD spectroscopy combined with time-dependent density functional theory calculations. In the case of 1, comparison of the experimental and theoretical (3)J6-7 coupling constants provided further evidence for the stereochemical assignments. Compounds 2 and 3 inhibited Saccharomyces cerevisiae \u03b1-glucosidase (\u03b1GHY), with IC50 values of 441 \u00b1 23 and 549 \u00b1 2.5 \u03bcM, respectively. Their activity was comparable to that of acarbose (IC50 = 545 \u00b1 19 \u03bcM), used as positive control. Molecular docking predicted that both compounds bind to \u03b1GHY in a site different from the catalytic domain, which could imply an allosteric type of inhibition.", "id": "Q50956098", "doi": "10.1021/NP500897Y", "chemicals": [ { "id": "Q105007453", "pubchem_id": "132552090", "type": "chemical", "label": "Pestalotin 4'-O-methyl-\u03b2-mannnopyranoside", "class": "" }, { "id": "Q27254488", "pubchem_id": "119025905", "type": "chemical", "label": "3S,4R-(+)-4-hydroxymellein", "class": "" }, { "id": "Q27277301", "pubchem_id": "75528781", "type": "chemical", "label": "3S,4S-(+)-4-hydroxymellein", "class": "" }, { "id": "25706243CHEM1", "pubchem_id": "", "type": "chemical", "label": "3S-(+)-8-methoxymellein", "class": "" }, { "id": "Q103815928", "pubchem_id": "14381939", "type": "chemical", "label": "2-hydroxy-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione", "class": "quinones" }, { "id": "Q77498446", "pubchem_id": "5275343", "type": "chemical", "label": "4S,5S,6S-4-hydroxy-3-methoxy-5-methyl-5,6-epoxycyclohex-2-en-1-one", "class": "quinones" }, { "id": "Q103815924", "pubchem_id": "5275344", "type": "chemical", "label": "4R,5R-dihydroxy-3-methoxy-5-methylcyclohexen-2-en-1-one", "class": "quinones" } ], "organisms": [ { "id": "Q80982248", "label": "Xylaria feejeensis" } ], "relations": [ [ "Q80982248", "Q105007453" ], [ "Q80982248", "Q27254488" ], [ "Q80982248", "Q27277301" ], [ "Q80982248", "25706243CHEM1" ], [ "Q80982248", "Q103815928" ], [ "Q80982248", "Q77498446" ], [ "Q80982248", "Q103815924" ] ] }, "22742761": { "PMID": "22742761", "ArticleTitle": "Nortriterpene glycosides of the sarasinoside class from the sponge Lipastrotethya sp.", "AbstractText": "Five new nortriterpene glycosides, along with eight known compounds of the sarasinoside class, were isolated from the tropical sponge Lipastrotethya sp. collected from Chuuk, Micronesia. The structures of these new compounds, designated as sarasinosides N-R (9-13), were determined by combined spectroscopic and chemical methods. The aglycone portions of 10-13 were found to be unprecedented among nortriterpeneoids on the basis of extensive NMR analyses. Several of these compounds exhibited cytotoxicity against A549 and K562 cell lines as well as weak inhibitory activity against Na(+)/K(+)-ATPase.", "id": "Q39166686", "doi": "10.1021/NP300297D", "chemicals": [ { "id": "22742761CLASS1", "type": "class", "label": "sarasinoside" }, { "id": "Q104945932", "pubchem_id": "60200373", "type": "chemical", "label": "Sarasinoside N", "class": "sarasinosides" }, { "id": "Q105029731", "pubchem_id": "60200532", "type": "chemical", "label": "Sarasinoside O", "class": "sarasinosides" }, { "id": "Q105029730", "pubchem_id": "60200533", "type": "chemical", "label": "Sarasinoside P", "class": "sarasinosides" }, { "id": "Q105280568", "pubchem_id": "60200697", "type": "chemical", "label": "Sarasinoside Q", "class": "sarasinosides" }, { "id": "Q105137322", "pubchem_id": "60200698", "type": "chemical", "label": "Sarasinoside R", "class": "sarasinosides" } ], "organisms": [ { "id": "Q4116399", "label": "Lipastrotethya" } ], "relations": [ [ "Q4116399", "22742761CLASS1" ], [ "Q4116399", "Q104945932" ], [ "Q4116399", "Q105029731" ], [ "Q4116399", "Q105029730" ], [ "Q4116399", "Q105280568" ], [ "Q4116399", "Q105137322" ] ] }, "2661511": { "PMID": "2661511", "ArticleTitle": "Karnamicin, a complex of new antifungal antibiotics. I. Taxonomy, fermentation, isolation and physico-chemical and biological properties.", "AbstractText": "A complex of new antifungal antibiotics designated karnamicin was isolated from the cultured broth of Saccharothrix aerocolonigenes No. N806-4. Fifteen components have so far been isolated from the complex; the major component karnamicin B2 was identified by X-ray crystallography to be a novel molecule unrelated to known antibiotics. All components of karnamicin exhibited a rather broad spectrum of activity against fungi and yeasts with MICs ranging from 3.1 to 50 micrograms/ml.", "id": "Q50705441", "doi": "10.7164/ANTIBIOTICS.42.852", "chemicals": [ { "id": "Q77381235", "pubchem_id": "14837682", "type": "chemical", "label": "Karnamicin B2", "class": "karnamicins" } ], "organisms": [ { "id": "Q62850061", "label": "Saccharothrix aerocolonigenes" } ], "relations": [ [ "Q62850061", "Q77381235" ] ] }, "22196792": { "PMID": "22196792", "ArticleTitle": "p-Terphenyl and diterpenoid metabolites from endophytic Aspergillus sp. YXf3.", "AbstractText": "Six new p-terphenyl derivatives, named 4\u2033-deoxy-3-hydroxyterphenyllin (1), 4\u2033-deoxy-5'-desmethyl-terphenyllin (2), 5'-desmethylterphenyllin (3), 4\u2033-deoxycandidusin A (4), 4,5-dimethoxycandidusin A (5), and terphenolide (6), four new diterpenoids with norcleistanthane (aspergiloid A (12) and aspergiloid B (13)), cleistanthane (aspergiloid C (14)), and isopimarane (aspergiloid D (15)) type skeletons, and five known p-terphenyl compounds (7-11) were isolated from the fermentation broth of the plant endophytic fungus Aspergillus sp. Their structures were elucidated on the basis of detailed spectroscopic analysis and by comparison of their NMR data with those reported in the literature. Compounds 4, 6, 7, and 9 displayed moderate neuraminidase inhibitory activity with IC(50) values ranging from 4.34 to 9.17 \u03bcM.", "id": "Q54412817", "doi": "10.1021/NP200321S", "chemicals": [ { "id": "Q27135998", "pubchem_id": "53262867", "type": "chemical", "label": "4\u2033-deoxy-3-hydroxyterphenyllin", "class": "" }, { "id": "Q75067878", "pubchem_id": "57333564", "type": "chemical", "label": "4\u2033-Deoxy-5'-desmethyl-terphenyllin", "class": "" }, { "id": "Q27135861", "pubchem_id": "53262748", "type": "chemical", "label": "5'-desmethylterphenyllin", "class": "" }, { "id": "Q77379388", "pubchem_id": "57333565", "type": "chemical", "label": "4\u2033-Deoxycandidusin A", "class": "" }, { "id": "Q77518969", "pubchem_id": "57333708", "type": "chemical", "label": "4,5-Dimethoxycandidusin A", "class": "" }, { "id": "Q104171480", "pubchem_id": "45782753", "type": "chemical", "label": "Terphenolide", "class": "" }, { "id": "Q77422247", "pubchem_id": "57333709", "type": "chemical", "label": "Aspergiloid A", "class": "diterpenoids" }, { "id": "Q77562482", "pubchem_id": "57333710", "type": "chemical", "label": "Aspergiloid B", "class": "diterpenoids" }, { "id": "Q77377339", "pubchem_id": "139584877", "type": "chemical", "label": "Aspergiloid C", "class": "diterpenoids" }, { "id": "Q77493359", "pubchem_id": "57333712", "type": "chemical", "label": "Aspergiloid D", "class": "diterpenoids" }, { "id": "Q20965188", "type": "class", "label": "p-terphenyl" } ], "organisms": [ { "id": "Q335130", "label": "Aspergillus" } ], "relations": [ [ "Q335130", "Q27135998" ], [ "Q335130", "Q75067878" ], [ "Q335130", "Q27135861" ], [ "Q335130", "Q77379388" ], [ "Q335130", "Q77518969" ], [ "Q335130", "Q104171480" ], [ "Q335130", "Q77422247" ], [ "Q335130", "Q77562482" ], [ "Q335130", "Q77377339" ], [ "Q335130", "Q77493359" ], [ "Q335130", "Q20965188" ] ] }, "23025386": { "PMID": "23025386", "ArticleTitle": "Xentrivalpeptides A-Q: depsipeptide diversification in Xenorhabdus.", "AbstractText": "Seventeen depsipeptides, xentrivalpeptides A-Q (1-17), have been identified from an entomopathogenic Xenorhabdus sp. Whereas the structure of xentrivalpeptide A (1) was determined after its isolation by NMR spectroscopy and the advanced Marfey's method, the structures of all other derivatives were determined using a combination of stable isotope labeling and detailed MS analysis.", "id": "Q57948675", "doi": "10.1021/NP300279G", "chemicals": [ { "id": "Q105123674", "pubchem_id": "71619841", "type": "chemical", "label": "Xentrivalpeptide H", "class": "depsipeptides" }, { "id": "Q77371728", "pubchem_id": "139584570", "type": "chemical", "label": "Xentrivalpeptide I", "class": "depsipeptides" }, { "id": "Q77279636", "pubchem_id": "71619936", "type": "chemical", "label": "Xentrivalpeptide K", "class": "depsipeptides" }, { "id": "Q75068397", "pubchem_id": "139583857", "type": "chemical", "label": "Xentrivalpeptide N", "class": "depsipeptides" }, { "id": "Q75052797", "pubchem_id": "71619627", "type": "chemical", "label": "Xentrivalpeptide C", "class": "depsipeptides" }, { "id": "Q77368806", "pubchem_id": "71619935", "type": "chemical", "label": "Xentrivalpeptide J", "class": "depsipeptides" }, { "id": "Q77419846", "pubchem_id": "71619626", "type": "chemical", "label": "Xentrivalpeptide B", "class": "depsipeptides" }, { "id": "Q77512912", "pubchem_id": "71619735", "type": "chemical", "label": "Xentrivalpeptide F", "class": "depsipeptides" }, { "id": "Q77509117", "pubchem_id": "71619937", "type": "chemical", "label": "Xentrivalpeptide L", "class": "depsipeptides" }, { "id": "Q77379159", "pubchem_id": "71619733", "type": "chemical", "label": "Xentrivalpeptide D", "class": "depsipeptides" }, { "id": "Q105367340", "pubchem_id": "71620129", "type": "chemical", "label": "Xentrivalpeptide Q", "class": "depsipeptides" }, { "id": "Q75057798", "pubchem_id": "71620039", "type": "chemical", "label": "Xentrivalpeptide O", "class": "depsipeptides" }, { "id": "Q77519432", "pubchem_id": "71619840", "type": "chemical", "label": "Xentrivalpeptide G", "class": "depsipeptides" }, { "id": "Q77373416", "pubchem_id": "71620128", "type": "chemical", "label": "Xentrivalpeptide P", "class": "depsipeptides" }, { "id": "Q77381224", "pubchem_id": "71620037", "type": "chemical", "label": "Xentrivalpeptide M", "class": "depsipeptides" }, { "id": "Q105183537", "pubchem_id": "71451247", "type": "chemical", "label": "Xentrivalpeptide A", "class": "depsipeptides" }, { "id": "Q105346001", "pubchem_id": "71619734", "type": "chemical", "label": "Xentrivalpeptide E", "class": "depsipeptides" } ], "organisms": [ { "id": "Q1465894", "label": "Xenorhabdus" } ], "relations": [ [ "Q1465894", "Q105183537" ], [ "Q1465894", "Q77419846" ], [ "Q1465894", "Q75052797" ], [ "Q1465894", "Q77379159" ], [ "Q1465894", "Q105346001" ], [ "Q1465894", "Q77512912" ], [ "Q1465894", "Q77519432" ], [ "Q1465894", "Q105123674" ], [ "Q1465894", "Q77371728" ], [ "Q1465894", "Q77368806" ], [ "Q1465894", "Q77279636" ], [ "Q1465894", "Q77509117" ], [ "Q1465894", "Q77381224" ], [ "Q1465894", "Q75068397" ], [ "Q1465894", "Q75057798" ], [ "Q1465894", "Q77373416" ], [ "Q1465894", "Q105367340" ] ] }, "10959848": { "PMID": "10959848", "ArticleTitle": "Illudalane sesquiterpenoids from the soft coral Alcyonium paessleri: the first natural nitrate esters.", "AbstractText": "Fifteen illudalane sesquiterpenoids, alcyopterosins A-O (1-15) have been isolated from the subAntarctic soft coral Alcyonium paessleri which was collected at a depth of 200 m near the South Georgia Islands, and their structures were elucidated by spectroscopic techniques. Eight of these compounds (2, 3, 5-8, 10, and 13) are the first natural nitrate esters, while the other four (1, 4, 11, and 12) are chlorinated. These compounds are as well the first illudalane sesquiterpenoids to be isolated from the marine environment. Compounds 1, 3, 5, and 8 showed mild cytotoxicity toward human tumor cell lines.", "id": "Q40858879", "doi": "10.1021/JO991740X", "chemicals": [ { "id": "Q104916125", "pubchem_id": "10776235", "type": "chemical", "label": "Alcyopterosin A", "class": "illudalane sesquiterpenoids" }, { "id": "Q105013109", "pubchem_id": "102009880", "type": "chemical", "label": "Alcyopterosin J", "class": "illudalane sesquiterpenoids" }, { "id": "Q104400877", "pubchem_id": "10682272", "type": "chemical", "label": "Alcyopterosin D", "class": "illudalane sesquiterpenoids" }, { "id": "Q105186728", "pubchem_id": "102009874", "type": "chemical", "label": "Alcyopterosin B", "class": "illudalane sesquiterpenoids" }, { "id": "Q105171193", "pubchem_id": "102009881", "type": "chemical", "label": "Alcyopterosin L", "class": "illudalane sesquiterpenoids" }, { "id": "Q105185852", "pubchem_id": "10728290", "type": "chemical", "label": "Alcyopterosin N", "class": "illudalane sesquiterpenoids" }, { "id": "Q105329812", "pubchem_id": "102009882", "type": "chemical", "label": "Alcyopterosin M", "class": "illudalane sesquiterpenoids" }, { "id": "Q105180310", "pubchem_id": "102009875", "type": "chemical", "label": "Alcyopterosin C", "class": "illudalane sesquiterpenoids" }, { "id": "Q105272191", "pubchem_id": "10704751", "type": "chemical", "label": "Alcyopterosin I", "class": "illudalane sesquiterpenoids" }, { "id": "Q105276943", "pubchem_id": "102009879", "type": "chemical", "label": "Alcyopterosin H", "class": "illudalane sesquiterpenoids" }, { "id": "Q104944396", "pubchem_id": "10847307", "type": "chemical", "label": "Alcyopterosins O", "class": "illudalane sesquiterpenoids" }, { "id": "Q105214536", "pubchem_id": "10612007", "type": "chemical", "label": "Alcyopterosin K", "class": "illudalane sesquiterpenoids" }, { "id": "Q105331802", "pubchem_id": "102009876", "type": "chemical", "label": "Alcyopterosin E", "class": "illudalane sesquiterpenoids" }, { "id": "Q105209788", "pubchem_id": "102009878", "type": "chemical", "label": "Alcyopterosin G", "class": "illudalane sesquiterpenoids" }, { "id": "Q105245256", "pubchem_id": "102009877", "type": "chemical", "label": "Alcyopterosin F", "class": "illudalane sesquiterpenoids" } ], "organisms": [ { "id": "Q104916124", "label": "Alcyonium paessleri" } ], "relations": [ [ "Q104916124", "Q104916125" ], [ "Q104916124", "Q105186728" ], [ "Q104916124", "Q105180310" ], [ "Q104916124", "Q104400877" ], [ "Q104916124", "Q105331802" ], [ "Q104916124", "Q105245256" ], [ "Q104916124", "Q105209788" ], [ "Q104916124", "Q105276943" ], [ "Q104916124", "Q105272191" ], [ "Q104916124", "Q105013109" ], [ "Q104916124", "Q105214536" ], [ "Q104916124", "Q105171193" ], [ "Q104916124", "Q105329812" ], [ "Q104916124", "Q105185852" ], [ "Q104916124", "Q104944396" ] ] }, "22652254": { "PMID": "22652254", "ArticleTitle": "Beta-carboline alkaloids derived from the ascidian Synoicum sp.", "AbstractText": "Six \u03b2-carboline alkaloids (1-6) of the eudistomin Y class were isolated from the Korean ascidian Synoicum sp. These compounds were chemically converted to a known compound, eudistomin Y(1) (7) and six new derivatives, designated eudistomins Y(8)-Y(13) (8-13). Several of these natural and synthetic compounds exhibited moderate to significant antimicrobial activity, weak cytotoxic activity, and inhibitory activities toward sortase A, isocitrate lyase, and Na(+)/K(+)-ATPase. Structure-activity relationships were also deduced.", "id": "Q39339129", "doi": "10.1016/J.BMC.2012.05.002", "chemicals": [ { "id": "Q109082688", "type": "class", "label": "Beta-carboline alkaloid" }, { "id": "Q110176799", "pubchem_id": "24800709", "type": "chemical", "label": "eudistomin Y1", "class": "eudistomin Y" }, { "id": "Q110177939", "pubchem_id": "70694628", "type": "chemical", "label": "Eudistomin Y9", "class": "eudistomin Y" }, { "id": "Q110177937", "pubchem_id": "66555472", "type": "chemical", "label": "Eudistomin Y8", "class": "eudistomin Y" }, { "id": "Q110177943", "pubchem_id": "70684125", "type": "chemical", "label": "Eudistomin Y12", "class": "eudistomin Y" }, { "id": "Q110177940", "pubchem_id": "70696665", "type": "chemical", "label": "Eudistomin Y10", "class": "eudistomin Y" }, { "id": "Q110177941", "pubchem_id": "66555473", "type": "chemical", "label": "Eudistomin Y11", "class": "eudistomin Y" }, { "id": "Q110177946", "pubchem_id": "70690409", "type": "chemical", "label": "Eudistomin Y13", "class": "eudistomin Y" } ], "organisms": [ { "id": "Q4915535", "label": "Synoicum" } ], "relations": [ [ "Q4915535", "Q109082688" ], [ "Q4915535", "Q110176799" ], [ "Q4915535", "Q110177937" ], [ "Q4915535", "Q110177939" ], [ "Q4915535", "Q110177940" ], [ "Q4915535", "Q110177941" ], [ "Q4915535", "Q110177943" ], [ "Q4915535", "Q110177946" ] ] }, "24248781": { "PMID": "24248781", "ArticleTitle": "Sesquiterpenes in the frontal gland secretions of nasute soldier termites from New Guinea.", "AbstractText": "In five New GuineaNasutitermes (N. gracilirostris, N. novarumhebridarum, N. torresi, N. triodiae, and an undescribed speciesN. sp.F), we have detected and identified 10 sesquiterpenes. Eight of these compounds (\u03b2)-elemene,\u03b2-caryophyllene,\u03b1-humulene,\u03b1-muurolene,\u03b3-selinene,\u03b2-selinene, germacrene-A, and \u03b32-cadinene) were identified by GC and GC-MS (EI). Two uncommon sesquiterpenes, (5R(*), 7R(*), 10S(*))-selina-4(14),11-diene and (5R(*), 7R(*), 10S(*))-selina-3,11-diene, were identified by GC, GC-MS (EI, CI), GC-FTIR, and mono- and bidimensional NMR. Whereas in most species sesquiterpenes are present in low or trace amounts, inN. novarumhebridarum the sesquiterpenic fraction of soldier frontal gland secretion is equal to that of the monoterpenes.", "id": "Q46223995", "doi": "10.1007/BF00980588", "chemicals": [ { "id": "Q421614", "pubchem_id": "5281515", "type": "chemical", "label": "\u03b2-Caryophyllene", "class": "sesquiterpenes" }, { "id": "Q27132237", "pubchem_id": "6918391", "type": "chemical", "label": "(\u03b2)-Elemene", "class": "sesquiterpenes" }, { "id": "Q104253291", "pubchem_id": "521334", "type": "chemical", "label": "\u03b3-Selinene", "class": "sesquiterpenes" }, { "id": "Q1995108", "pubchem_id": "5281520", "type": "chemical", "label": "\u03b1-Humulene", "class": "sesquiterpenes" }, { "id": "Q27133436", "pubchem_id": "12306047", "type": "chemical", "label": "\u03b1-Muurolene", "class": "sesquiterpenes" }, { "id": "Q27116866", "pubchem_id": "9548706", "type": "chemical", "label": "Germacrene A", "class": "sesquiterpenes" }, { "id": "Q27108640", "pubchem_id": "442393", "type": "chemical", "label": "\u03b2-Selinene", "class": "sesquiterpenes" }, { "id": "24248781CHEM1", "pubchem_id": "91748321", "type": "chemical", "label": "\u03b32-Cadinene", "class": "sesquiterpenes" }, { "id": "24248781CHEM2", "pubchem_id": "", "type": "chemical", "label": "(5R(*), 7R(*), 10S(*))-selina-4(14),11-diene", "class": "sesquiterpenes" }, { "id": "24248781CHEM3", "pubchem_id": "", "type": "chemical", "label": "(5R(*), 7R(*), 10S(*))-selina-3,11-diene", "class": "sesquiterpenes" } ], "organisms": [ { "id": "Q104374233", "label": "Nasutitermes novarumhebridarum" }, { "id": "Q104374576", "label": "Nasutitermes torresi" }, { "id": "Q104374234", "label": "Nasutitermes gracilirostris" }, { "id": "Q18379318", "label": "Nasutitermes triodiae" }, { "id": "Q6967779", "label": "Nasutitermes" } ], "relations": [ [ "Q104374234", "Q27132237" ], [ "Q104374234", "Q421614" ], [ "Q104374234", "Q1995108" ], [ "Q104374234", "Q27133436" ], [ "Q104374234", "Q104253291" ], [ "Q104374234", "Q27108640" ], [ "Q104374234", "Q27116866" ], [ "Q104374234", "24248781CHEM1" ], [ "Q104374234", "24248781CHEM2" ], [ "Q104374234", "24248781CHEM3" ], [ "Q104374233", "Q27132237" ], [ "Q104374233", "Q421614" ], [ "Q104374233", "Q1995108" ], [ "Q104374233", "Q27133436" ], [ "Q104374233", "Q104253291" ], [ "Q104374233", "Q27108640" ], [ "Q104374233", "Q27116866" ], [ "Q104374233", "24248781CHEM1" ], [ "Q104374233", "24248781CHEM2" ], [ "Q104374233", "24248781CHEM3" ], [ "Q104374576", "Q27132237" ], [ "Q104374576", "Q421614" ], [ "Q104374576", "Q1995108" ], [ "Q104374576", "Q27133436" ], [ "Q104374576", "Q104253291" ], [ "Q104374576", "Q27108640" ], [ "Q104374576", "Q27116866" ], [ "Q104374576", "24248781CHEM1" ], [ "Q104374576", "24248781CHEM2" ], [ "Q104374576", "24248781CHEM3" ], [ "Q18379318", "Q27132237" ], [ "Q18379318", "Q421614" ], [ "Q18379318", "Q1995108" ], [ "Q18379318", "Q27133436" ], [ "Q18379318", "Q104253291" ], [ "Q18379318", "Q27108640" ], [ "Q18379318", "Q27116866" ], [ "Q18379318", "24248781CHEM1" ], [ "Q18379318", "24248781CHEM2" ], [ "Q18379318", "24248781CHEM3" ], [ "Q6967779", "Q27132237" ], [ "Q6967779", "Q421614" ], [ "Q6967779", "Q1995108" ], [ "Q6967779", "Q27133436" ], [ "Q6967779", "Q104253291" ], [ "Q6967779", "Q27108640" ], [ "Q6967779", "Q27116866" ], [ "Q6967779", "24248781CHEM1" ], [ "Q6967779", "24248781CHEM2" ], [ "Q6967779", "24248781CHEM3" ] ] }, "10630122": { "PMID": "10630122", "ArticleTitle": "Antimalarials from Stephania venosa, Prismatomeris sessiliflora, Diospyros montana and Murraya siamensis.", "AbstractText": "Fourteen compounds isolated from Stephania venosa, Prismatomeris sessiliflora, Diospyros montana and Murraya siamensis were tested for their antimalarial potential. The 6a,7-dehydroaporphine alkaloids dehydrostephanine and dehydrocrebanine showed potent activity with IC50 values of 40 and 70 ng/ml, respectively. The 13C-NMR data of rubiadin, rubiadin-1-methyl ether, diospyrin and 5-hydroxy-4-methoxy-2-naphthal-dehyde were extensively studied.", "id": "Q73342972", "doi": "10.1055/S-2006-960858", "chemicals": [ { "id": "10630122CHEM1", "pubchem_id": "", "type": "chemical", "label": "6a,7-dehydroaporphine alkaloids dehydrostephanine", "class": "" }, { "id": "Q83107517", "pubchem_id": "156870", "type": "chemical", "label": "Dehydrostephanine", "class": "" }, { "id": "Q72461845", "pubchem_id": "149600", "type": "chemical", "label": "Dehydrocrebanine", "class": "" }, { "id": "Q15633911", "pubchem_id": "124062", "type": "chemical", "label": "Rubiadin", "class": "" }, { "id": "Q72506833", "pubchem_id": "96191", "type": "chemical", "label": "Rubiadin-1-methyl ether", "class": "" }, { "id": "Q27106425", "pubchem_id": "308140", "type": "chemical", "label": "Diospyrin", "class": "" }, { "id": "Q105249523", "pubchem_id": "85769556", "type": "chemical", "label": "5-Hydroxy-4-methoxy-2-naphthal-dehyde", "class": "" } ], "organisms": [ { "id": "Q13021990", "label": "Stephania venosa" }, { "id": "Q15489017", "label": "Prismatomeris sessiliflora" }, { "id": "Q1227092", "label": "Diospyros montana" }, { "id": "Q18074525", "label": "Murraya siamensis" } ], "relations": [ [ "Q13021990", "10630122CHEM1" ], [ "Q13021990", "Q83107517" ], [ "Q13021990", "Q72461845" ], [ "Q13021990", "Q15633911" ], [ "Q13021990", "Q72506833" ], [ "Q13021990", "Q27106425" ], [ "Q13021990", "Q105249523" ], [ "Q15489017", "10630122CHEM1" ], [ "Q15489017", "Q83107517" ], [ "Q15489017", "Q72461845" ], [ "Q15489017", "Q15633911" ], [ "Q15489017", "Q72506833" ], [ "Q15489017", "Q27106425" ], [ "Q15489017", "Q105249523" ], [ "Q1227092", "10630122CHEM1" ], [ "Q1227092", "Q83107517" ], [ "Q1227092", "Q72461845" ], [ "Q1227092", "Q15633911" ], [ "Q1227092", "Q72506833" ], [ "Q1227092", "Q27106425" ], [ "Q1227092", "Q105249523" ], [ "Q18074525", "10630122CHEM1" ], [ "Q18074525", "Q83107517" ], [ "Q18074525", "Q72461845" ], [ "Q18074525", "Q15633911" ], [ "Q18074525", "Q72506833" ], [ "Q18074525", "Q27106425" ], [ "Q18074525", "Q105249523" ] ] }, "15787445": { "PMID": "15787445", "ArticleTitle": "Tryptamine-derived amides and alkaloids from the seeds of Annona atemoya.", "AbstractText": "A series of N-fatty acyl tryptamines, including a mixture of N-nonadecanoyltryptamine (1), N-behenoyltryptamine (2), N-lignoceroyltryptamine (3), N-cerotoyltryptamine (4), and N-octacosanoyl tryptamine (5), and a mixture of N-tricosanoyl-4,5-dihydroxytryptamine (6), N-lignoceroyl-4,5-dihydroxytryptamine (7), N-pentacosanoyl-4,5-dihydroxytryptamine (8), and N-heptacosanoyl-4,5-dihydroxytryptamine (9), along with two alkaloids, atemoine (10) and cleistopholine, were isolated from the EtOAc extract of seeds of Annona atemoya. The structures of the new compounds, 1 and 5-10, were determined on the basis of spectral evidence.", "id": "Q46400740", "doi": "10.1021/NP040177X", "chemicals": [ { "id": "15787445CHEM1", "pubchem_id": "57920707", "type": "chemical", "label": "N-nonadecanoyltryptamine", "class": "" }, { "id": "Q105025104", "pubchem_id": "10311044", "type": "chemical", "label": "N-behenoyltryptamine", "class": "" }, { "id": "Q105155656", "pubchem_id": "10174581", "type": "chemical", "label": "N-lignoceroyltryptamine", "class": "" }, { "id": "Q105233115", "pubchem_id": "10530465", "type": "chemical", "label": "N-cerotoyltryptamine", "class": "" }, { "id": "15787445CHEM2", "pubchem_id": "86041301", "type": "chemical", "label": "N-octacosanoyl tryptamine", "class": "" }, { "id": "15787445CHEM3", "pubchem_id": "86041304", "type": "chemical", "label": "N-tricosanoyl-4,5-dihydroxytryptamine", "class": "" }, { "id": "15787445CHEM4", "pubchem_id": "86041306", "type": "chemical", "label": "N-lignoceroyl-4,5-dihydroxytryptamine", "class": "" }, { "id": "15787445CHEM5", "pubchem_id": "86041307", "type": "chemical", "label": "N-pentacosanoyl-4,5-dihydroxytryptamine", "class": "" }, { "id": "15787445CHEM6", "pubchem_id": "86041310", "type": "chemical", "label": "N-heptacosanoyl-4,5-dihydroxytryptamine", "class": "" }, { "id": "15787445CHEM7", "pubchem_id": "", "type": "chemical", "label": "atemoine", "class": "alkaloids" }, { "id": "Q83126425", "pubchem_id": "457732", "type": "chemical", "label": "cleistopholine", "class": "alkaloids" } ], "organisms": [ { "id": "Q754353", "label": "Annona atemoya" } ], "relations": [ [ "Q754353", "15787445CHEM1" ], [ "Q754353", "Q105025104" ], [ "Q754353", "Q105155656" ], [ "Q754353", "Q105233115" ], [ "Q754353", "15787445CHEM2" ], [ "Q754353", "15787445CHEM3" ], [ "Q754353", "15787445CHEM4" ], [ "Q754353", "15787445CHEM5" ], [ "Q754353", "15787445CHEM6" ], [ "Q754353", "15787445CHEM7" ], [ "Q754353", "Q83126425" ] ] }, "12193025": { "PMID": "12193025", "ArticleTitle": "5-hydroxytryptamine-derived alkaloids from two marine sponges of the genus Hyrtios.", "AbstractText": "Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties. H. erectus contained hyrtiosulawesine (4), a new beta-carboline alkaloid, together with the already known alkaloids 5-hydroxyindole-3-carbaldehyde (1), hyrtiosin B (2), and 5-hydroxy-3-(2-hydroxyethyl)indole (3). H. reticulatus contained the novel derivative 1,6-dihydroxy-1,2,3,4-tetrahydro-beta-carboline (11) together with serotonin (5), 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-beta-carboline (7), and 6-hydroxy-3,4-dihydro-1-oxo-beta-carboline (9).", "id": "Q31105296", "doi": "10.1021/NP020009+", "chemicals": [ { "id": "Q105188808", "pubchem_id": "636664", "type": "chemical", "label": "hyrtiosulawesine", "class": "beta-carboline alkaloid" }, { "id": "Q82224991", "pubchem_id": "5324534", "type": "chemical", "label": "5-hydroxyindole-3-carbaldehyde", "class": "alkaloids" }, { "id": "Q105278064", "pubchem_id": "638389", "type": "chemical", "label": "hyrtiosin B", "class": "alkaloids" }, { "id": "Q27162013", "pubchem_id": "9061", "type": "chemical", "label": "5-hydroxy-3-(2-hydroxyethyl)indole", "class": "alkaloids" }, { "id": "12193025CHEM1", "pubchem_id": "", "type": "chemical", "label": "1,6-dihydroxy-1,2,3,4-tetrahydro-beta-carboline", "class": "alkaloids" }, { "id": "Q167934", "pubchem_id": "5202", "type": "chemical", "label": "Serotonin", "class": "alkaloids" }, { "id": "12193025CHEM2", "pubchem_id": "12309465", "type": "chemical", "label": "6-hydroxy-1-methyl-1,2,3,4-tetrahydro-beta-carboline", "class": "alkaloids" }, { "id": "Q83071988", "pubchem_id": "6452337", "type": "chemical", "label": "6-hydroxy-3,4-dihydro-1-oxo-beta-carboline", "class": "alkaloids" } ], "organisms": [ { "id": "Q2165482", "label": "Hyrtios erectus" }, { "id": "Q2779975", "label": "Hyrtios reticulatus" } ], "relations": [ [ "Q2165482", "Q105188808" ], [ "Q2165482", "Q82224991" ], [ "Q2165482", "Q105278064" ], [ "Q2165482", "Q27162013" ], [ "Q2779975", "12193025CHEM1" ], [ "Q2779975", "Q167934" ], [ "Q2779975", "12193025CHEM2" ], [ "Q2779975", "Q83071988" ] ] }, "17451272": { "PMID": "17451272", "ArticleTitle": "Indolizidine alkaloids with delta-opioid receptor binding affinity from the leaves of Elaeocarpus fuscoides.", "AbstractText": "In the first chemical investigation of the Papua New Guinean plant Elaeocarpus fuscoides, one new indolizidine alkaloid, elaeocarpenine (1), and three known alkaloids, isoelaeocarpicine (2), isoelaeocarpine (3), and elaeocarpine (4), were isolated from the leaves. Their structures were determined by 1D and 2D NMR spectroscopy. Since treatment of elaeocarpenine (1) with ammonia produced a 1:1 mixture of the diastereomers 3 and 4, we propose that elaeocarpenine (1) is the biogenetic precursor of isoelaeocarpine (3) and elaeocarpine (4). Compounds 1-4 demonstrated binding affinity for the human delta-opioid receptor with IC50 values of 2.7, 35.1, 13.6, and 86.4 microM, respectively.", "id": "Q44334805", "doi": "10.1021/NP060607E", "chemicals": [ { "id": "Q104991193", "pubchem_id": "44423026", "type": "chemical", "label": "isoelaeocarpine", "class": "indolizidine alkaloids" }, { "id": "Q82931835", "pubchem_id": "280286", "type": "chemical", "label": "elaeocarpine", "class": "indolizidine alkaloids" }, { "id": "Q105143541", "pubchem_id": "16747727", "type": "chemical", "label": "elaeocarpenine", "class": "indolizidine alkaloids" }, { "id": "Q105143629", "pubchem_id": "44423024", "type": "chemical", "label": "isoelaeocarpicine", "class": "indolizidine alkaloids" } ], "organisms": [ { "id": "Q15316897", "label": "Elaeocarpus fuscoides" } ], "relations": [ [ "Q15316897", "Q105143541" ], [ "Q15316897", "Q105143629" ], [ "Q15316897", "Q104991193" ], [ "Q15316897", "Q82931835" ] ] }, "6658890": { "PMID": "6658890", "ArticleTitle": "Occurrence and seasonal variation of 19-norcholest-4-en-3-one and 3 beta-monohydroxy sterols in the Californian gorgonian, Muricea californica.", "AbstractText": "The first natural occurrence of 19-norcholestenone is reported, together with 17 sterols and one other delta 4-3-ketone in the extracts of the Californian gorgonian, Muricea californica (Aurivillius). Six additional demethyl sterols and five additional 4-monomethyl sterols which remain unidentified were also detected. Lipid extracts of M. californica from a winter and summer collection were split by various chromatographic methods into free sterol, steryl ester, and steryl conjugate fractions. Sterol compositions (determined by CG and CG-MS) of each fraction, subsequent to hydrolysis, are tabulated and discussed with respect to plausible origins of observed variations. The possible relationship of the Muricea 19-nor-steroidal ketone to other naturally occurring 19-nor-steroids is discussed.", "id": "Q42254418", "doi": "10.1016/0039-128X(83)90093-4", "chemicals": [ { "id": "Q76279810", "pubchem_id": "3081996", "type": "chemical", "label": "19-norcholest-4-en-3-one", "class": "" }, { "id": "Q143623", "type": "class", "label": "sterols" } ], "organisms": [ { "id": "Q1937593", "label": "Muricea californica" } ], "relations": [ [ "Q1937593", "Q76279810" ], [ "Q1937593", "Q143623" ] ] }, "20624681": { "PMID": "20624681", "ArticleTitle": "Baculiferins A-O, O-sulfated pyrrole alkaloids with anti-HIV-1 activity, from the Chinese marine sponge Iotrochota baculifera.", "AbstractText": "Fifteen new DOPA-derived pyrrole alkaloids, named baculiferins A-O (2-16), were isolated from the Chinese marine sponge Iotrochota baculifera, together with the known alkaloids purpurone (1) and ningalin A (17). Most of the new compounds contain one to three O-sulfate units. Their structures were determined by extensive spectroscopic analysis including (1)H and (13)C NMR (COSY, HMQC, HMBC) and ESIMS data. A possible pathway for the biosynthetic origin of the isolated alkaloids is proposed, in which DOPA is assumed to be a joint biogenetic precursor. Baculiferins C, E-H, and K-N (4, 6-9, 12-15) were found to be potent inhibitors against the HIV-1 IIIB virus in both, MT4 and MAGI cells. Additional bioassay revealed that baculiferins could dramatically bind to the HIV-1 target proteins Vif, APOBEC3G, and gp41, for which structure-activity relationships are discussed.", "id": "Q39681257", "doi": "10.1016/J.BMC.2010.06.052", "chemicals": [ { "id": "20624681CHEM1", "pubchem_id": "49863835", "type": "chemical", "label": "Baculiferin I", "class": "pyrrole alkaloids" }, { "id": "20624681CHEM2", "pubchem_id": "49863836", "type": "chemical", "label": "Baculiferin J", "class": "pyrrole alkaloids" }, { "id": "20624681CHEM3", "pubchem_id": "46919710", "type": "chemical", "label": "Baculiferin K", "class": "pyrrole alkaloids" }, { "id": "20624681CHEM4", "pubchem_id": "46919794", "type": "chemical", "label": "Baculiferin N", "class": "pyrrole alkaloids" }, { "id": "Q105223878", "pubchem_id": "136199849", "type": "chemical", "label": "Baculiferin G", "class": "pyrrole alkaloids" }, { "id": "Q105244531", "pubchem_id": "135936254", "type": "chemical", "label": "Baculiferin B", "class": "pyrrole alkaloids" }, { "id": "Q104973417", "pubchem_id": "136199846", "type": "chemical", "label": "Baculiferin D", "class": "pyrrole alkaloids" }, { "id": "Q105186152", "pubchem_id": "49863873", "type": "chemical", "label": "Baculiferin O", "class": "pyrrole alkaloids" }, { "id": "Q105178025", "pubchem_id": "135936256", "type": "chemical", "label": "Baculiferin M", "class": "pyrrole alkaloids" }, { "id": "Q105268124", "pubchem_id": "10785171", "type": "chemical", "label": "Ningalin A", "class": "alkaloids" }, { "id": "Q105211410", "pubchem_id": "135936255", "type": "chemical", "label": "Baculiferin H", "class": "pyrrole alkaloids" }, { "id": "Q105278201", "pubchem_id": "135466913", "type": "chemical", "label": "Purpurone", "class": "alkaloids" }, { "id": "Q105268093", "pubchem_id": "136199845", "type": "chemical", "label": "Baculiferin C", "class": "pyrrole alkaloids" }, { "id": "Q105176847", "pubchem_id": "136199850", "type": "chemical", "label": "Baculiferin L", "class": "pyrrole alkaloids" }, { "id": "Q105032640", "pubchem_id": "136199844", "type": "chemical", "label": "Baculiferin A", "class": "pyrrole alkaloids" }, { "id": "Q105151910", "pubchem_id": "136199847", "type": "chemical", "label": "Baculiferin E", "class": "pyrrole alkaloids" }, { "id": "Q105218592", "pubchem_id": "136199848", "type": "chemical", "label": "Baculiferin F", "class": "pyrrole alkaloids" } ], "organisms": [ { "id": "Q1901046", "label": "Iotrochota baculifera" } ], "relations": [ [ "Q1901046", "Q105032640" ], [ "Q1901046", "Q105244531" ], [ "Q1901046", "Q105268093" ], [ "Q1901046", "Q104973417" ], [ "Q1901046", "Q105151910" ], [ "Q1901046", "Q105218592" ], [ "Q1901046", "Q105223878" ], [ "Q1901046", "Q105211410" ], [ "Q1901046", "20624681CHEM1" ], [ "Q1901046", "20624681CHEM2" ], [ "Q1901046", "20624681CHEM3" ], [ "Q1901046", "Q105176847" ], [ "Q1901046", "Q105178025" ], [ "Q1901046", "20624681CHEM4" ], [ "Q1901046", "Q105186152" ], [ "Q1901046", "Q105278201" ], [ "Q1901046", "Q105268124" ] ] }, "31533290": { "PMID": "31533290", "ArticleTitle": "Characterization of Streptomyces sporangiiformans sp. nov., a Novel Soil Actinomycete with Antibacterial Activity against Ralstonia solanacearum.", "AbstractText": "Ralstonia solanacearum is a major phytopathogenic bacterium that attacks many crops and other plants around the world. In this study, a novel actinomycete, designated strain NEAU-SSA 1T, which exhibited antibacterial activity against Ralstonia solanacearum, was isolated from soil collected from Mount Song and characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics of the strain coincided with those of the genus Streptomyces. The 16S rRNA gene sequence analysis showed that the isolate was most closely related to Streptomyces aureoverticillatus JCM 4347T (97.9%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain formed a cluster with Streptomyces vastus JCM4524T (97.4%), S. cinereus DSM43033T (97.2%), S. xiangluensis NEAU-LA29T (97.1%) and S. flaveus JCM3035T (97.1%). The cell wall contained LL-diaminopimelic acid and the whole-cell hydrolysates were ribose, mannose and galactose. The polar lipids were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), hydroxy-phosphatidylethanolamine (OH-PE), phosphatidylinositol (PI), two phosphatidylinositol mannosides (PIMs) and an unidentified phospholipid (PL). The menaquinones were MK-9(H4), MK-9(H6), and MK-9(H8). The major fatty acids were iso-C17:0, C16:0 and C17:1 \u03c99c. The DNA G+C content was 69.9 mol %. However, multilocus sequence analysis (MLSA) based on five other house-keeping genes (atpD, gyrB, recA, rpoB, and trpB), DNA-DNA relatedness, and physiological and biochemical data showed that the strain could be distinguished from its closest relatives. Therefore, it is proposed that strain NEAU-SSA 1T should be classified as representatives of a novel species of the genus Streptomyces, for which the name Streptomyces sporangiiformans sp. nov. is proposed. The type strain is NEAU-SSA 1T (=CCTCC AA 2017028T = DSM 105692T).", "id": "Q90164050", "doi": "10.3390/MICROORGANISMS7090360", "chemicals": [ ], "organisms": [ { "id": "Q104957131", "label": "Streptomyces sporangiiformans" } ], "relations": [ ] }, "8807225": { "PMID": "8807225", "ArticleTitle": "Occupational allergic contact dermatitis caused by decorative plants.", "AbstractText": "12 cases of occupational allergic contact dermatitis caused by decorative plants were diagnosed in a 14-year period. The patients were middle-aged, and their average exposure time was 13 years. The plant families and plants causing occupational contact dermatitis were Compositae (5 patients; chrysanthemum, elecampane, gerbera, feverfew), Alstroemeriaceae (5 patients, Alstroemeria), Liliaceae (4 patients; tulip, hyacinth), Amaryllidaceae (2 patients; narcissus) and Caryophyllaceae (2 patients; carnation, cauzeflower). The known chemical allergens causing dermatitis were tuliposide-A and sesquiterpene lactones, such as alantolactones and parthenolide, in the Liliaceae and Compositae families. 7 of the 12 patients were able to continue their work; 5 were not because of severe relapses of skin symptoms. The plant allergen and extract series currently available are of great help in the diagnosis.", "id": "Q71532121", "doi": "10.1111/J.1600-0536.1996.TB02217.X", "chemicals": [ { "id": "Q21099633", "pubchem_id": "72724", "type": "chemical", "label": "Alantolactone", "class": "" }, { "id": "Q27108493", "pubchem_id": "108011", "type": "chemical", "label": "Tuliposide A", "class": "" }, { "id": "Q76393797", "pubchem_id": "7251185", "type": "chemical", "label": "Parthenolide", "class": "" } ], "organisms": [ { "id": "Q59882", "label": "chrysanthemum" }, { "id": "Q310654", "label": "gerbera" }, { "id": "Q158758", "label": "hyacinth" }, { "id": "Q697416", "label": "elecampane" }, { "id": "Q917833", "label": "Alstroemeria" }, { "id": "Q93201", "label": "tulip" }, { "id": "Q29465", "label": "narcissus" }, { "id": "Q818481", "label": "feverfew" }, { "id": "Q158984", "label": "carnation" }, { "id": "8807225SPECIES1", "label": "cauzeflower" } ], "relations": [ [ "Q59882", "Q21099633" ], [ "Q59882", "Q76393797" ], [ "Q697416", "Q21099633" ], [ "Q697416", "Q76393797" ], [ "Q310654", "Q21099633" ], [ "Q310654", "Q76393797" ], [ "Q818481", "Q21099633" ], [ "Q818481", "Q76393797" ], [ "Q93201", "Q21099633" ], [ "Q93201", "Q76393797" ], [ "Q158758", "Q21099633" ], [ "Q158758", "Q76393797" ], [ "Q917833", "Q27108493" ], [ "Q29465", "Q27108493" ], [ "Q158984", "Q27108493" ], [ "8807225SPECIES1", "Q27108493" ] ] }, "19785389": { "PMID": "19785389", "ArticleTitle": "Further studies on the chemistry of the flustra alkaloids from the bryozoan Flustra foliacea.", "AbstractText": "Since 1980, over a dozen novel brominated alkaloids, named flustramines, have been isolated from Scandinavian and Canadian collections of the marine bryozoan Flustra foliacea. This paper describes the reisolation of the known compound dihydroflustramine C (1) and the isolation of 11 new flustramines (2-4, 6-13), including two dimers (12, 13) that may be isolation artifacts. Together these compounds, some with an unexpected aryl substitution pattern, reveal an intricate network of metabolites present in the extracts of the bryozoan. The structures of these metabolites were solved using a variety of spectroscopic techniques and chemical derivatization and modification. This work also led to the recognition of an unusual rearrangement reaction that occurred slowly over a number of years.", "id": "Q51648886", "doi": "10.1021/NP900282J", "chemicals": [ { "id": "Q5863357", "type": "class", "label": "flustramine" }, { "id": "Q82888434", "pubchem_id": "185307", "type": "chemical", "label": "dihydroflustramine C", "class": "flustramines" } ], "organisms": [ { "id": "Q2399981", "label": "Flustra foliacea" } ], "relations": [ [ "Q2399981", "Q5863357" ], [ "Q2399981", "Q82888434" ] ] }, "12475626": { "PMID": "12475626", "ArticleTitle": "Thelephantins A, B and C: three benzoyl p-terphenyl derivatives from the inedible mushroom Thelephora aurantiotincta.", "AbstractText": "Three benzoyl p-terphenyl derivatives named thelephantins A, B and C were isolated from the ethyl acetate extract of fruit bodies of the Thelephoraceous Basidiomycete Thelephora aurantiotincta. Their structures were elucidated by analysis of high-resolution 2D NMR, MS, IR and UV spectra.", "id": "Q44244621", "doi": "10.1016/S0031-9422(02)00403-X", "chemicals": [ { "id": "Q75058419", "pubchem_id": "5321928", "type": "chemical", "label": "Thelephantin B", "class": "" }, { "id": "Q77495990", "pubchem_id": "5321929", "type": "chemical", "label": "Thelephantin C", "class": "" }, { "id": "Q62076156", "pubchem_id": "5321927", "type": "chemical", "label": "Thelephantin A", "class": "" } ], "organisms": [ { "id": "Q10696043", "label": "Thelephora aurantiotincta" } ], "relations": [ [ "Q10696043", "Q62076156" ], [ "Q10696043", "Q75058419" ], [ "Q10696043", "Q77495990" ] ] }, "32193929": { "PMID": "32193929", "ArticleTitle": "Antimalarial 9-Methoxystrobilurins, Oudemansins, and Related Polyketides from Cultures of Basidiomycete Favolaschia Species.", "AbstractText": "Fourteen new compounds, oudemansins 1-4, oudemansinols 5-7, favolasins 8-10, favolasinin (12), polyketides 13-15, and (R,E)-2,4-dimethyl-5-phenyl-4-pentene-2,3-diol (16), together with nine known compounds were isolated from the basidiomycete fungus Favolaschia sp. BCC 18686. Two new compounds, favolasin E (11) and 9-oxostrobilurin E (17), were isolated from the closely related organism Favolaschia calocera BCC 36684 along with nine \u03b2-methoxyacrylate-type derivatives. Compounds in the class of oudemansins and strobilurins exhibited moderate to strong antimalarial activity with relatively low cytotoxicity against Vero cells (African green monkey kidney fibroblasts). Potent antimalarial activity was demonstrated for 9-methoxystrobilurins G, K, and E (IC50 values 0.061, 0.089, and 0.14 \u03bcM, respectively). The structure-activity relationships (SAR) for antimalarial activity is proposed on the basis of the activity of the new and several known \u03b2-methoxyacrylate derivatives in combination with the data from previously isolated compounds. Furthermore, several compounds showed specific cytotoxicity against NCI-187 cells (human small-cell lung cancer), although the SAR was different from that for antimalarial activity.", "id": "Q90474880", "doi": "10.1021/ACS.JNATPROD.9B00647", "chemicals": [ { "id": "Q516751", "type": "class", "label": "polyketides" }, { "id": "32193929CLASS1", "type": "class", "label": "oudemansins" }, { "id": "32193929CLASS2", "type": "class", "label": "oudemansinols" }, { "id": "32193929CLASS3", "type": "class", "label": "favolasins" }, { "id": "Q110169602", "pubchem_id": "156019081", "type": "chemical", "label": "Favolasin E", "class": "" }, { "id": "Q110169606", "pubchem_id": "156016623", "type": "chemical", "label": "9-oxostrobilurin E", "class": "" }, { "id": "Q104993189", "pubchem_id": "46210596", "type": "chemical", "label": "9-methoxystrobilurin G", "class": "" }, { "id": "Q105306708", "pubchem_id": "6476323", "type": "chemical", "label": "9-methoxystrobilurin K", "class": "" }, { "id": "Q77421810", "pubchem_id": "10552948", "type": "chemical", "label": "9-methoxystrobilurin E", "class": "" }, { "id": "32193929CHEM1", "pubchem_id": "", "type": "chemical", "label": "favolasinin", "class": "" }, { "id": "32193929CHEM2", "pubchem_id": "", "type": "chemical", "label": "(R,E)-2,4-dimethyl-5-phenyl-4-pentene-2,3-diol", "class": "" } ], "organisms": [ { "id": "Q1614426", "label": "Favolaschia" }, { "id": "Q1610696", "label": "Favolaschia calocera" } ], "relations": [ [ "Q1614426", "Q516751" ], [ "Q1614426", "32193929CLASS1" ], [ "Q1614426", "32193929CLASS2" ], [ "Q1614426", "32193929CLASS3" ], [ "Q1614426", "32193929CHEM1" ], [ "Q1614426", "32193929CHEM2" ], [ "Q1614426", "Q104993189" ], [ "Q1614426", "Q105306708" ], [ "Q1614426", "Q77421810" ], [ "Q1610696", "Q516751" ], [ "Q1610696", "32193929CLASS1" ], [ "Q1610696", "32193929CLASS2" ], [ "Q1610696", "32193929CLASS3" ], [ "Q1610696", "Q110169602" ], [ "Q1610696", "Q110169606" ] ] }, "27604544": { "PMID": "27604544", "ArticleTitle": "Isolation, Co-Crystallization and Structure-Based Characterization of Anabaenopeptins as Highly Potent Inhibitors of Activated Thrombin Activatable Fibrinolysis Inhibitor (TAFIa).", "AbstractText": "Mature thrombin activatable fibrinolysis inhibitor (TAFIa) is a carboxypeptidase that stabilizes fibrin clots by removing C-terminal arginines and lysines from partially degraded fibrin. Inhibition of TAFIa stimulates the degradation of fibrin clots and may help to prevent thrombosis. Applying a lead finding approach based on literature-mining, we discovered that anabaenopeptins, cyclic peptides produced by cyanobacteria, were potent inhibitors of TAFIa with IC50 values as low as 1.5\u2009nM. We describe the isolation and structure elucidation of 20 anabaenopeptins, including 13 novel congeners, as well as their pronounced structure-activity relationships (SAR) with respect to inhibition of TAFIa. Crystal structures of the anabaenopeptins B, C and F bound to the surrogate protease carboxypeptidase B revealed the binding modes of these large (~850\u2009Da) compounds in detail and explained the observed SAR, i.e. the strong dependence of the potency on a basic (Arg, Lys) exocyclic residue that addressed the S1' binding pocket, and a broad tolerance towards substitutions in the pentacyclic ring that acted as a plug of the active site.", "id": "Q40548565", "doi": "10.1038/SREP32958", "chemicals": [ { "id": "Q77278518", "pubchem_id": "10418061", "type": "chemical", "label": "Anabaenopeptin B", "class": "anabaenopeptins" }, { "id": "Q105289770", "pubchem_id": "146682033", "type": "chemical", "label": "Anabaenopeptin C", "class": "anabaenopeptins" }, { "id": "Q77420174", "pubchem_id": "44387258", "type": "chemical", "label": "Anabaenopeptin F", "class": "anabaenopeptins" } ], "organisms": [ { "id": "Q25202825", "label": "Cyanobacterium" } ], "relations": [ [ "Q25202825", "Q77278518" ], [ "Q25202825", "Q105289770" ], [ "Q25202825", "Q77420174" ] ] }, "20702092": { "PMID": "20702092", "ArticleTitle": "Lanostane triterpenes from Ganoderma lucidum suppress the adipogenesis in 3T3-L1 cells through down-regulation of SREBP-1c.", "AbstractText": "Several lanostane triterpenes [butyl ganoderate A (1), butyl ganoderate B (2), butyl lucidenate N (3), and butyl lucidenate A (4)] bearing a butyl ester side chain from the fruiting bodies of Ganoderma lucidum exhibited considerable inhibitory effects on adipogenesis in 3T3-L1 cells. The inhibitory mechanism of 1 and 3 on adipogenesis in 3T3-L1 cells was investigated; we found that the mRNA and protein expression levels of SREBP-1c were reduced by treatment with 1 and 3 versus the untreated control. Furthermore, compounds 1 and 3 suppressed the mRNA expression levels of FAS and ACC. These results demonstrate that inhibition of adipogenesis in 3T3-L1 cells by treatment with 1 and 3 may be mediated in part through down-regulation of the adipogenic transcription factor SREBP-1c and its target genes, such as FAS and ACC.", "id": "Q42823758", "doi": "10.1016/J.BMCL.2010.06.093", "chemicals": [ { "id": "Q108527275", "type": "class", "label": "Lanostane" }, { "id": "Q2915788", "type": "class", "label": "triterpenes" }, { "id": "Q77373042", "pubchem_id": "46184561", "type": "chemical", "label": "butyl ganoderate A", "class": "lanostane triterpenes" }, { "id": "Q77310208", "pubchem_id": "46184562", "type": "chemical", "label": "butyl ganoderate B", "class": "lanostane triterpenes" }, { "id": "Q77375114", "pubchem_id": "46184563", "type": "chemical", "label": "butyl lucidenate N", "class": "lanostane triterpenes" }, { "id": "Q75064136", "pubchem_id": "46184564", "type": "chemical", "label": "butyl lucidenate A", "class": "lanostane triterpenes" } ], "organisms": [ { "id": "Q271098", "label": "Ganoderma lucidum" } ], "relations": [ [ "Q271098", "Q108527275" ], [ "Q271098", "Q2915788" ], [ "Q271098", "Q77373042" ], [ "Q271098", "Q77310208" ], [ "Q271098", "Q77375114" ], [ "Q271098", "Q75064136" ] ] }, "29192774": { "PMID": "29192774", "ArticleTitle": "Nitrogen-Containing Volatiles from Marine Salinispora pacifica and Roseobacter-Group Bacteria.", "AbstractText": "Bacteria can produce a wide variety of volatile compounds. Many of these volatiles carry oxygen, while nitrogen-containing volatiles are less frequently observed. We report here on the identification and synthesis of new nitrogen-containing volatiles from Salinispora pacifica CNS863 and explore the occurrence in another bacterial lineage, exemplified by Roseobacter-group bacteria. Several compound classes not reported before from bacteria were identified, such as dialkyl ureas and oxalamides. Sulfinamides have not been reported before as natural products. The actinomycete S. pacifica CNS863 produces, for example, sulfinamides N-isobutyl- and N-isopentylmethanesulfinamide (5, 6), urea N,N'-diisobutylurea (16), and oxalamide N,N'-diisobutyloxalamide (17). In addition, new imines such as (E)-1-(furan-2-yl)-N-(2-methylbutyl)methanimine (8) and (E)-2-((isobutylimino)methyl)phenol (13) were identified together with several other imines, acetamides, and formamides. Some of these compounds including the sulfinamides were also released by the Roseobacter-group bacteria Roseovarius pelophilus G5II, Pseudoruegeria sp. SK021, and Phaeobacter gallaeciensis BS107, although generally fewer compounds were detected. These nitrogen-containing volatiles seem to originate from biogenic amines derived from the amino acids valine, leucine, and isoleucine.", "id": "Q48204882", "doi": "10.1021/ACS.JNATPROD.7B00789", "chemicals": [ { "id": "Q7636199", "type": "class", "label": "Sulfinamides" }, { "id": "Q408057", "type": "class", "label": "imines" }, { "id": "Q72591894", "type": "class", "label": "acetamides" }, { "id": "Q76852263", "type": "class", "label": "formamides" }, { "id": "Q105285360", "pubchem_id": "72437066", "type": "chemical", "label": "N-isobutylmethanesulfinamide", "class": "sulfinamides" }, { "id": "Q105128172", "pubchem_id": "146684645", "type": "chemical", "label": "N-isopentylmethanesulfinamide", "class": "sulfinamides" }, { "id": "Q83018889", "pubchem_id": "3013983", "type": "chemical", "label": "N,N'-diisobutylurea", "class": "" }, { "id": "29192774CHEM1", "pubchem_id": "108496395", "type": "chemical", "label": "N,N'-diisobutyloxalamide", "class": "" }, { "id": "Q105031716", "pubchem_id": "146684647", "type": "chemical", "label": "(E)-1-(furan-2-yl)-N-(2-methylbutyl)methanimine", "class": "imines" }, { "id": "Q104962371", "pubchem_id": "136161851", "type": "chemical", "label": "(E)-2-((isobutylimino)methyl)phenol", "class": "imines" } ], "organisms": [ { "id": "Q24993759", "label": "Salinispora pacifica" } ], "relations": [ [ "Q24993759", "Q105285360" ], [ "Q24993759", "Q105128172" ], [ "Q24993759", "Q83018889" ], [ "Q24993759", "29192774CHEM1" ], [ "Q24993759", "Q105031716" ], [ "Q24993759", "Q104962371" ], [ "Q24993759", "Q7636199" ], [ "Q24993759", "Q408057" ], [ "Q24993759", "Q72591894" ], [ "Q24993759", "Q76852263" ] ] }, "31476402": { "PMID": "31476402", "ArticleTitle": "Antimicrobial drimane - phthalide derivatives from Hypoxylon fendleri BCC32408.", "AbstractText": "Fourteen new compounds including thirteen drimane - phthalide derivatives (fendlerals A - C, fendlerins A - D, fendlerols A - B, fendleric acids A - C, fendlerinine G) and one terphenyl derivative (fendleryl E) along with eight known compounds, fendlerinine A, rickenyls C - D, fendleryls C - D, atromentin, tetramethyl atromentin, and (\u00b1)-microsphaerophthalide F, were isolated from the wood fungus Hypoxylon fendleri BCC32408. Compared with the prior work, the results indicated the agitation effect on the production of bioactive drimane - phthalides. The chemical structures were determined based upon spectroscopic analyses and the absolute configurations were verified by comparison of the ECD spectral data with the calculated ECD spectra of the related compounds. Compounds 1-3 exhibited antimicrobial activity against Plasmodium falciparum (IC50 4.15-4.39\u202f\u03bcM), Colletotrichum capsici (MIC 6.25-12.5\u202f\u03bcg/mL), and Bacillus cereus (MIC 1.56-3.13\u202f\u03bcg/mL). All tested compounds displayed broad cytotoxicity against cancerous (MCF-7, KB, and NCI-H187) and non-cancerous (Vero) cells.", "id": "Q93056302", "doi": "10.1016/J.FITOTE.2019.104353", "chemicals": [ { "id": "Q105133512", "pubchem_id": "146683475", "type": "chemical", "label": "Fendleral C", "class": "drimane - phthalide" }, { "id": "Q105301394", "pubchem_id": "146683472", "type": "chemical", "label": "Fendleral B", "class": "drimane - phthalide" }, { "id": "Q105369199", "pubchem_id": "146683467", "type": "chemical", "label": "Fendlerinine G", "class": "drimane - phthalide" }, { "id": "Q104945695", "pubchem_id": "146683478", "type": "chemical", "label": "Fendlerol B", "class": "drimane - phthalide" }, { "id": "Q105142238", "pubchem_id": "146683470", "type": "chemical", "label": "Fendleryl E", "class": "drimane - phthalide" }, { "id": "Q105299796", "pubchem_id": "146683468", "type": "chemical", "label": "Fendleric acid C", "class": "drimane - phthalide" }, { "id": "Q104994577", "pubchem_id": "146683473", "type": "chemical", "label": "Fendlerin A", "class": "drimane - phthalide" }, { "id": "Q105301396", "pubchem_id": "146683471", "type": "chemical", "label": "Fendleral A", "class": "drimane - phthalide" }, { "id": "Q105135112", "pubchem_id": "146683476", "type": "chemical", "label": "Fendlerin C", "class": "drimane - phthalide" }, { "id": "Q104945696", "pubchem_id": "146683477", "type": "chemical", "label": "Fendlerol A", "class": "drimane - phthalide" }, { "id": "Q105338872", "pubchem_id": "146683479", "type": "chemical", "label": "Fendleric acid A", "class": "drimane - phthalide" }, { "id": "Q105338873", "pubchem_id": "146683466", "type": "chemical", "label": "Fendleric acid B", "class": "drimane - phthalide" }, { "id": "Q104994578", "pubchem_id": "146683474", "type": "chemical", "label": "Fendlerin B", "class": "drimane - phthalide" }, { "id": "Q104976784", "pubchem_id": "146683469", "type": "chemical", "label": "Fendlerin D", "class": "drimane - phthalide" }, { "id": "Q105298821", "pubchem_id": "139590814", "type": "chemical", "label": "Fendlerinine A", "class": "drimane - phthalide" }, { "id": "Q77494102", "pubchem_id": "85712960", "type": "chemical", "label": "rickenyl C", "class": "drimane - phthalide" }, { "id": "Q75069883", "pubchem_id": "122211329", "type": "chemical", "label": "rickenyl D", "class": "drimane - phthalide" }, { "id": "Q104202664", "pubchem_id": "139590813", "type": "chemical", "label": "fendleryl C", "class": "drimane - phthalide" }, { "id": "Q103817128", "pubchem_id": "85712958", "type": "chemical", "label": "fendleryl D", "class": "drimane - phthalide" }, { "id": "Q4817643", "pubchem_id": "99148", "type": "chemical", "label": "atromentin", "class": "drimane - phthalide" }, { "id": "31476402CHEM1", "pubchem_id": "", "type": "chemical", "label": "tetramethyl atromentin", "class": "drimane - phthalide" }, { "id": "Q77570259", "pubchem_id": "102306476", "type": "chemical", "label": "(\u00b1)-microsphaerophthalide F", "class": "drimane - phthalide" } ], "organisms": [ { "id": "Q10530693", "label": "Hypoxylon fendleri" } ], "relations": [ [ "Q10530693", "Q105301396" ], [ "Q10530693", "Q105301394" ], [ "Q10530693", "Q105133512" ], [ "Q10530693", "Q104994577" ], [ "Q10530693", "Q104994578" ], [ "Q10530693", "Q105135112" ], [ "Q10530693", "Q104976784" ], [ "Q10530693", "Q104945696" ], [ "Q10530693", "Q104945695" ], [ "Q10530693", "Q105338872" ], [ "Q10530693", "Q105338873" ], [ "Q10530693", "Q105299796" ], [ "Q10530693", "Q105369199" ], [ "Q10530693", "Q105142238" ], [ "Q10530693", "Q105298821" ], [ "Q10530693", "Q77494102" ], [ "Q10530693", "Q75069883" ], [ "Q10530693", "Q104202664" ], [ "Q10530693", "Q103817128" ], [ "Q10530693", "Q4817643" ], [ "Q10530693", "31476402CHEM1" ], [ "Q10530693", "Q77570259" ] ] }, "16141596": { "PMID": "16141596", "ArticleTitle": "Gymnasterkoreayne G, a new inhibitory polyacetylene against NFAT transcription factor from Gymnaster koraiensis.", "AbstractText": "A new polyacetylene, gymnasterkoreayne G (1) and seven known (2--8) constituents were isolated from the leaves of Gymnaster koraiensis. Base on extensive 1D and 2D NMR spectroscopic data, the structure of the new compound was identified as erythro-8(S)-9(Z),16-heptadecadiene-4,6-diyne-2,3,8-triol. Isolated compounds were evaluated for their ability to inhibit NFAT transcription factor. While other components did not show activity, most of polyacetylene components markedly inhibit NFAT transcription factor. Of these compounds, gymnasterkoreayne B (3) was the most potent (IC(50) 1.44+/-0.59 microM). In term of the isomers, compound 1 (IC(50) 43.9+/-2.24 microM) with an erythro-configuration showed less inhibition than 2 (IC(50) 7.24+/-0.42 microM) with a threo-configuration.", "id": "Q46686427", "doi": "10.1248/CPB.53.1194", "chemicals": [ { "id": "16141596CHEM1", "pubchem_id": "", "type": "chemical", "label": "gymnasterkoreayne G", "class": "" }, { "id": "16141596CHEM2", "pubchem_id": "10264498", "type": "chemical", "label": "gymnasterkoreayne B", "class": "" } ], "organisms": [ { "id": "Q109610870", "label": "Gymnaster koraiensis" } ], "relations": [ [ "Q109610870", "16141596CHEM1" ], [ "Q109610870", "16141596CHEM2" ] ] }, "1367783": { "PMID": "1367783", "ArticleTitle": "Flavonoid glycosides from Cassia alata.", "AbstractText": "Two new glycosides, chrysoeriol-7-O-(2\"-O-beta-D-mannopyranosyl)-beta-D-allopyranos ide and rhamnetin-3-O-(2\"-O-beta-D-mannopyranosyl)-beta-D-allopyranosid e, were isolated from the seeds of Cassia alata. The structures were established on the basis of chemical evidence and spectroscopic methods, especially NMR.", "id": "Q46438106", "doi": "10.1016/0031-9422(91)85140-U", "chemicals": [ { "id": "1367783CHEM1", "pubchem_id": "101614447", "type": "chemical", "label": "rhamnetin-3-O-(2'-O-beta-D-mannopyranosyl)-beta-D-allopyranosid e", "class": "glycosides" }, { "id": "Q83028668", "pubchem_id": "5748483", "type": "chemical", "label": "chrysoeriol-7-O-(2\"-O-beta-D-mannopyranosyl)-beta-D-allopyranos ide", "class": "glycosides" } ], "organisms": [ { "id": "Q15283803", "label": "Cassia alata" } ], "relations": [ [ "Q15283803", "1367783CHEM1" ], [ "Q15283803", "Q83028668" ] ] }, "641742": { "PMID": "641742", "ArticleTitle": "Alkaloids from Lupinus argenteus var. stenophyllus.", "AbstractText": "TLC and GLC of an alkaloid extract of the aboveground portions of Lupinus argenteus Pursh. var. stenophyllus (Rydb.) Davis (Leguminosae) suggested the presence of sparteine, beta-isosparteine, delta5-dehydrolupanine, alpha-isolupanine, lupanine, thermopsine, and anagyrine. GLC-mass spectrometry confirmed these preliminary findings. Preparative TLC was used to isolate sparteine, and this alkaloid was further characterized by IR spectral analysis and derivatization.", "id": "Q67318903", "doi": "10.1002/JPS.2600670348", "chemicals": [ { "id": "Q70702", "type": "class", "label": "Alkaloids" }, { "id": "Q104169999", "pubchem_id": "119201", "type": "chemical", "label": "alpha-Isolupanine", "class": "alkaloids" }, { "id": "Q419552", "pubchem_id": "644020", "type": "chemical", "label": "Sparteine", "class": "alkaloids" }, { "id": "Q104999598", "pubchem_id": "92768", "type": "chemical", "label": "Thermopsine", "class": "alkaloids" }, { "id": "Q27103558", "pubchem_id": "91471", "type": "chemical", "label": "lupanine", "class": "alkaloids" }, { "id": "Q83050151", "pubchem_id": "168213", "type": "chemical", "label": "beta-isosparteine", "class": "alkaloids" }, { "id": "641742CHEM1", "pubchem_id": "", "type": "chemical", "label": "delta5-dehydrolupanine", "class": "alkaloids" }, { "id": "Q104394910", "pubchem_id": "5351589", "type": "chemical", "label": "anagyrine", "class": "alkaloids" } ], "organisms": [ { "id": "Q4115779", "label": "Lupinus argenteus" } ], "relations": [ [ "Q4115779", "Q70702" ], [ "Q4115779", "Q419552" ], [ "Q4115779", "Q83050151" ], [ "Q4115779", "641742CHEM1" ], [ "Q4115779", "Q104169999" ], [ "Q4115779", "Q27103558" ], [ "Q4115779", "Q104999598" ], [ "Q4115779", "Q104394910" ] ] }, "17139115": { "PMID": "17139115", "ArticleTitle": "Two new triterpenoid saponins isolated from Polygala japonica.", "AbstractText": "Bioassay guided investigation of whole parts of Polygala japonica afforded two new triterpenoid saponins, characterized as 3-O-beta-D-glucopyranosyl medicagenic acid 28-O-{beta-D-xylopyranosyl(1-->4)-[beta-D-apiofuranosyl(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl} ester (1), 3-O-beta-D-glucopyranosyl 2-oxo-olean-12-en-23, 28-dioic acid 28-O-{beta-D-xylopyranosyl(1-->4)-[beta-D-apiofuranosyl(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl} ester (2), together with four known triterpenoid saponins (3-6). Their structures were elucidated by spectroscopic and chemical methods. Saponins 3, 4 and 5 showed significant anti-inflammation effects on carrageenan-induced acute paw edema in mouse.", "id": "Q79397510", "doi": "10.1248/CPB.54.1739", "chemicals": [ { "id": "Q7844281", "type": "class", "label": "triterpenoid saponins" }, { "id": "17139115CHEM1", "pubchem_id": "", "type": "chemical", "label": "3-O-beta-D-glucopyranosyl medicagenic acid 28-O-{beta-D-xylopyranosyl(1-->4)-[beta-D-apiofuranosyl(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl} ester", "class": "triterpenoid saponins" }, { "id": "17139115CHEM2", "pubchem_id": "", "type": "chemical", "label": "3-O-beta-D-glucopyranosyl 2-oxo-olean-12-en-23, 28-dioic acid 28-O-{beta-D-xylopyranosyl(1-->4)-[beta-D-apiofuranosyl(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl} ester", "class": "triterpenoid saponins" } ], "organisms": [ { "id": "Q2159810", "label": "Polygala japonica" } ], "relations": [ [ "Q2159810", "Q7844281" ], [ "Q2159810", "17139115CHEM1" ], [ "Q2159810", "17139115CHEM2" ] ] }, "29435879": { "PMID": "29435879", "ArticleTitle": "New penicillide derivatives isolated from Penicillium simplicissimum.", "AbstractText": "Two new penicillide derivatives, secopenicillides A (3) and B (4), were isolated along with penicillide (1) and purpactin A (2), and altenusin (5) and dehydroaltenusin (6), the antifungal substances of this fungus, from the extract of Penicillium simplicissimum IFM 53375. The absolute structures of 3 and 4 were determined by spectroscopic investigation and chemical correlation to penicillide (1). The absolute configuration of purpactin A (2) was determined by the chemical method.", "id": "Q50050681", "doi": "10.1007/S11418-005-0028-9", "chemicals": [ { "id": "Q27133889", "pubchem_id": "124213", "type": "chemical", "label": "Penicillide", "class": "" }, { "id": "Q27292712", "pubchem_id": "6918469", "type": "chemical", "label": "Altenusin", "class": "" }, { "id": "Q77310207", "pubchem_id": "102251593", "type": "chemical", "label": "Secopenicilide A", "class": "" }, { "id": "Q77497916", "pubchem_id": "102251594", "type": "chemical", "label": "Secopenicilide B", "class": "" }, { "id": "Q27133890", "pubchem_id": "10341722", "type": "chemical", "label": "Purpactin A", "class": "" }, { "id": "Q104252793", "pubchem_id": "14824648", "type": "chemical", "label": "dehydroaltenusin", "class": "" } ], "organisms": [ { "id": "Q10623065", "label": "Penicillium simplicissimum" } ], "relations": [ [ "Q10623065", "Q77310207" ], [ "Q10623065", "Q77497916" ], [ "Q10623065", "Q27133889" ], [ "Q10623065", "Q27133890" ], [ "Q10623065", "Q27292712" ], [ "Q10623065", "Q104252793" ] ] }, "26928174": { "PMID": "26928174", "ArticleTitle": "Eremophilane-Type Sesquiterpenoids from an Acremonium sp. Fungus Isolated from Deep-Sea Sediments.", "AbstractText": "Chemical examination of an EtOAc extract of a cultured Acremonium sp. fungus from deep-sea sediments resulted in the isolation of 15 new eremophilane-type sesquiterpenoids, namely, acremeremophilanes A-O (1-15), together with seven known analogues. The structures of new compounds were determined through extensive spectroscopic analyses, in association with chemical conversions and ECD calculations for configurational assignments. The PKS-derived 4-hexenoic acid unit in 2-6 is rarely found in nature. All compounds were evaluated for inhibitory effects toward nitric oxide production induced by lipopolysaccharide in RAW 264.7 macrophage cells. Compounds 2-6 and 14 exhibited inhibitory effects with IC50 values ranging from 8 to 45 \u03bcM.", "id": "Q51303810", "doi": "10.1021/ACS.JNATPROD.5B01103", "chemicals": [ { "id": "Q108271257", "type": "class", "label": "eremophilane-type sesquiterpenoids" }, { "id": "Q105143848", "pubchem_id": "139589591", "type": "chemical", "label": "Acremeremophilane M", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q105154258", "pubchem_id": "132520165", "type": "chemical", "label": "Acremeremophilane K", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q105248035", "pubchem_id": "139589592", "type": "chemical", "label": "Acremeremophilane C", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q105271063", "pubchem_id": "132520157", "type": "chemical", "label": "Acremeremophilane E", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q105341652", "pubchem_id": "132520154", "type": "chemical", "label": "Acremeremophilane B", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q104915580", "pubchem_id": "132520159", "type": "chemical", "label": "Acremeremophilane G", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q104974026", "pubchem_id": "132520164", "type": "chemical", "label": "Acremeremophilane J", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q105214091", "pubchem_id": "132520160", "type": "chemical", "label": "Acremeremophilane A", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q105027168", "pubchem_id": "132520166", "type": "chemical", "label": "Acremeremophilane L", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q105193722", "pubchem_id": "132520163", "type": "chemical", "label": "Acremeremophilane I", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q105309794", "pubchem_id": "132520161", "type": "chemical", "label": "Acremeremophilane H", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q105382777", "pubchem_id": "132520168", "type": "chemical", "label": "Acremeremophilane N", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q104914485", "pubchem_id": "132520162", "type": "chemical", "label": "Acremeremophilane O", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q105006924", "pubchem_id": "132520158", "type": "chemical", "label": "Acremeremophilane F", "class": "eremophilane-type sesquiterpenoids" }, { "id": "Q105310917", "pubchem_id": "132520156", "type": "chemical", "label": "Acremeremophilane D", "class": "eremophilane-type sesquiterpenoids" } ], "organisms": [ { "id": "Q4675103", "label": "Acremonium" } ], "relations": [ [ "Q4675103", "Q108271257" ], [ "Q4675103", "Q105214091" ], [ "Q4675103", "Q105341652" ], [ "Q4675103", "Q105248035" ], [ "Q4675103", "Q105310917" ], [ "Q4675103", "Q105271063" ], [ "Q4675103", "Q105006924" ], [ "Q4675103", "Q104915580" ], [ "Q4675103", "Q105309794" ], [ "Q4675103", "Q105193722" ], [ "Q4675103", "Q104974026" ], [ "Q4675103", "Q105154258" ], [ "Q4675103", "Q105027168" ], [ "Q4675103", "Q105143848" ], [ "Q4675103", "Q105382777" ], [ "Q4675103", "Q104914485" ] ] }, "12913265": { "PMID": "12913265", "ArticleTitle": "Effects of curcuma drugs on vasomotion in isolated rat aorta.", "AbstractText": "The effectiveness of Curcuma drugs against \"Oketsu\" and the differences in their efficacy were evaluated by examining their vasomotional effects as one index. Since nitric oxide (NO) is the relaxation factor of vascular smooth muscle and also an inhibitor of platelet aggregation in blood vessels, substances showing NO-dependent relaxation are thought to be effective in improving Oketsu. In this study, five Curcuma drugs derived from Curcuma longa, C. kwangsiensis, C. phaeocaulis, C. wenyujin, and C. zedoaria were used. Methanol extracts exhibited intense effects on relaxation in rings precontracted by prostaglandin F(2alpha) (PGF(2alpha)) despite pretreatment with and without N(G)-nitro-l-arginine methyl ester (L-NAME) as an inhibitor of NO synthesis. The maximal activities were approximately 80% at 10(-3) g/ml. From these methanol extracts, curcumin and eight sesquiterpenes were isolated. Since all these compounds showed NO-independent relaxation effects with almost the same intensities, the relaxation effects of Curcuma drugs can be estimated by the total amounts of curcumin and sesquiterpenes. Polysaccharides, the main constituents of methanol-insoluble compounds of water extracts, in contrast, showed contraction effects; only polysaccharides in C. zedoaria showed NO-dependent relaxation as well as contraction. All water extracts showed relaxation effects as sum of the methanol-soluble compounds-induced relaxation and polysaccharides-induced contraction. Therefore, all Curcuma drugs tested in the present study can be effective for vasodilation. Moreover, the drug derived from C. zedoaria has potential to cure Oketsu with its various acting points.", "id": "Q44545877", "doi": "10.1248/BPB.26.1135", "chemicals": [ { "id": "Q312266", "pubchem_id": "969516", "type": "chemical", "label": "curcumin", "class": "" }, { "id": "Q80218", "type": "class", "label": "sesquiterpenes" } ], "organisms": [ { "id": "Q206733", "label": "Curcuma zedoaria" }, { "id": "Q21262484", "label": "Curcuma wenyujin" }, { "id": "Q15326290", "label": "Curcuma phaeocaulis" }, { "id": "Q11062510", "label": "Curcuma kwangsiensis" }, { "id": "Q42562", "label": "Curcuma longa" } ], "relations": [ [ "Q42562", "Q312266" ], [ "Q42562", "Q80218" ], [ "Q11062510", "Q312266" ], [ "Q11062510", "Q80218" ], [ "Q15326290", "Q312266" ], [ "Q15326290", "Q80218" ], [ "Q21262484", "Q312266" ], [ "Q21262484", "Q80218" ], [ "Q206733", "Q312266" ], [ "Q206733", "Q80218" ] ] }, "3895583": { "PMID": "3895583", "ArticleTitle": "The chemistry of brevetoxins: a review.", "AbstractText": "The structure of the unique 'red tide' dinoflagellate neurotoxin, brevetoxin-B is presented and the experimental data supporting the chemical structure is discussed. A brief account of the other brevetoxins and their structural relationships is also presented. A biosynthetic scheme for the natural formation of the brevetoxin skeleton is proposed. Studies of the most toxic of the three pure brevetoxins, brevetoxin-A, indicate a skeleton differing from that of brevetoxin-B.", "id": "Q39826076", "doi": "10.1016/0041-0101(85)90031-5", "chemicals": [ { "id": "Q411011", "type": "class", "label": "brevetoxins" }, { "id": "Q27149820", "pubchem_id": "10865865", "type": "chemical", "label": "Brevetoxin B", "class": "" }, { "id": "Q27130932", "pubchem_id": "10865808", "type": "chemical", "label": "Brevetoxin A", "class": "" } ], "organisms": [ ], "relations": [ ] }, "28435299": { "PMID": "28435299", "ArticleTitle": "Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C.", "AbstractText": "Sequencing the actinomycin (acm) biosynthetic gene cluster of Streptomyces antibioticus IMRU 3720, which produces actinomycin X (Acm X), revealed 20 genes organized into a highly similar framework as in the bi-armed acm C biosynthetic gene cluster of Streptomyces chrysomallus but without an attached additional extra arm of orthologues as in the latter. Curiously, the extra arm of the S. chrysomallus gene cluster turned out to perfectly match the single arm of the S. antibioticus gene cluster in the same order of orthologues including the the presence of two pseudogenes, scacmM and scacmN, encoding a cytochrome P450 and its ferredoxin, respectively. Orthologues of the latter genes were both missing in the principal arm of the S. chrysomallus acm C gene cluster. All orthologues of the extra arm showed a G +C-contents different from that of their counterparts in the principal arm. Moreover, the similarities of translation products from the extra arm were all higher to the corresponding translation products of orthologue genes from the S. antibioticus acm X gene cluster than to those encoded by the principal arm of their own gene cluster. This suggests that the duplicated structure of the S. chrysomallus acm C biosynthetic gene cluster evolved from previous fusion between two one-armed acm gene clusters each from a different genetic background. However, while scacmM and scacmN in the extra arm of the S. chrysomallus acm C gene cluster are mutated and therefore are non-functional, their orthologues saacmM and saacmN in the S. antibioticus acm C gene cluster show no defects seemingly encoding active enzymes with functions specific for Acm X biosynthesis. Both acm biosynthetic gene clusters lack a kynurenine-3-monooxygenase gene necessary for biosynthesis of 3-hydroxy-4-methylanthranilic acid, the building block of the Acm chromophore, which suggests participation of a genome-encoded relevant monooxygenase during Acm biosynthesis in both S. chrysomallus and S. antibioticus.", "id": "Q42291687", "doi": "10.2147/AABC.S117707", "chemicals": [ { "id": "Q105015627", "pubchem_id": "159855", "type": "chemical", "label": "Actinomycin X", "class": "" }, { "id": "Q105218638", "pubchem_id": "122716", "type": "chemical", "label": "Actinomycin C", "class": "" } ], "organisms": [ { "id": "Q22286909", "label": "Streptomyces antibioticus" }, { "id": "Q21319410", "label": "Streptomyces chrysomallus" } ], "relations": [ [ "Q22286909", "Q105015627" ], [ "Q21319410", "Q105218638" ] ] }, "16989532": { "PMID": "16989532", "ArticleTitle": "Alkaloids from Gelsemium elegans.", "AbstractText": "Three new alkaloids, gelsebanine (1), 14alpha-hydroxyelegansamine (2), and 14alpha-hydroxygelsamydine (3), and a new extraction artifact , gelsebamine (4), together with 12 known alkaloids, were isolated from the stems and leaves of Gelsemium elegans. The structures of 1-4 were determined by spectroscopic methods, especially 2D NMR techniques. Compounds 1-4 were evaluated for cytotoxic activity against four tumor cell lines, and gelsebamine (4) selectively inhibited the A-549 human lung adenocarcinoma cell line.", "id": "Q40229121", "doi": "10.1021/NP060156Y", "chemicals": [ { "id": "Q70702", "type": "class", "label": "alkaloids" }, { "id": "16989532CHEM1", "pubchem_id": "16086585", "type": "chemical", "label": "gelsebanine", "class": "alkaloids" }, { "id": "16989532CHEM2", "pubchem_id": "44559137", "type": "chemical", "label": "14alpha-hydroxyelegansamine", "class": "alkaloids" }, { "id": "16989532CHEM3", "pubchem_id": "44559138", "type": "chemical", "label": "14alpha-hydroxygelsamydine", "class": "alkaloids" }, { "id": "16989532CHEM4", "pubchem_id": "16086588", "type": "chemical", "label": "gelsebamine", "class": "" } ], "organisms": [ { "id": "Q5974519", "label": "Gelsemium elegans" } ], "relations": [ [ "Q5974519", "Q70702" ], [ "Q5974519", "16989532CHEM1" ], [ "Q5974519", "16989532CHEM2" ], [ "Q5974519", "16989532CHEM3" ], [ "Q5974519", "16989532CHEM4" ] ] }, "17190467": { "PMID": "17190467", "ArticleTitle": "Chloro- and bromophenols from cultures of Mycena alcalina.", "AbstractText": "Three new chlorinated phenols have been isolated from mycelial cultures of the mushroom Mycena alcalina. Their structures were determined by mass spectrometry and 1D and 2D NMR experiments. Addition of bromide to the medium resulted in the production of the corresponding brominated phenols. In addition, small amounts of the nonhalogenated precursor were also isolated, indicating that the halogenated metabolites are generated by a regioselectively operating halogenase.", "id": "Q78440190", "doi": "10.1021/NP0603368", "chemicals": [ { "id": "Q420018", "type": "class", "label": "chlorophenols" }, { "id": "Q49000291", "type": "class", "label": "bromophenols" } ], "organisms": [ { "id": "Q9282321", "label": "Mycena alcalina" } ], "relations": [ [ "Q9282321", "Q420018" ], [ "Q9282321", "Q49000291" ] ] }, "21770434": { "PMID": "21770434", "ArticleTitle": "Cytotoxic bipyridines from the marine-derived actinomycete Actinoalloteichus cyanogriseus WH1-2216-6.", "AbstractText": "Five new bipyridine alkaloids (1-5) and a new phenylpyridine alkaloid (6), which we name caerulomycins F-K, along with five known analogues (7-11), were isolated from the marine-derived actinomycete Actinoalloteichus cyanogriseus WH1-2216-6. The structures of 1-6 were established on the basis of spectroscopic analyses and chemical methods. Compounds 1-10 showed cytotoxicity against the HL-60, K562, KB, and A549 cell lines, with IC\u2085\u2080 values of 0.26 to 15.7 \u03bcM. Compounds 7 and 8 also showed antimicrobial activities against Escherichia coli, Aerobacter aerogenes, Pseudomonas aeruginosa, and Candida albicans, with MIC values of 9.7 to 38.6 \u03bcM.", "id": "Q51592876", "doi": "10.1021/NP200258H", "chemicals": [ { "id": "Q413658", "type": "class", "label": "bipyridine" }, { "id": "Q30688752", "type": "class", "label": "pyridine alkaloids" }, { "id": "Q70702", "type": "class", "label": "alkaloids" }, { "id": "Q27137564", "pubchem_id": "25192237", "type": "chemical", "label": "Caerulomycin F", "class": "bipyridine alkaloids" }, { "id": "Q27137565", "pubchem_id": "53493586", "type": "chemical", "label": "Caerulomycin G", "class": "bipyridine alkaloids" }, { "id": "21770434CHEM1", "pubchem_id": "101810443", "type": "chemical", "label": "Cerulomycin H", "class": "bipyridine alkaloids" }, { "id": "Q27137567", "pubchem_id": "53484025", "type": "chemical", "label": "Caerulomycin I", "class": "bipyridine alkaloids" }, { "id": "Q27137570", "pubchem_id": "53484027", "type": "chemical", "label": "caerulomycin J", "class": "bipyridine alkaloids" }, { "id": "21770434CHEM2", "pubchem_id": "136778443", "type": "chemical", "label": "Caerulomycin K", "class": "phenylpyridine alkaloids" } ], "organisms": [ { "id": "Q25833700", "label": "Actinoalloteichus cyanogriseus" } ], "relations": [ [ "Q25833700", "Q413658" ], [ "Q25833700", "Q30688752" ], [ "Q25833700", "Q70702" ], [ "Q25833700", "Q27137564" ], [ "Q25833700", "Q27137565" ], [ "Q25833700", "21770434CHEM1" ], [ "Q25833700", "Q27137567" ], [ "Q25833700", "Q27137570" ], [ "Q25833700", "21770434CHEM2" ] ] }, "20420415": { "PMID": "20420415", "ArticleTitle": "Pachycladins A-E, prostate cancer invasion and migration inhibitory Eunicellin-based diterpenoids from the red sea soft coral Cladiella pachyclados.", "AbstractText": "Alcyonaria species are among the important marine invertebrate classes that produce a wealth of chemically diverse bioactive diterpenes. Examples of these are the potent microtubule disruptor sarcodictyins and eleutherobin. The genus Cladiella has proven to be a rich source of cytotoxic eunicellin-based diterpenoids. Five new eunicellin diterpenes, pachycladins A-E (1-5), were isolated from the Red Sea soft coral Cladiella pachyclados. The known sclerophytin A Cladiellisin, 3-acetylcladiellisin, 3,6-diacetylcladiellisin, (+)-polyanthelin A, klysimplexin G, klysimplexin E, sclerophytin F methyl ether, (6Z)-cladiellin (cladiella-6Z,11(17)-dien-3-ol), sclerophytin B, and patagonicol were also identified. The structures of the isolated compounds were elucidated by extensive interpretation of their spectroscopic data. These compounds were evaluated for their ability to inhibit growth, proliferation, invasion, and migration of the prostate cancer cells PC-3. Some of the new metabolites exhibited significant anti-invasive activity.", "id": "Q43085336", "doi": "10.1021/NP900787P", "chemicals": [ { "id": "Q59447", "type": "class", "label": "diterpenes" }, { "id": "Q104932580", "pubchem_id": "11325231", "type": "chemical", "label": "Sclerophytin A", "class": "diterpenes" }, { "id": "Q104955109", "pubchem_id": "46833116", "type": "chemical", "label": "pachycladin C", "class": "diterpenes" }, { "id": "Q104987398", "pubchem_id": "44243660", "type": "chemical", "label": "klysimplexin E", "class": "diterpenes" }, { "id": "Q105141747", "pubchem_id": "10567735", "type": "chemical", "label": "Cladiellisin", "class": "diterpenes" }, { "id": "Q105142200", "pubchem_id": "46833118", "type": "chemical", "label": "pachycladin E", "class": "diterpenes" }, { "id": "Q105133939", "pubchem_id": "16007271", "type": "chemical", "label": "6Z-Cladiellin", "class": "diterpenes" }, { "id": "Q105278440", "pubchem_id": "21635654", "type": "chemical", "label": "Patagonicol", "class": "diterpenes" }, { "id": "Q105284652", "pubchem_id": "46888463", "type": "chemical", "label": "3,6-Diacetylcladiellisin", "class": "diterpenes" }, { "id": "Q105345244", "pubchem_id": "21773067", "type": "chemical", "label": "3-Acetylcladiellisin", "class": "diterpenes" }, { "id": "Q105114792", "pubchem_id": "46832819", "type": "chemical", "label": "pachycladin A", "class": "diterpenes" }, { "id": "Q105190550", "pubchem_id": "46888486", "type": "chemical", "label": "sclerophytin F methyl ether", "class": "diterpenes" }, { "id": "Q105273391", "pubchem_id": "46833117", "type": "chemical", "label": "pachycladin D", "class": "diterpenes" }, { "id": "Q105141340", "pubchem_id": "44243823", "type": "chemical", "label": "klysimplexin G", "class": "diterpenes" }, { "id": "Q105367635", "pubchem_id": "46833115", "type": "chemical", "label": "pachycladin B", "class": "diterpenes" }, { "id": "20420415CHEM1", "pubchem_id": "1372426", "type": "chemical", "label": "Sclerophytin B", "class": "diterpenes" }, { "id": "Q105324816", "pubchem_id": "12168107", "type": "chemical", "label": "Polyanthellin A", "class": "diterpenes" } ], "organisms": [ { "id": "Q2748725", "label": "Cladiella pachyclados" } ], "relations": [ [ "Q2748725", "Q59447" ], [ "Q2748725", "Q105114792" ], [ "Q2748725", "Q105367635" ], [ "Q2748725", "Q104955109" ], [ "Q2748725", "Q105273391" ], [ "Q2748725", "Q105142200" ], [ "Q2748725", "Q104932580" ], [ "Q2748725", "Q105141747" ], [ "Q2748725", "Q105345244" ], [ "Q2748725", "Q105284652" ], [ "Q2748725", "Q105324816" ], [ "Q2748725", "Q105141340" ], [ "Q2748725", "Q104987398" ], [ "Q2748725", "Q105190550" ], [ "Q2748725", "Q105133939" ], [ "Q2748725", "20420415CHEM1" ], [ "Q2748725", "Q105278440" ] ] }, "28507698": { "PMID": "28507698", "ArticleTitle": "Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants.", "AbstractText": "We report a new Streptomyces species named S. formicae that was isolated from the African fungus-growing plant-ant Tetraponera penzigi and show that it produces novel pentacyclic polyketides that are active against MRSA and VRE. The chemical scaffold of these compounds, which we have called the formicamycins, is similar to the fasamycins identified from the heterologous expression of clones isolated from environmental DNA, but has significant differences that allow the scaffold to be decorated with up to four halogen atoms. We report the structures and bioactivities of 16 new molecules and show, using CRISPR/Cas9 genome editing, that biosynthesis of these compounds is encoded by a single type 2 polyketide synthase biosynthetic gene cluster in the S. formicae genome. Our work has identified the first antibiotic from the Tetraponera system and highlights the benefits of exploring unusual ecological niches for new actinomycete strains and novel natural products.", "id": "Q38784469", "doi": "10.1039/C6SC04265A", "chemicals": [ { "id": "Q516751", "type": "class", "label": "polyketides" } ], "organisms": [ { "id": "Q48965691", "label": "Streptomyces formicae" } ], "relations": [ [ "Q48965691", "Q516751" ] ] }, "21188999": { "PMID": "21188999", "ArticleTitle": "Landomycins P-W, cytotoxic angucyclines from Streptomyces cyanogenus S-136.", "AbstractText": "Streptomyces cyanogenus S-136 is the producer of previously reported landomycins A-D. An analysis of minor products of the strain led to isolation and structure elucidation of eight new congeners, named landomycins P-W (5, 6, 3, 17, 9, 10, 15, 7), along with 10 other known angucyclin(on)es. The structures of the new compounds were established from their NMR and mass spectrometry data. The activity of these angucyclin(on)es was determined using MCF-7 (estrogen responsive) and MDA-231 (estrogen refractory) breast cancer cell lines. Cell viability assays showed that anhydrolandomycinone (2), landomycinone (11), and landomycin A (16) showed the best combined activities in both MCF-7 and MDA-231 assays, with 2 being the most potent in the former and 11 and 16 in the latter. These data reveal that some of the aglycones are equipotent to the principle product 16, which contains the longest saccharide chain. Specifically, anhydrolandomycinone (2) was the most active against MCF-7 cells (IC(50) = 1.8 \u03bcM). Compounds with shorter saccharidal moieties were less potent against MCF-7. The fact that the most active landomycins have either long penta- or hexasaccharide chains or no sugars at all suggests that the large compounds may act by a different mode of action than their small sugar-free congeners. The results presented here provide more insights into the structure-activity relationship of landomycins.", "id": "Q34762327", "doi": "10.1021/NP100469Y", "chemicals": [ { "id": "Q41450581", "type": "class", "label": "angucyclines" }, { "id": "Q27138390", "pubchem_id": "50994832", "type": "chemical", "label": "Landomycin R", "class": "" }, { "id": "Q27138394", "pubchem_id": "50993663", "type": "chemical", "label": "Landomycin W", "class": "" }, { "id": "Q27138389", "pubchem_id": "51354811", "type": "chemical", "label": "anhydrolandomycinone", "class": "" }, { "id": "Q27138401", "pubchem_id": "53297405", "type": "chemical", "label": "Landomycin B", "class": "" }, { "id": "Q27138393", "pubchem_id": "50994834", "type": "chemical", "label": "Landomycin Q", "class": "" }, { "id": "Q27138397", "pubchem_id": "50993744", "type": "chemical", "label": "Landomycin U", "class": "" }, { "id": "Q27138399", "pubchem_id": "53297397", "type": "chemical", "label": "Landomycin D", "class": "" }, { "id": "Q27138403", "pubchem_id": "9988748", "type": "chemical", "label": "Landomycin A", "class": "" }, { "id": "Q27138402", "pubchem_id": "50993745", "type": "chemical", "label": "Landomycin V", "class": "" }, { "id": "Q27138396", "pubchem_id": "50993664", "type": "chemical", "label": "Landomycin T", "class": "" }, { "id": "Q27138392", "pubchem_id": "50994833", "type": "chemical", "label": "Landomycin P", "class": "" }, { "id": "Q27138404", "pubchem_id": "50993821", "type": "chemical", "label": "Landomycin S", "class": "" }, { "id": "21188999CHEM1", "pubchem_id": "", "type": "chemical", "label": "Landomycin C", "class": "" }, { "id": "Q15426239", "pubchem_id": "51354812", "type": "chemical", "label": "landomycinone", "class": "" } ], "organisms": [ { "id": "Q103807487", "label": "Streptomyces cyanogenus" } ], "relations": [ [ "Q103807487", "Q41450581" ], [ "Q103807487", "Q27138392" ], [ "Q103807487", "Q27138393" ], [ "Q103807487", "Q27138390" ], [ "Q103807487", "Q27138404" ], [ "Q103807487", "Q27138396" ], [ "Q103807487", "Q27138397" ], [ "Q103807487", "Q27138402" ], [ "Q103807487", "Q27138394" ], [ "Q103807487", "Q27138403" ], [ "Q103807487", "Q27138401" ], [ "Q103807487", "21188999CHEM1" ], [ "Q103807487", "Q27138399" ], [ "Q103807487", "Q27138389" ], [ "Q103807487", "Q15426239" ] ] }, "1790671": { "PMID": "1790671", "ArticleTitle": "Biosynthetic studies of marine lipids. 35. The demonstration of de novo sterol biosynthesis in sponges using radiolabeled isoprenoid precursors.", "AbstractText": "1. De novo sterol biosynthesis in the sponges Tethya aurantia and Aplysina fistularis was investigated, using sodium [5,5-3H]-mevalonate, [1-3H]-farnesol and [3-3H]-squalene. [3-3H]-Squalene was found to be the best precursor for demonstrating de novo sterol biosynthesis in a wider range of sponges. 2. By feeding [3-3H]-squalene and using cell-free techniques, the de novo sterol biosynthesis was established in 18 sponges belonging to nine orders. Among these sponges were Axinella polypoides and Axinella verrucosa which had previously been thought to be incapable of de novo sterol biosynthesis based on work with radiolabeled lanosterol, cycloartenol, mevalonate, and acetate. 3. In contrast to earlier assumptions, it is likely that all sponges are capable of de novo sterol biosynthesis.", "id": "Q67857766", "doi": "10.1016/0305-0491(91)90140-9", "chemicals": [ { "id": "Q143623", "type": "class", "label": "sterol" }, { "id": "Q586501", "pubchem_id": "92110", "type": "chemical", "label": "Cycloartenol", "class": "" }, { "id": "Q414996", "pubchem_id": "246983", "type": "chemical", "label": "Lanosterol", "class": "" } ], "organisms": [ { "id": "Q1931381", "label": "Axinella polypoides" }, { "id": "Q2539618", "label": "Aplysina fistularis" }, { "id": "Q2429362", "label": "Axinella verrucosa" }, { "id": "Q104250932", "label": "Tethya aurantia" } ], "relations": [ [ "Q1931381", "Q143623" ], [ "Q1931381", "Q586501" ], [ "Q1931381", "Q414996" ], [ "Q2429362", "Q143623" ], [ "Q2429362", "Q586501" ], [ "Q2429362", "Q414996" ] ] }, "1797437": { "PMID": "1797437", "ArticleTitle": "Hematological studies on naturally occurring substances. VI. Effects of an animal crude drug \"chan su\" (bufonis venenum) on blood coagulation, platelet aggregation, fibrinolysis system and cytotoxicity.", "AbstractText": "During the screening test of the animal crude drug \"Chan su\" (Chinese name, toad-cake), the venom of Bufo bufo gargorizans CANTOR (Bufonidae), on blood coagulation, platelet aggregation, fibrinolysis system and cytotoxicity, the ethyl acetate extract showed promotive action on platelet aggregation and remarkable cytotoxic activity on HeLa-S3 cells. Nine kinds of bufadienolides were isolated from the ethyl acetate extract by bioactivity-guided fractionation and were identified by chemical and spectral analysis.", "id": "Q54382904", "doi": "10.1248/CPB.39.2135", "chemicals": [ { "id": "1797437CHEM1", "pubchem_id": "53789338", "type": "chemical", "label": "bufonis venenum", "class": "" }, { "id": "Q19614100", "type": "class", "label": "bufadienolides" } ], "organisms": [ { "id": "Q146375", "label": "Bufo bufo" }, { "id": "Q639022", "label": "Bufo" } ], "relations": [ [ "Q146375", "1797437CHEM1" ], [ "Q146375", "Q19614100" ], [ "Q639022", "1797437CHEM1" ], [ "Q639022", "Q19614100" ] ] }, "2761357": { "PMID": "2761357", "ArticleTitle": "2-Hydroxy fatty acids from marine sponges. 2. The phospholipid fatty acids of the Caribbean sponges Verongula gigantea and Aplysina archeri.", "AbstractText": "The alpha-hydroxy fatty acids 2-hydroxy-eicosanoic (1) acid, 2-hydroxyheneicosanoic (2) acid, 2-hydroxydocosanoic (3) acid, 2-hydroxytetracosanoic (4) acid, 2-hydroxy-23-methyl-tetracosanoic acid and 2-hydroxypentacosanoic (5) acid were isolated from the Caribbean sponges Verongula gigantea and Aplysina archeri. The very long chain fatty acids 5,9-nonacosadienoic acid (29:2) and 5,9,23-tricontatrienoic acid (30:3) were also identified together with the iso-prenoid fatty acid 3,7,11,15-tetramethylhexadecanoic (phytanic) acid that seems to be common in the Aplysinidae. A. archeri contained an extremely long chain fatty acid tentatively characterized as dotricontaenoic (32:1) acid. These acids were found to occur in phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, phosphatidylcholine and traces of phosphatidylglycerol.", "id": "Q42198777", "doi": "10.1007/BF02535240", "chemicals": [ { "id": "Q11751627", "pubchem_id": "102430", "type": "chemical", "label": "2-hydroxytetracosanoic (4) acid", "class": "phospholipid fatty acids" }, { "id": "Q27158125", "pubchem_id": "5312779", "type": "chemical", "label": "2-hydroxyheneicosanoic (2) acid", "class": "phospholipid fatty acids" }, { "id": "Q82270481", "pubchem_id": "10982228", "type": "chemical", "label": "2-hydroxy-23-methyl-tetracosanoic acid", "class": "phospholipid fatty acids" }, { "id": "Q27146492", "pubchem_id": "193484", "type": "chemical", "label": "2-hydroxydocosanoic (3) acid", "class": "phospholipid fatty acids" }, { "id": "Q27146512", "pubchem_id": "5225199", "type": "chemical", "label": "2-hydroxy-eicosanoic (1) acid", "class": "phospholipid fatty acids" }, { "id": "Q27158129", "pubchem_id": "11406885", "type": "chemical", "label": "2-hydroxypentacosanoic (5) acid", "class": "phospholipid fatty acids" }, { "id": "2761357CHEM1", "pubchem_id": "54139274", "type": "chemical", "label": "5,9-nonacosadienoic acid", "class": "phospholipid fatty acids" }, { "id": "2761357CHEM2", "pubchem_id": "5367583", "type": "chemical", "label": "5,9,23-tricontatrienoic acid", "class": "phospholipid fatty acids" }, { "id": "2761357CHEM3", "pubchem_id": "10380830", "type": "chemical", "label": "3,7,11,15-tetramethylhexadecanoic (phytanic) acid", "class": "iso-prenoid fatty acid" }, { "id": "Q82639931", "pubchem_id": "53769033", "type": "chemical", "label": "dotricontaenoic (32:1) acid", "class": "phospholipid fatty acids" } ], "organisms": [ { "id": "Q2378051", "label": "Aplysina archeri" }, { "id": "Q2345865", "label": "Verongula gigantea" } ], "relations": [ [ "Q2378051", "Q27146512" ], [ "Q2378051", "Q27158125" ], [ "Q2378051", "Q27146492" ], [ "Q2378051", "Q11751627" ], [ "Q2378051", "Q82270481" ], [ "Q2378051", "Q27158129" ], [ "Q2378051", "2761357CHEM1" ], [ "Q2378051", "2761357CHEM2" ], [ "Q2378051", "2761357CHEM3" ], [ "Q2378051", "Q82639931" ], [ "Q2345865", "Q27146512" ], [ "Q2345865", "Q27158125" ], [ "Q2345865", "Q27146492" ], [ "Q2345865", "Q11751627" ], [ "Q2345865", "Q82270481" ], [ "Q2345865", "Q27158129" ], [ "Q2345865", "2761357CHEM1" ], [ "Q2345865", "2761357CHEM2" ], [ "Q2345865", "2761357CHEM3" ], [ "Q2345865", "Q82639931" ] ] }, "3139604": { "PMID": "3139604", "ArticleTitle": "Cytotoxic, fungicidal nucleosides from blue green algae belonging to the Scytonemataceae.", "AbstractText": "Tubercidin, toyocamycin, and the corresponding 5'-alpha-D-glucopyranose derivatives of the nucleosides are frequently responsible for much of the cytotoxicity and antimycotic activity associated with extracts of cultured cyanophytes belonging to the family Scytonemataceae. The 5'-alpha-D-glucopyranoses of tubercidin and toyocamycin, for example, are the major cytotoxic and fungicidal nucleosides in Fijian Plectonema radiosum and Hawaiian Tolypothrix tenuis, respectively.", "id": "Q50895020", "doi": "10.7164/ANTIBIOTICS.41.1048", "chemicals": [ { "id": "Q27282806", "pubchem_id": "11824", "type": "chemical", "label": "Toyocamycin", "class": "" }, { "id": "Q27089034", "pubchem_id": "6245", "type": "chemical", "label": "Tubercidin", "class": "" }, { "id": "Q23905964", "type": "class", "label": "D-glucopyranose" } ], "organisms": [ { "id": "Q67357192", "label": "Tolypothrix tenuis" }, { "id": "Q103812277", "label": "Plectonema radiosum" } ], "relations": [ [ "Q67357192", "Q27282806" ], [ "Q67357192", "Q23905964" ], [ "Q103812277", "Q27089034" ], [ "Q103812277", "Q23905964" ] ] }, "24752143": { "PMID": "24752143", "ArticleTitle": "Exserolides A-F, new isocoumarin derivatives from the plant endophytic fungus Exserohilum sp.", "AbstractText": "Six new isocoumarin derivatives, exserolides A-F (1-6), were isolated from solid cultures of the plant endophytic fungus Exserohilum sp., together with four known metabolites (7-10). The structures of 1-6 were elucidated primarily by NMR experiments. The absolute configuration of the C-3 methine carbon in 1-5 was deduced via the circular dichroism data, whereas that of the 1,3-diol moiety in 6 was assigned from the (1)H NMR data of its (R)- and (S)-MTPA diesters. Compounds 3 and 9 showed antifungal activity against the plant pathogen Fusarium oxysporum, whereas 6 displayed significant inhibitory effects against a small panel of bacteria.", "id": "Q48007670", "doi": "10.1016/J.FITOTE.2014.04.013", "chemicals": [ { "id": "Q75067424", "pubchem_id": "101904856", "type": "chemical", "label": "Exserolide D", "class": "isocoumarin" }, { "id": "Q77281456", "pubchem_id": "139584248", "type": "chemical", "label": "Exserolide B", "class": "isocoumarin" }, { "id": "Q77570588", "pubchem_id": "101904857", "type": "chemical", "label": "Exserolide F", "class": "isocoumarin" }, { "id": "Q77511618", "pubchem_id": "139586663", "type": "chemical", "label": "Exserolide A", "class": "isocoumarin" }, { "id": "Q105111828", "pubchem_id": "139588360", "type": "chemical", "label": "Exserolide E", "class": "isocoumarin" }, { "id": "Q105283089", "pubchem_id": "139588558", "type": "chemical", "label": "Exserolide C", "class": "isocoumarin" }, { "id": "Q109587342", "type": "class", "label": "isocoumarin" } ], "organisms": [ { "id": "Q10493219", "label": "Exserohilum" } ], "relations": [ [ "Q10493219", "Q77511618" ], [ "Q10493219", "Q77281456" ], [ "Q10493219", "Q105283089" ], [ "Q10493219", "Q75067424" ], [ "Q10493219", "Q105111828" ], [ "Q10493219", "Q77570588" ], [ "Q10493219", "Q109587342" ] ] }, "10866157": { "PMID": "10866157", "ArticleTitle": "Saponins of plants of Panax species collected in Central Nepal, and their chemotaxonomical significance. III.", "AbstractText": "Panax pseudo-ginseng subsp. pseudo-ginseng has a carrot like root with a small rhizome. It was shown that the saponin composition of roots and rhizomes of this subspecies collected in Tibet and China was extremely poor. From the roots and rhizomes collected in Central Nepal, (specimen-PNct), only a small amount of an oleanolic acid saponin, beta-D-glucopyranosyl-oleanolate (2) was isolated together with a polyacetylene-alcohol, panaxynol (3). In another specimen (specimen-PNs), also collected in Central Nepal, two oleanolic acid saponins, stipleanoside R2 (4) and chikusetsusaponin IV (5) were detected. No dammarane saponin was identified in either specimen. P. pseudo-ginseng subsp. himalaicus (Subsp-H) has a big rhizome with a small round root. From rhizomes and roots of this subsp. collected in Central Nepal (specimen-HNct), a fairly large amount of dammarane saponins, ginsenosides-Rb1 (6), -Rd (7), -Re (9) and -Rg1 (10), gypenoside XVII (8), notoginsenoside-R1 (11), majonoside-R2 (12) and pseudo-ginsenoside-F11 (13) were isolated, while no oleanane saponin (oleanolic acid saponin) was identified in this subsp. Based on the present and previous studies, medicinal evaluation and chemogeographical correlation of Himalayan Panax spp. are discussed.", "id": "Q43504353", "doi": "10.1248/CPB.48.889", "chemicals": [ { "id": "Q27095725", "pubchem_id": "9898279", "type": "chemical", "label": "ginsenoside-Rb1", "class": "dammarane saponins" }, { "id": "Q27136471", "pubchem_id": "11679800", "type": "chemical", "label": "ginsenoside-Rd", "class": "dammarane saponins" }, { "id": "Q27105064", "pubchem_id": "441921", "type": "chemical", "label": "ginsenoside-Re", "class": "dammarane saponins" }, { "id": "Q2276594", "pubchem_id": "441923", "type": "chemical", "label": "ginsenoside-Rg1", "class": "dammarane saponins" }, { "id": "Q27146716", "pubchem_id": "44584555", "type": "chemical", "label": "gypenoside XVII", "class": "dammarane saponins" }, { "id": "Q27105065", "pubchem_id": "441934", "type": "chemical", "label": "notoginsenoside-R1", "class": "dammarane saponins" }, { "id": "Q105272428", "pubchem_id": "9962384", "type": "chemical", "label": "majonoside-R2", "class": "dammarane saponins" }, { "id": "10866157CHEM1", "pubchem_id": "44144289", "type": "chemical", "label": "pseudo-ginsenoside-F11", "class": "dammarane saponins" }, { "id": "Q105143003", "pubchem_id": "14189383", "type": "chemical", "label": "beta-D-glucopyranosyl-oleanolate", "class": "saponin" }, { "id": "Q413192", "pubchem_id": "5281149", "type": "chemical", "label": "panaxynol", "class": "alcohol" }, { "id": "Q105144767", "pubchem_id": "15602013", "type": "chemical", "label": "chikusetsusaponin IV", "class": "saponin" }, { "id": "Q27136465", "pubchem_id": "70698007", "type": "chemical", "label": "stipleanoside R2", "class": "saponin" } ], "organisms": [ { "id": "Q10888482", "label": "Panax pseudo-ginseng" } ], "relations": [ [ "Q10888482", "Q105143003" ], [ "Q10888482", "Q413192" ], [ "Q10888482", "Q105144767" ], [ "Q10888482", "Q27136465" ], [ "Q10888482", "Q27095725" ], [ "Q10888482", "Q27136471" ], [ "Q10888482", "Q27105064" ], [ "Q10888482", "Q2276594" ], [ "Q10888482", "Q27146716" ], [ "Q10888482", "Q27105065" ], [ "Q10888482", "Q105272428" ], [ "Q10888482", "10866157CHEM1" ] ] }, "7480187": { "PMID": "7480187", "ArticleTitle": "Studies on the inhibitory effects of some acridone alkaloids on Epstein-Barr virus activation.", "AbstractText": "Twenty-five acridone alkaloids from Citrus plants were examined for their inhibitory effects on Epstein-Barr virus activation by a short-term in vitro assay. 5-Hydroxynoracronycine (20) and acrimarine-F (25) showed remarkable inhibitory effects.", "id": "Q45790654", "doi": "10.1055/S-2006-958104", "chemicals": [ { "id": "Q109173474", "type": "class", "label": "acridone alkaloids" }, { "id": "Q27137385", "pubchem_id": "5378702", "type": "chemical", "label": "5-Hydroxynoracronycine", "class": "acridone alkaloids" }, { "id": "Q82901005", "pubchem_id": "5491701", "type": "chemical", "label": "acrimarine-F", "class": "acridone alkaloids" } ], "organisms": [ { "id": "Q81513", "label": "Citrus" } ], "relations": [ [ "Q81513", "Q109173474" ], [ "Q81513", "Q27137385" ], [ "Q81513", "Q82901005" ] ] }, "16208730": { "PMID": "16208730", "ArticleTitle": "Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca.", "AbstractText": "The volatiles released by agar plate cultures of two strains of the myxobacterium Stigmatella aurantiaca (strains Sg a15 and DW4/3-1) were collected in a closed-loop stripping apparatus (CLSA) and analyzed by GC-MS. Large numbers of substances from different compound classes (ketones, esters, lactones, terpenes, and sulfur and nitrogen compounds) were identified; several of them are reported from natural sources for the first time. The volatiles 2-methyltridecan-4-one (17), its isomer 3-methyltridecan-4-one (20), and the higher homologue 2-methyltetradecan-4-one (18) were identified in the extracts of both strains and were synthesized. In addition, strain Sg a15 produced 2,12-dimethyltridecan-4-one (19), 2-methyltridec-2-en-4-one (23), and a series of phenyl ketones, among them 1-phenyldecan-1-one (14) and 9-methyl-1-phenyldecan-1-one (16), whereas strain DW4/3-1 emitted traces of 10-methylundecan-2-one (21). The biosynthesis of 14 and 16 was examined in feeding experiments with deuterated precursors carried out on agar plate cultures. The leucine-derived starter unit isovalerate was shown to be incorporated into 16, as was phenylalanine-derived benzoic acid into both 14 and 16. The results point to formation both of the phenyl ketones and of the structurally related aliphatic ketones through an unusual head-to-head coupling between a starter unit such as benzoyl-CoA and a fatty acyl-CoA, followed by decarboxylation.", "id": "Q46738747", "doi": "10.1002/CBIC.200500174", "chemicals": [ { "id": "Q77380063", "pubchem_id": "86107504", "type": "chemical", "label": "2-methyltridec-2-en-4-one", "class": "" }, { "id": "Q77559377", "pubchem_id": "63717398", "type": "chemical", "label": "3-methyltridecan-4-one", "class": "" }, { "id": "16208730CHEM1", "pubchem_id": "63411799", "type": "chemical", "label": "2-methyltridecan-4-one", "class": "" }, { "id": "16208730CHEM2", "pubchem_id": "19931273", "type": "chemical", "label": "2-methyltetradecan-4-one", "class": "" }, { "id": "16208730CHEM3", "pubchem_id": "86236051", "type": "chemical", "label": "2,12-dimethyltridecan-4-one", "class": "" }, { "id": "16208730CHEM4", "pubchem_id": "80148", "type": "chemical", "label": "1-phenyldecan-1-one", "class": "" }, { "id": "16208730CHEM5", "pubchem_id": "85868760", "type": "chemical", "label": "9-methyl-1-phenyldecan-1-one", "class": "" }, { "id": "Q82102876", "pubchem_id": "528743", "type": "chemical", "label": "10-methylundecan-2-one", "class": "" } ], "organisms": [ { "id": "Q7616495", "label": "Stigmatella aurantiaca" } ], "relations": [ [ "Q7616495", "16208730CHEM1" ], [ "Q7616495", "Q77559377" ], [ "Q7616495", "16208730CHEM2" ], [ "Q7616495", "16208730CHEM3" ], [ "Q7616495", "Q77380063" ], [ "Q7616495", "16208730CHEM4" ], [ "Q7616495", "16208730CHEM5" ], [ "Q7616495", "Q82102876" ] ] }, "31115680": { "PMID": "31115680", "ArticleTitle": "Factors affecting intake, metabolism and health benefits of phenolic acids: do we understand individual variability?", "AbstractText": "Phenolic acids are important phenolic compounds widespread in foods, contributing to nutritional and organoleptic properties. The bioavailability of these compounds depends on their free or conjugated presence in food matrices, which is also affected by food processing. Phenolic acids undergo metabolism by the host and residing intestinal microbiota, which causes conjugations and structural modifications of the compounds. Human responses, metabolite profiles and health responses of phenolics, show considerable individual variation, which\u00a0is affected by absorption, metabolism and genetic variations of subjects. A better understanding of the gut-host interplay and microbiome biochemistry is becoming highly relevant in understanding the impact of diet and its constituents. It is common to study metabolism and health benefits separately, with some exceptions; however, it should be preferred that health responders and non-responders are studied in combination with explanatory metabolite profiles and gene variants. This approach could turn interindividual variation from a problem in human research to an asset for research on personalized nutrition.", "id": "Q92209375", "doi": "10.1007/S00394-019-01987-6", "chemicals": [ { "id": "Q419836", "type": "class", "label": "Phenolic acid" } ], "organisms": [ ], "relations": [ ] }, "24271798": { "PMID": "24271798", "ArticleTitle": "Interspecific variation in defense secretions of malaysian termites from the genusNasutitermes (Isoptera, nasutitermitinae).", "AbstractText": "The defense secretions of five species of MalaysianNasutitermes,N. longinasus, N. matangensis, N, havilandi, N. johoricus, andNasutitermes species 01, are compared.N. longinasus andN. species 01 provide trinervitene alcohols,N. havilandi mainly tricyclic trinervitene and tetracyclic kempane alcohols and acetates, whereasN. matangensis furnish acetyl/propionyl derivatives of trinervita-11(12),15(17)-dien-3\u03b1,9\u03b2,13\u03b1-triol (XXI and XXII). A new diterpene, assigned as trinervita-11(12),15(17)-dien-3\u03b1,13\u03b1-diol-3,13-O-diacetate (XVII), is isolated fromN. havilandi. The mono- and diterpenoid compositions, being species-specific, are useful for chemotaxonomic and phylogenetic studies.", "id": "Q86837523", "doi": "10.1007/BF01014700", "chemicals": [ { "id": "Q47006367", "type": "class", "label": "diterpenoid" }, { "id": "24271798CHEM1", "pubchem_id": "", "type": "chemical", "label": "trinervita-11(12),15(17)-dien-3α,9β,13α-triol", "class": "" }, { "id": "24271798CHEM2", "pubchem_id": "", "type": "chemical", "label": "trinervita-11(12),15(17)-dien-3\u03b1,13\u03b1-diol-3,13-O-diacetate", "class": "" } ], "organisms": [ { "id": "Q6967779", "label": "Nasutitermes" }, { "id": "Q104374671", "label": "Nasutitermes havilandi" }, { "id": "Q104374672", "label": "Nasutitermes johoricus" }, { "id": "Q104374670", "label": "Nasutitermes longinasus" }, { "id": "Q104374815", "label": "Nasutitermes matangensis" } ], "relations": [ [ "Q104374815", "24271798CHEM1" ], [ "Q104374815", "Q47006367" ], [ "Q104374671", "24271798CHEM2" ], [ "Q104374671", "Q47006367" ] ] }, "24254088": { "PMID": "24254088", "ArticleTitle": "Phenylalkenals in ponerine(Leptogenys sp.) and myrmicine (Pogonomyrmex sp.) ants.", "AbstractText": "Cephalic extracts of two unrelated species of ants,Leptogenys processionalis andPogonomyrmex rugosus, have been found to contain 2-phenylpropenal and 2-phenyl-2-butenal, while two other species related to the first,L. chinensis andL. kitteli, lacked either.L. kitteli also produced a tetrasubstituted pyrazine found previously only in two New Zealand ants in the genusMesoponera. The chemical reactivity of the phenylalkenals suggests their function in repelling attack by predators.", "id": "Q43671599", "doi": "10.1007/BF00988325", "chemicals": [ { "id": "Q27149632", "pubchem_id": "10312", "type": "chemical", "label": "2-phenylpropenal", "class": "Phenylalkenals" }, { "id": "Q82854446", "pubchem_id": "20446", "type": "chemical", "label": "2-phenyl-2-butenal", "class": "Phenylalkenals" }, { "id": "Q424284", "pubchem_id": "9261", "type": "chemical", "label": "pyrazine", "class": "" } ], "organisms": [ { "id": "Q7207646", "label": "Pogonomyrmex rugosus" }, { "id": "Q2741582", "label": "Leptogenys processionalis" }, { "id": "Q3690274", "label": "Leptogenys kitteli" }, { "id": "Q20720498", "label": "Mesoponera" } ], "relations": [ [ "Q7207646", "Q27149632" ], [ "Q7207646", "Q82854446" ], [ "Q2741582", "Q27149632" ], [ "Q2741582", "Q82854446" ], [ "Q3690274", "Q424284" ] ] }, "2089117": { "PMID": "2089117", "ArticleTitle": "Cytotoxic metabolites from the sponge Ianthella basta collected in Papua New Guinea.", "AbstractText": "Two new cytotoxic metabolites, bastadin 8 [1] and bastadin 9 [2], have been isolated from the marine sponge Ianthella basta collected in Papua New Guinea.", "id": "Q41716967", "doi": "10.1021/NP50072A007", "chemicals": [ { "id": "Q104402258", "pubchem_id": "9577277", "type": "chemical", "label": "bastadin 8", "class": "" }, { "id": "2089117CHEM1", "pubchem_id": "9578327", "type": "chemical", "label": "bastadin 9", "class": "" } ], "organisms": [ { "id": "Q2235845", "label": "Ianthella basta" } ], "relations": [ [ "Q2235845", "Q104402258" ], [ "Q2235845", "2089117CHEM1" ] ] }, "23330951": { "PMID": "23330951", "ArticleTitle": "HR-MALDI-MS imaging assisted screening of \u03b2-carboline alkaloids discovered from Mycena metata.", "AbstractText": "Fruiting bodies of Mycena metata were screened for the presence of new secondary metabolites by means of HPLC-UV, LC-HR-ESIMS, and high-resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (HR-MALDI-MS imaging). Thus, a new \u03b2-carboline alkaloid, 6-hydroxymetatacarboline D (1d), was isolated from fruiting bodies of M. metata. 6-Hydroxymetatacarboline D consists of a highly substituted \u03b2-carboline skeleton, which is likely to be derived biosynthetically from l-tryptophan, 2-oxoglutaric acid, l-threonine, and l-proline. The structure of the alkaloid was established by 2D NMR spectroscopic methods and HR-ESIMS. Moreover, by extensive application of LC-HR-ESIMS, LC-HR-ESIMS/MS, and LC-HR-ESIMS(3) techniques we were able to elucidate the structures of a number of accompanying \u03b2-carboline alkaloids, 1a-1c, 1e-1i, and 2a-2g, structurally closely related to 6-hydroxymetatacarboline D, which are present in M. metata in minor amounts. The absolute configuration of the stereogenic centers of the \u03b2-carboline alkaloids was determined by GC-MS comparison with authentic synthetic samples after hydrolytic cleavage and derivatization of the resulting amino acids.", "id": "Q34553780", "doi": "10.1021/NP300455A", "chemicals": [ { "id": "Q109082688", "type": "class", "label": "\u03b2-carboline alkaloid" }, { "id": "Q75068961", "pubchem_id": "71578715", "type": "chemical", "label": "6-hydroxymetatacarboline D", "class": "\u03b2-carboline alkaloid" } ], "organisms": [ { "id": "Q1641480", "label": "Mycena metata" } ], "relations": [ [ "Q1641480", "Q109082688" ], [ "Q1641480", "Q75068961" ] ] }, "11277748": { "PMID": "11277748", "ArticleTitle": "Three new furan derivatives and a new fatty acid from a Taiwanese marine sponge Plakortis simplex.", "AbstractText": "Three new furan derivatives, plakorsins A-C (6-8), together with a new fatty acid, plakortic acid (9), have been isolated from the Taiwanese marine sponge Plakortis simplex in addition to the known metabolites chondrillin (1), 6-epi-chondrillin (2), 2-oxo-2,5-dihydrofuran-5-acetic acid methyl ester (methyl 1,4-epoxy-1-oxo-2-hexenoate) (3), dimethyl beta-ketoadipate (4), and the monomethyl ester of cis,cis-muconic acid (5). The structures of these compounds were established mainly on the basis of spectral data and chemical methods. Biological studies revealed that compound 7 exhibited cytotoxic activity against COLO-250 and KB-16 cells, and compound 1 is active against KB-16 cells.", "id": "Q43558782", "doi": "10.1021/NP000413D", "chemicals": [ { "id": "11277748CHEM1", "pubchem_id": "", "type": "chemical", "label": "plakorsin A", "class": "" }, { "id": "Q105174981", "pubchem_id": "10473105", "type": "chemical", "label": "plakorsin B", "class": "" }, { "id": "Q104973146", "pubchem_id": "10428884", "type": "chemical", "label": "plakorsin C", "class": "" }, { "id": "Q27154919", "pubchem_id": "10402441", "type": "chemical", "label": "plakortic acid", "class": "" }, { "id": "Q104397019", "pubchem_id": "10884145", "type": "chemical", "label": "chondrillin", "class": "" }, { "id": "Q105378426", "pubchem_id": "11742429", "type": "chemical", "label": "6-epi-chondrillin", "class": "" }, { "id": "11277748CHEM2", "pubchem_id": "", "type": "chemical", "label": "2-oxo-2,5-dihydrofuran-5-acetic acid methyl ester (methyl 1,4-epoxy-1-oxo-2-hexenoate)", "class": "" }, { "id": "Q83076358", "pubchem_id": "79561", "type": "chemical", "label": "dimethyl beta-ketoadipate", "class": "" }, { "id": "Q27101947", "pubchem_id": "5280518", "type": "chemical", "label": "cis,cis-Muconic acid", "class": "" } ], "organisms": [ { "id": "Q4115766", "label": "Plakortis simplex" } ], "relations": [ [ "Q4115766", "11277748CHEM1" ], [ "Q4115766", "Q105174981" ], [ "Q4115766", "Q104973146" ], [ "Q4115766", "Q27154919" ], [ "Q4115766", "Q104397019" ], [ "Q4115766", "Q105378426" ], [ "Q4115766", "11277748CHEM2" ], [ "Q4115766", "Q83076358" ], [ "Q4115766", "Q27101947" ] ] }, "29240664": { "PMID": "29240664", "ArticleTitle": "\u03b1-Pyrone Polyketides from Streptomyces ambofaciens BI0048, an Endophytic Actinobacterial Strain Isolated from the Red Alga Laurencia glandulifera.", "AbstractText": "Four new (1-4) and six previously reported (5-10) \u03b1-pyrone polyketides, along with benzoic acid, hydrocinnamic acid, and (E)-cinnamic acid, were isolated from the organic extract resulting from the cultivation of the algicolous strain Streptomyces ambofaciens BI0048, which in turn was isolated from the inner tissues of the red alga Laurencia glandulifera. The structure elucidation of the isolated natural products was based on extensive analysis of their spectroscopic data (NMR, MS, UV, IR). Compounds 1-10 were evaluated for their antibacterial and cytotoxic activities against two multidrug-resistant strains of Staphylococcus aureus and one strain of Escherichia coli, as well as two human cancer cell lines.", "id": "Q47250133", "doi": "10.3390/MD15120389", "chemicals": [ { "id": "Q516751", "type": "class", "label": "polyketides" }, { "id": "Q191700", "pubchem_id": "243", "type": "chemical", "label": "benzoic acid", "class": "\u03b1-pyrone polyketides" }, { "id": "Q4358522", "pubchem_id": "107", "type": "chemical", "label": "hydrocinnamic acid", "class": "\u03b1-pyrone polyketides" }, { "id": "Q164785", "pubchem_id": "444539", "type": "chemical", "label": "(E)-cinnamic acid", "class": "\u03b1-pyrone polyketides" } ], "organisms": [ { "id": "Q22286894", "label": "Streptomyces ambofaciens" } ], "relations": [ [ "Q22286894", "Q516751" ], [ "Q22286894", "Q191700" ], [ "Q22286894", "Q4358522" ], [ "Q22286894", "Q164785" ] ] }, "16662329": { "PMID": "16662329", "ArticleTitle": "Demonstration of the Intercellular Compartmentation of l-Menthone Metabolism in Peppermint (Mentha piperita) Leaves.", "AbstractText": "The metabolism of l-menthone, which is synthesized in the epidermal oil glands of peppermint (Mentha piperita L. cv. Black Mitcham) leaves, is compartmented; on leaf maturity, this ketone is converted to l-menthol and l-menthyl acetate in one compartment, and to d-neomenthol and d-neomenthyl glucoside in a separate compartment. All of the enzymes involved in these reactions are soluble when prepared from whole-leaf homogenates. Mechanical separation of epidermal fragments from the mesophyll, followed by preparation of the soluble enzyme fraction from each tissue, revealed that the neomenthol dehydrogenase and the glucosyl transferase resided specifically in the mesophyll layer, whereas the menthol dehydrogenase and substantial amounts of the acetyl transferase were located in the epidermis, presumably within the epidermal oil glands. These results suggest that the compartmentation of menthone metabolism in peppermint leaves is intercellular, not intracellular.", "id": "Q83257007", "doi": "10.1104/PP.69.4.975", "chemicals": [ { "id": "Q424902", "pubchem_id": "26447", "type": "chemical", "label": "l-menthone", "class": "" }, { "id": "Q407418", "pubchem_id": "16666", "type": "chemical", "label": "l-menthol", "class": "" }, { "id": "Q6817577", "pubchem_id": "220674", "type": "chemical", "label": "l-menthyl acetate", "class": "" }, { "id": "Q27089418", "pubchem_id": "439263", "type": "chemical", "label": "d-neomenthol", "class": "" }, { "id": "Q27103408", "pubchem_id": "440243", "type": "chemical", "label": "d-neomenthyl glucoside", "class": "" } ], "organisms": [ { "id": "Q102165594", "label": "Mentha piperita" } ], "relations": [ [ "Q102165594", "Q424902" ], [ "Q102165594", "Q407418" ], [ "Q102165594", "Q6817577" ], [ "Q102165594", "Q27089418" ], [ "Q102165594", "Q27103408" ] ] }, "26307962": { "PMID": "26307962", "ArticleTitle": "\u03b1-Glucosidase Inhibitors from Vauquelinia corymbosa.", "AbstractText": "The \u03b1-glucosidase inhibitory activity of an aqueous extract and compounds from the aerial parts of V. corymbosa was demonstrated with yeast and rat small intestinal \u03b1-glucosidases. The aqueous extract inhibited yeast \u03b1-glucosidase with a half maximal inhibitory concentration (IC50) of 28.6 \u03bcg/mL. Bioassay-guided fractionation of the extract led to the isolation of several compounds, including one cyanogenic glycoside [prunasin (1)], five flavonoids [(-)-epi-catechin (2), hyperoside (3), isoquercetin (4), quercitrin (5) and quercetin-3-O-(6''-benzoyl)-\u03b2-galactoside (6)] and two simple aromatic compounds [picein (7) and methylarbutin (8)]. The most active compound was 6 with IC50 values of 30 \u03bcM in the case of yeast \u03b1-glucosidase, and 437 \u03bcM in the case of the mammalian enzyme. According to the kinetic analyses performed with rat and yeast enzymes, this compound behaved as mixed-type inhibitor; the calculated inhibition constants (Ki) were 212 and 50 \u03bcM, respectively. Molecular docking analyses with yeast and mammalian \u03b1-glucosidases revealed that compound 6 bind differently to these enzymes. Altogether, the results of this work suggest that preparations of V. corymbosa might delay glucose absorption in vivo.", "id": "Q85985600", "doi": "10.3390/MOLECULES200815330", "chemicals": [ { "id": "Q7253027", "pubchem_id": "119033", "type": "chemical", "label": "prunasin", "class": "cyanogenic glycosides" }, { "id": "Q23050136", "pubchem_id": "72276", "type": "chemical", "label": "(-)-epi-catechin", "class": "flavonoids" }, { "id": "Q5242815", "pubchem_id": "5281643", "type": "chemical", "label": "hyperoside", "class": "flavonoids" }, { "id": "Q6086296", "pubchem_id": "5280804", "type": "chemical", "label": "isoquercetin", "class": "flavonoids" }, { "id": "Q1649777", "pubchem_id": "5280459", "type": "chemical", "label": "quercitrin", "class": "flavonoids" }, { "id": "Q104074122", "pubchem_id": "11563181", "type": "chemical", "label": "quercetin-3-O-(6''-benzoyl)-\u03b2-galactoside", "class": "flavonoids" }, { "id": "Q7190609", "pubchem_id": "92123", "type": "chemical", "label": "picein", "class": "aromatic compounds" }, { "id": "Q27155152", "pubchem_id": "80131", "type": "chemical", "label": "methylarbutin", "class": "aromatic compounds" } ], "organisms": [ { "id": "Q15529887", "label": "Vauquelinia corymbosa" } ], "relations": [ [ "Q15529887", "Q7253027" ], [ "Q15529887", "Q23050136" ], [ "Q15529887", "Q5242815" ], [ "Q15529887", "Q6086296" ], [ "Q15529887", "Q1649777" ], [ "Q15529887", "Q104074122" ], [ "Q15529887", "Q7190609" ], [ "Q15529887", "Q27155152" ] ] }, "22276679": { "PMID": "22276679", "ArticleTitle": "Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria sp. fungus.", "AbstractText": "Five new hydroanthraquinone derivatives, tetrahydroaltersolanols C-F (1-4) and dihydroaltersolanol A (5), and five new alterporriol-type anthranoid dimers, alterporriols N-R (12-16), along with seven known analogues (6-11 and 17), were isolated from the culture broth and the mycelia of Alternaria sp. ZJ-2008003, a fungus obtained from a Sarcophyton sp. soft coral collected from the South China Sea. Their structures and the relative configurations were elucidated using comprehensive spectroscopic methods including 1D and 2D NOE spectra as well as single-crystal X-ray crystallography. Compound 13 represents the first isolated alterporriol dimer with a C-4-C-4' linkage, and the absolute configuration of 4 was determined using the modified Mosher's method. Compounds 1 and 15 exhibited antiviral activity against the porcine reproductive and respiratory syndrome virus (PRRSV), with IC\u2085\u2080 values of 65 and 39 \u03bcM, respectively. Compound 14 showed cytotoxic activity against PC-3 and HCT-116 cell lines, with IC\u2085\u2080 values of 6.4 and 8.6 \u03bcM, respectively.", "id": "Q78441129", "doi": "10.1021/NP200766D", "chemicals": [ { "id": "Q77492503", "pubchem_id": "57332236", "type": "chemical", "label": "Tetrahydroaltersolanol C", "class": "hydroanthraquinones" }, { "id": "Q77278991", "pubchem_id": "57332237", "type": "chemical", "label": "Tetrahydroaltersolanol D", "class": "hydroanthraquinones" }, { "id": "Q75062970", "pubchem_id": "57332238", "type": "chemical", "label": "Tetrahydroaltersolanol E", "class": "hydroanthraquinones" }, { "id": "Q77309695", "pubchem_id": "57332239", "type": "chemical", "label": "Tetrahydroaltersolanol F", "class": "hydroanthraquinones" }, { "id": "Q77511348", "pubchem_id": "57332240", "type": "chemical", "label": "dihydroaltersolanol A", "class": "hydroanthraquinones" }, { "id": "Q77494639", "pubchem_id": "57332378", "type": "chemical", "label": "Alterporriol N", "class": "anthraquinones" }, { "id": "Q77566133", "pubchem_id": "57332379", "type": "chemical", "label": "Alterporriol O", "class": "anthraquinones" }, { "id": "Q77385331", "pubchem_id": "57332380", "type": "chemical", "label": "Alterporriol P", "class": "anthraquinones" }, { "id": "Q77500292", "pubchem_id": "57332381", "type": "chemical", "label": "Alterporriol Q", "class": "anthraquinones" }, { "id": "Q77509553", "pubchem_id": "57332509", "type": "chemical", "label": "Alterporriol R", "class": "anthraquinones" }, { "id": "Q574302", "type": "class", "label": "anthraquinone" } ], "organisms": [ { "id": "Q133266", "label": "Alternaria" } ], "relations": [ [ "Q133266", "Q77492503" ], [ "Q133266", "Q77278991" ], [ "Q133266", "Q75062970" ], [ "Q133266", "Q77309695" ], [ "Q133266", "Q77511348" ], [ "Q133266", "Q77494639" ], [ "Q133266", "Q77566133" ], [ "Q133266", "Q77385331" ], [ "Q133266", "Q77500292" ], [ "Q133266", "Q77509553" ], [ "Q133266", "Q574302" ] ] }, "20738102": { "PMID": "20738102", "ArticleTitle": "Chemical constituents of the deep reef caribbean sponges Plakortis angulospiculatus and Plakortis halichondrioides and their anti-inflammatory activities.", "AbstractText": "Chemical investigations of two collections of the deep reef Caribbean sponge Plakortis angulospiculatus resulted in the isolation of a new compound (1) along with the known compound spiculoic acid B (2) belonging to the spiculoic acid class and four other new compounds (3-6) belonging to the zyggomphic acid class. Three new aromatic compounds (7-9) were isolated from the Caribbean sponge Plakortis halichondrioides. The structural determination of the compounds was based on extensive NMR and mass spectroscopic analysis. The isolated compounds 1-7 were tested for their anti-inflammatory activity using in vitro assays for inhibition of inducible nitric oxide synthase and nuclear factor kappa B (NF\u03baB) activity, as well as inhibition of intracellular reactive oxygen species generation as a result of oxidative stress. The cytotoxicity of these compounds was also evaluated to determine the selectivity index of their bioactivity with respect to cytotoxicity. Compounds 1 and 4 were more potent than the positive control in inhibiting NF\u03baB activity and had IC(50) values of 0.47 and 2.28 \u03bcM, respectively.", "id": "Q84803121", "doi": "10.1021/NP100233D", "chemicals": [ { "id": "Q105149726", "pubchem_id": "49866365", "type": "chemical", "label": "spiculoic acid B", "class": "spiculoic acid" }, { "id": "Q105196512", "pubchem_id": "46938442", "type": "chemical", "label": "Zyggomphic acid B", "class": "zyggomphic acid" }, { "id": "Q105206058", "pubchem_id": "16059774", "type": "chemical", "label": "Zyggomphic acid", "class": "zyggomphic acid" }, { "id": "Q105278624", "pubchem_id": "46938443", "type": "chemical", "label": "27-Nor-zyggomphic acid B", "class": "zyggomphic acid" }, { "id": "Q105275576", "pubchem_id": "46938547", "type": "chemical", "label": "22-Nor-zyggomphic acid B", "class": "zyggomphic acid" }, { "id": "Q19834818", "type": "class", "label": "aromatic compounds" } ], "organisms": [ { "id": "Q4115660", "label": "Plakortis halichondrioides" }, { "id": "Q4119535", "label": "Plakortis angulospiculatus" } ], "relations": [ [ "Q4119535", "Q105149726" ], [ "Q4119535", "Q105196512" ], [ "Q4119535", "Q105206058" ], [ "Q4119535", "Q105278624" ], [ "Q4119535", "Q105275576" ], [ "Q4115660", "Q19834818" ] ] }, "17920091": { "PMID": "17920091", "ArticleTitle": "Influence of electron transport proteins on the reactions catalyzed by Fusarium fujikuroi gibberellin monooxygenases.", "AbstractText": "The multifunctional cytochrome P450 monooxygenases P450-1 and P450-2 from Fusarium fujikuroi catalyze the formation of GA14 and GA4, respectively, in the gibberellin (GA)-biosynthetic pathway. However, the activity of these enzymes is qualitatively and quantitatively different in mutants lacking the NADPH:cytochrome P450 oxidoreductase (CPR) compared to CPR-containing strains. 3beta-Hydroxylation, a major P450-1 activity in wild-type strains, was strongly decreased in the mutants relative to oxidation at C-6 and C-7, while synthesis of C19-GAs as a result of oxidative cleavage of C-20 by P450-2 was almost absent whereas the C-20 alcohol, aldehyde and carboxylic acid derivatives accumulated. Interaction of the monooxygenases with alternative electron transport proteins could account for these different product distributions. In the absence of CPR, P450-1 activities were NADH-dependent, and stimulated by cytochrome b5 or by added FAD. These properties as well as the decreased efficiency of P450-1 and P450-2 in the mutants are consistent with the participation of cytochrome b5:NADH cytochrome b5 reductase as redox partner of the gibberellin monooxygenases in the absence of CPR. We provide evidence, from either incubations of GA12 (C-20 methyl) with cultures of the mutant suspended in [18O]H2O or maintained under an atmosphere of [18O]O2:N2 (20:80), that GA15 (C-20 alcohol) and GA24 (C-20 aldehyde) are formed directly from dioxygen and not from hydrolysis of covalently enzyme-bound intermediates. Thus these partially oxidized GAs correspond to intermediates of the sequential oxidation of C-20 catalyzed by P450-2.", "id": "Q46963311", "doi": "10.1016/J.PHYTOCHEM.2007.08.026", "chemicals": [ { "id": "Q27097025", "pubchem_id": "92109", "type": "chemical", "label": "GA4", "class": "monooxygenases" }, { "id": "Q27110160", "pubchem_id": "443451", "type": "chemical", "label": "GA14", "class": "monooxygenases" } ], "organisms": [ { "id": "Q10500328", "label": "Fusarium fujikuroi" } ], "relations": [ [ "Q10500328", "Q27097025" ], [ "Q10500328", "Q27110160" ] ] }, "10096859": { "PMID": "10096859", "ArticleTitle": "Tumonoic acids, novel metabolites from a cyanobacterial assemblage of Lyngbya majuscula and Schizothrix calcicola.", "AbstractText": "Five new metabolites have been isolated from a lyngbyastatin 1- and dolastatin 12-producing assemblage of Lyngbya majuscula and Schizothrix calcicola collected at Tumon Bay, Guam. Structure elucidation employed 2D NMR techniques and chemical derivatization. These compounds have been assigned the trivial names tumonoic acids A (2), B (1), and C (5); methyl tumonoate A (3), and methyl tumonoate B (4). Compounds 1 and 4 were also found in a lyngbyastatin 1-producing strain of L. majuscula from Guam.", "id": "Q74651917", "doi": "10.1021/NP980460U", "chemicals": [ { "id": "Q27137546", "pubchem_id": "10854587", "type": "chemical", "label": "Tumonoic acid A", "class": "" }, { "id": "Q27137547", "pubchem_id": "10554104", "type": "chemical", "label": "Tumonoic Acid B", "class": "" }, { "id": "Q27137548", "pubchem_id": "10577669", "type": "chemical", "label": "Tumonoic acid C", "class": "" }, { "id": "Q27137552", "pubchem_id": "10498274", "type": "chemical", "label": "Methyl tumonoate A", "class": "" }, { "id": "Q27137553", "pubchem_id": "10840160", "type": "chemical", "label": "Methyl tumonoate B", "class": "" } ], "organisms": [ { "id": "Q20720044", "label": "Lyngbya majuscula" }, { "id": "Q49631151", "label": "Schizothrix calcicola" } ], "relations": [ [ "Q20720044", "Q27137546" ], [ "Q20720044", "Q27137547" ], [ "Q20720044", "Q27137548" ], [ "Q20720044", "Q27137552" ], [ "Q20720044", "Q27137553" ], [ "Q49631151", "Q27137546" ], [ "Q49631151", "Q27137547" ], [ "Q49631151", "Q27137548" ], [ "Q49631151", "Q27137552" ], [ "Q49631151", "Q27137553" ] ] }, "11711118": { "PMID": "11711118", "ArticleTitle": "Structure and cytotoxicity of new polyhydroxylated sterols from the Caribbean gorgonian Plexaurella grisea.", "AbstractText": "The gorgonian Plexaurella grisea contains the new steroids 9-hydroxygorgosterol (1), 9,11 alpha,14-trihydroxygorgosterol (2), 5 beta,6 beta-epoxyergost-24(28)-ene-3 beta,7 beta-diol (3), ergost-24(28)-ene-3 beta,5 alpha,6 beta,7 beta-tetrol (4), an unseparable 1:1 mixture of the epimers (25R) and (25S)-26-acetoxy-3 beta,5 alpha-dihydroxyergost-24(28)-en-6-one (5/6), and seven related, known compounds (7-13). The structures of these new compounds were defined by spectroscopic analysis. All the compounds (1-13) isolated from P. grisea were tested against P 388, A 549, and HT 29 tumor cell lines. Compounds 3, 5/6, and 12 exhibited selective activity against the HT 29 cell line (ED(50) = 0.1 microg/ml).", "id": "Q40768272", "doi": "10.1016/S0039-128X(01)00122-2", "chemicals": [ { "id": "Q105035443", "pubchem_id": "11812281", "type": "chemical", "label": "9-hydroxygorgosterol", "class": "steroids" }, { "id": "11711118CHEM1", "pubchem_id": "10961762", "type": "chemical", "label": "9,11 alpha,14-trihydroxygorgosterol", "class": "steroids" }, { "id": "11711118CHEM2", "pubchem_id": "", "type": "chemical", "label": "5 beta,6 beta-epoxyergost-24(28)-ene-3 beta,7 beta-diol", "class": "steroids" }, { "id": "Q104969124", "pubchem_id": "11037703", "type": "chemical", "label": "ergost-24(28)-ene-3 beta,5 alpha,6 beta,7 beta-tetro", "class": "steroids" }, { "id": "11711118CHEM3", "pubchem_id": "", "type": "chemical", "label": "(25R)-26-acetoxy-3 beta,5 alpha-dihydroxyergost-24(28)-en-6-one", "class": "steroids" }, { "id": "11711118CHEM4", "pubchem_id": "", "type": "chemical", "label": "(25S)-26-acetoxy-3 beta,5 alpha-dihydroxyergost-24(28)-en-6-one", "class": "steroids" }, { "id": "Q177911", "type": "class", "label": "steroids" } ], "organisms": [ { "id": "Q2913319", "label": "Plexaurella grisea" } ], "relations": [ [ "Q2913319", "Q105035443" ], [ "Q2913319", "11711118CHEM1" ], [ "Q2913319", "11711118CHEM2" ], [ "Q2913319", "Q104969124" ], [ "Q2913319", "11711118CHEM3" ], [ "Q2913319", "11711118CHEM4" ], [ "Q2913319", "Q177911" ] ] }, "15679323": { "PMID": "15679323", "ArticleTitle": "Inhibition of leukotriene biosynthesis by stilbenoids from Stemona species.", "AbstractText": "Fifteen stilbenoids and two alkaloids from Stemona collinsae, S. tuberosa, and S. peirrei were tested alongside the commercially available stilbenoids resveratrol and pinosylvin for inhibition of leukotriene formation in an ex vivo test system based on activated human neutrophilic granulocytes. The stilbenoids resveratrol (1), pinosylvin (2), dihydropinosylvin (3), stilbostemin A (4), stilbostemin B (5), stilbostemin D (6), stilbostemin F (7), stilbostemin G (8), stemofuran B (9), stemofuran C (10), stemofuran D (11), stemofuran G (12), stemofuran J (13), stemanthrene A (14), stemanthrene B (15), stemanthrene C (16), and stemanthrene D (17) showed structure-dependent activities with IC(50) values ranging from 3.7 to >50 microM. The alkaloids tuberostemonine (18) and neotuberostemonine (19) were inactive at a concentration of 50 microM.", "id": "Q45243418", "doi": "10.1021/NP0497043", "chemicals": [ { "id": "Q407329", "pubchem_id": "445154", "type": "chemical", "label": "resveratrol", "class": "stilbenoids" }, { "id": "Q7196412", "pubchem_id": "5280457", "type": "chemical", "label": "pinosylvin", "class": "stilbenoids" }, { "id": "Q27106413", "pubchem_id": "442700", "type": "chemical", "label": "dihydropinosylvin", "class": "stilbenoids" }, { "id": "Q105385529", "pubchem_id": "11806868", "type": "chemical", "label": "stilbostemin A", "class": "stilbenoids" }, { "id": "Q72508945", "pubchem_id": "10376477", "type": "chemical", "label": "stilbostemin B", "class": "stilbenoids" }, { "id": "Q105153682", "pubchem_id": "15222503", "type": "chemical", "label": "stilbostemin D", "class": "stilbenoids" }, { "id": "Q27138466", "pubchem_id": "636713", "type": "chemical", "label": "stilbostemin F", "class": "stilbenoids" }, { "id": "Q104976477", "pubchem_id": "11254745", "type": "chemical", "label": "stilbostemin G", "class": "stilbenoids" }, { "id": "Q105154574", "pubchem_id": "641364", "type": "chemical", "label": "stemofuran B", "class": "stilbenoids" }, { "id": "Q105274045", "pubchem_id": "641365", "type": "chemical", "label": "stemofuran C", "class": "stilbenoids" }, { "id": "Q105020361", "pubchem_id": "641366", "type": "chemical", "label": "stemofuran D", "class": "stilbenoids" }, { "id": "Q105246436", "pubchem_id": "11748527", "type": "chemical", "label": "stemofuran G", "class": "stilbenoids" }, { "id": "Q27138748", "pubchem_id": "11077369", "type": "chemical", "label": "stemofuran J", "class": "stilbenoids" }, { "id": "Q105164468", "pubchem_id": "641760", "type": "chemical", "label": "stemanthrene A", "class": "stilbenoids" }, { "id": "Q105225754", "pubchem_id": "11254675", "type": "chemical", "label": "stemanthrene B", "class": "stilbenoids" }, { "id": "Q105190265", "pubchem_id": "11370042", "type": "chemical", "label": "stemanthrene C", "class": "stilbenoids" }, { "id": "Q105173150", "pubchem_id": "11358117", "type": "chemical", "label": "stemanthrene D", "class": "stilbenoids" }, { "id": "Q27137722", "pubchem_id": "100781", "type": "chemical", "label": "tuberostemonine", "class": "alkaloids" }, { "id": "Q27137725", "pubchem_id": "11667940", "type": "chemical", "label": "neotuberostemonine", "class": "alkaloids" } ], "organisms": [ { "id": "Q104398938", "label": "Stemona collinsae" }, { "id": "Q15542256", "label": "Stemona pierrei" }, { "id": "Q2249619", "label": "Stemona tuberosa" } ], "relations": [ [ "Q104398938", "Q407329" ], [ "Q104398938", "Q7196412" ], [ "Q104398938", "Q27106413" ], [ "Q104398938", "Q105385529" ], [ "Q104398938", "Q72508945" ], [ "Q104398938", "Q105153682" ], [ "Q104398938", "Q27138466" ], [ "Q104398938", "Q104976477" ], [ "Q104398938", "Q105154574" ], [ "Q104398938", "Q105274045" ], [ "Q104398938", "Q105020361" ], [ "Q104398938", "Q105246436" ], [ "Q104398938", "Q27138748" ], [ "Q104398938", "Q105164468" ], [ "Q104398938", "Q105225754" ], [ "Q104398938", "Q105190265" ], [ "Q104398938", "Q105173150" ], [ "Q104398938", "Q27137722" ], [ "Q104398938", "Q27137725" ], [ "Q2249619", "Q407329" ], [ "Q2249619", "Q7196412" ], [ "Q2249619", "Q27106413" ], [ "Q2249619", "Q105385529" ], [ "Q2249619", "Q72508945" ], [ "Q2249619", "Q105153682" ], [ "Q2249619", "Q27138466" ], [ "Q2249619", "Q104976477" ], [ "Q2249619", "Q105154574" ], [ "Q2249619", "Q105274045" ], [ "Q2249619", "Q105020361" ], [ "Q2249619", "Q105246436" ], [ "Q2249619", "Q27138748" ], [ "Q2249619", "Q105164468" ], [ "Q2249619", "Q105225754" ], [ "Q2249619", "Q105190265" ], [ "Q2249619", "Q105173150" ], [ "Q2249619", "Q27137722" ], [ "Q2249619", "Q27137725" ], [ "Q15542256", "Q407329" ], [ "Q15542256", "Q7196412" ], [ "Q15542256", "Q27106413" ], [ "Q15542256", "Q105385529" ], [ "Q15542256", "Q72508945" ], [ "Q15542256", "Q105153682" ], [ "Q15542256", "Q27138466" ], [ "Q15542256", "Q104976477" ], [ "Q15542256", "Q105154574" ], [ "Q15542256", "Q105274045" ], [ "Q15542256", "Q105020361" ], [ "Q15542256", "Q105246436" ], [ "Q15542256", "Q27138748" ], [ "Q15542256", "Q105164468" ], [ "Q15542256", "Q105225754" ], [ "Q15542256", "Q105190265" ], [ "Q15542256", "Q105173150" ], [ "Q15542256", "Q27137722" ], [ "Q15542256", "Q27137725" ] ] }, "16079552": { "PMID": "16079552", "ArticleTitle": "Antioxidative phenols and phenolic glycosides from Curculigo orchioides.", "AbstractText": "A new orcinol glucoside, orcinol-1-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (3), was isolated from the rhizomes of Curculigo orchioides GAERTN., together with seven known compounds: orcinol glucoside (1), orcinol-1-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside (2), curculigoside (4), curculigoside B (5), curculigoside C (6), 2,6-dimethoxyl benzoic acid (7), and syringic acid (8). The structures of these compounds were elucidated using spectroscopic methods. The antioxidant activities of these isolated compounds were evaluated by colorimetric methods based on their scavenging effects on hydroxyl radicals and superoxide anion radicals, respectively. All the compounds showed potent antioxidative activities and the structure-activity relationship is discussed.", "id": "Q46634022", "doi": "10.1248/CPB.53.1065", "chemicals": [ { "id": "16079552CHEM1", "pubchem_id": "", "type": "chemical", "label": "orcinol-1-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside", "class": "glycosides" }, { "id": "16079552CHEM2", "pubchem_id": "", "type": "chemical", "label": "orcinol-1-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside", "class": "glycosides" }, { "id": "Q27161685", "pubchem_id": "15109", "type": "chemical", "label": "2,6-dimethoxyl benzoic acid", "class": "glycosides" }, { "id": "Q104399438", "pubchem_id": "12315192", "type": "chemical", "label": "orcinol glucoside", "class": "glycosides" }, { "id": "Q83031157", "pubchem_id": "132567", "type": "chemical", "label": "curculigoside B", "class": "glycosides" }, { "id": "Q408428", "pubchem_id": "10742", "type": "chemical", "label": "syringic acid", "class": "glycosides" }, { "id": "Q5194662", "pubchem_id": "158845", "type": "chemical", "label": "curculigoside", "class": "glycosides" }, { "id": "Q110185463", "pubchem_id": "102004677", "type": "chemical", "label": "curculigoside C", "class": "glycosides" } ], "organisms": [ { "id": "Q5194664", "label": "Curculigo orchioides" } ], "relations": [ [ "Q5194664", "16079552CHEM1" ], [ "Q5194664", "Q104399438" ], [ "Q5194664", "16079552CHEM2" ], [ "Q5194664", "Q5194662" ], [ "Q5194664", "Q83031157" ], [ "Q5194664", "Q110185463" ], [ "Q5194664", "Q27161685" ], [ "Q5194664", "Q408428" ] ] }, "6512534": { "PMID": "6512534", "ArticleTitle": "Antibacterial constituents of the diatom Navicula delognei.", "AbstractText": "The novel ester (E)-phytol (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoate++ + (1); (6Z,9Z,12Z,15Z)-hexadecatetraenoic acid; (6Z,9Z,12Z,15Z)-octadecatetraenoic acid; and (6Z,9Z,12Z)-hexadecatrienoic acid isolated from the diatom Navicula delognei f. elliptica, show significant antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium, and Proteus vulgaris. beta-Carotene, alpha-cryptoxanthin, fucoxanthin, lutein, trans-phytol, and plastoquinone-9 were also isolated from this diatom.", "id": "Q42251035", "doi": "10.1021/NP50035A010", "chemicals": [ { "id": "6512534CHEM1", "pubchem_id": "6442409", "type": "chemical", "label": "(E)-phytol (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoate", "class": "ester" }, { "id": "Q27270908", "pubchem_id": "11957734", "type": "chemical", "label": "(6Z,9Z,12Z,15Z)-hexadecatetraenoic acid", "class": "ester" }, { "id": "Q2739877", "pubchem_id": "5312508", "type": "chemical", "label": "(6Z,9Z,12Z,15Z)-octadecatetraenoic acid", "class": "ester" }, { "id": "6512534CHEM2", "pubchem_id": "6442668", "type": "chemical", "label": "(6Z,9Z,12Z)-hexadecatrienoic acid", "class": "ester" }, { "id": "Q306135", "pubchem_id": "5280489", "type": "chemical", "label": "beta-Carotene", "class": "" }, { "id": "Q27133768", "pubchem_id": "5281234", "type": "chemical", "label": "alpha-cryptoxanthin", "class": "" }, { "id": "Q96385", "pubchem_id": "5281239", "type": "chemical", "label": "fucoxanthin", "class": "" }, { "id": "Q422067", "pubchem_id": "5281243", "type": "chemical", "label": "lutein", "class": "" }, { "id": "Q415945", "pubchem_id": "5280435", "type": "chemical", "label": "trans-phytol", "class": "" }, { "id": "Q104996826", "pubchem_id": "21881166", "type": "chemical", "label": "plastoquinone-9", "class": "" } ], "organisms": [ { "id": "Q104853335", "label": "Navicula delognei" } ], "relations": [ [ "Q104853335", "6512534CHEM1" ], [ "Q104853335", "Q27270908" ], [ "Q104853335", "Q2739877" ], [ "Q104853335", "6512534CHEM2" ], [ "Q104853335", "Q306135" ], [ "Q104853335", "Q27133768" ], [ "Q104853335", "Q96385" ], [ "Q104853335", "Q422067" ], [ "Q104853335", "Q415945" ], [ "Q104853335", "Q104996826" ] ] }, "32946237": { "PMID": "32946237", "ArticleTitle": "Polyhalogenation of Isoflavonoids by the Termite-Associated Actinomadura sp. RB99.", "AbstractText": "Based on high-resolution tandem mass spectrometry (HR-MS2) and global natural products social molecular networking (GNPS), we found that plant-derived daidzein and genistein derivatives are polyhalogenated by termite-associated Actinomadura species RB99. MS-guided purification from extracts of bacteria grown under optimized conditions led to the isolation of eight polychlorinated isoflavones, including six unreported derivatives, and seven novel polybrominated derivatives, two of which showed antimicrobial activity.", "id": "Q99568431", "doi": "10.1021/ACS.JNATPROD.0C00676", "chemicals": [ { "id": "Q3234924", "type": "class", "label": "Isoflavonoids" } ], "organisms": [ { "id": "Q16825153", "label": "Actinomadura" } ], "relations": [ [ "Q16825153", "Q3234924" ] ] }, "9051914": { "PMID": "9051914", "ArticleTitle": "Antineoplastic agents. 362. Isolation and X-ray crystal structure of dibromophakellstatin from the Indian ocean sponge Phakellia mauritiana.", "AbstractText": "Bioassay-guided isolation procedures using human tumor cell lines led to isolation of dibromophakellstatin (4) from the Republic of Seychelles sponge Phakellia mauritiana. The isolation, X-ray crystal structure elucidation, absolute stereochemistry, and antineoplastic activity have been summarized. P. mauritiana was also found to contain dibromophakellin (1), debromohymenialosine (2), thymidine, deoxyuridine, and thymine.", "id": "Q46478513", "doi": "10.1021/NP9606106", "chemicals": [ { "id": "Q105226390", "pubchem_id": "10500579", "type": "chemical", "label": "dibromophakellstatin", "class": "" }, { "id": "Q27134247", "pubchem_id": "42636938", "type": "chemical", "label": "dibromophakellin", "class": "" }, { "id": "Q27459158", "pubchem_id": "135451156", "type": "chemical", "label": "debromohymenialosine", "class": "" }, { "id": "Q422464", "pubchem_id": "5789", "type": "chemical", "label": "thymidine", "class": "" }, { "id": "Q419140", "pubchem_id": "13712", "type": "chemical", "label": "deoxyuridine", "class": "" }, { "id": "Q171973", "pubchem_id": "1135", "type": "chemical", "label": "thymine", "class": "" } ], "organisms": [ { "id": "Q2045933", "label": "Phakellia mauritiana" } ], "relations": [ [ "Q2045933", "Q105226390" ], [ "Q2045933", "Q27134247" ], [ "Q2045933", "Q27459158" ], [ "Q2045933", "Q422464" ], [ "Q2045933", "Q419140" ], [ "Q2045933", "Q171973" ] ] }, "29490285": { "PMID": "29490285", "ArticleTitle": "Lanostane triterpenes from the mushroom Ganoderma resinaceum and their inhibitory activities against \u03b1-glucosidase.", "AbstractText": "Eighteen previously undescribed lanostane triterpenes and thirty known analogues were obtained from the fruiting bodies of Ganoderma resinaceum. Resinacein C was isolated from a natural source for the first time. The structures of all the above compounds were elucidated by extensive spectroscopic analysis and comparisons of their spectroscopic data with those reported in the literature. Furthermore, in an in\u00a0vitro assay, Resinacein C, ganoderic acid Y, lucialdehyde C, 7-oxo-ganoderic acid Z3, 7-oxo-ganoderic acid Z, and lucidadiol showed strong inhibitory effects against \u03b1-glucosidase compared with the positive control drug acarbose. The structure-activity relationships of ganoderma triterpenes on \u03b1-glucosidase inhibition showed that the C-24/C-25 double bond is necessary for \u03b1-glucosidase inhibitory activity. Moreover, the carboxylic acid group at C-26 and the hydroxy group at C-15 play important roles in enhancing inhibitory effects of these triterpenes.", "id": "Q78287446", "doi": "10.1016/J.PHYTOCHEM.2018.01.007", "chemicals": [ { "id": "Q108527275", "type": "class", "label": "Lanostane triterpenes" }, { "id": "Q105172886", "pubchem_id": "139590932", "type": "chemical", "label": "Resinacein C", "class": "lanostane triterpenes" }, { "id": "Q105034035", "pubchem_id": "57397445", "type": "chemical", "label": "ganoderic acid Y", "class": "lanostane triterpenes" }, { "id": "Q27135209", "pubchem_id": "10366713", "type": "chemical", "label": "lucialdehyde C", "class": "lanostane triterpenes" }, { "id": "29490285CHEM1", "pubchem_id": "", "type": "chemical", "label": "7-oxo-ganoderic acid Z3", "class": "lanostane triterpenes" }, { "id": "Q75063427", "pubchem_id": "71461154", "type": "chemical", "label": "7-oxo-ganoderic acid Z", "class": "lanostane triterpenes" }, { "id": "Q15426219", "pubchem_id": "10789991", "type": "chemical", "label": "lucidadiol", "class": "lanostane triterpenes" } ], "organisms": [ { "id": "Q1415748", "label": "Ganoderma resinaceum" } ], "relations": [ [ "Q1415748", "Q108527275" ], [ "Q1415748", "Q105172886" ], [ "Q1415748", "Q105034035" ], [ "Q1415748", "Q27135209" ], [ "Q1415748", "29490285CHEM1" ], [ "Q1415748", "Q75063427" ], [ "Q1415748", "Q15426219" ] ] }, "24814399": { "PMID": "24814399", "ArticleTitle": "The floral scents of Nymphaea subg. Hydrocallis (Nymphaeaceae), the New World night-blooming water lilies, and their relation with putative pollinators.", "AbstractText": "Night-blooming water lilies are characterized by intense emission of floral VOCs. Their unique scent-oriented pollinators, cyclocephaline scarabs (Scarabaeidae, Cyclocephalini), are attracted to flowers that they use as reliable sources of food and as mating aggregation sites. Chemical analysis of floral scent samples of seven species of Nymphaea subg. Hydrocallis established remarkably simple fragrant blends, each of which was dominated by one or two prominent compounds that alone accounted for over 95% of total scent emission. A total of 22 VOCs were identified: aliphatics (9), C5-branched chain compounds (5) and aromatics (8). Anisole was the dominant constituent in the floral scents of Nymphaea amazonum subsp. amazonum, N. amazonum subsp. pedersenii and N. tenerinervia, whereas (methoxymethyl)benzene was the most abundant VOC in samples of N. lasiophylla and N. lingulata. Flowers of N. rudgeana and N. gardneriana emitted high amounts of methyl hexanoate and methyl 2-methylbutanoate. Comparisons of floral VOC composition including other day- and night-blooming species of Nymphaea and Victoria obtained from the literature evidenced disparities related to habitus. While flowers of day-blooming species mostly emit aromatic alcohols and ethers, nocturnal species are particularly rich in aromatic ethers, aliphatic esters and C5-branched chain esters. These findings strongly suggest that the floral scent composition within closely related Nymphaea and Victoria is linked to pollinator selection, and the putative role of floral VOCs in pollinator attractiveness is discussed.", "id": "Q31160862", "doi": "10.1016/J.PHYTOCHEM.2014.04.007", "chemicals": [ { "id": "Q312244", "pubchem_id": "7519", "type": "chemical", "label": "Anisole", "class": "" }, { "id": "Q3133329", "pubchem_id": "10869", "type": "chemical", "label": "(methoxymethyl)benzene", "class": "" }, { "id": "Q3135043", "pubchem_id": "7824", "type": "chemical", "label": "methyl hexanoate", "class": "" }, { "id": "Q24734848", "pubchem_id": "13357", "type": "chemical", "label": "methyl 2-methylbutanoate", "class": "" } ], "organisms": [ { "id": "Q15485656", "label": "Nymphaea amazonum" }, { "id": "Q21396679", "label": "Nymphaea tenerinervia" }, { "id": "Q15483286", "label": "Nymphaea lasiophylla" }, { "id": "Q17253299", "label": "Nymphaea lingulata" }, { "id": "Q10338327", "label": "Nymphaea rudgeana" }, { "id": "Q15482209", "label": "Nymphaea gardneriana" } ], "relations": [ [ "Q15485656", "Q312244" ], [ "Q21396679", "Q312244" ], [ "Q15483286", "Q3133329" ], [ "Q17253299", "Q3133329" ], [ "Q10338327", "Q3135043" ], [ "Q10338327", "Q24734848" ], [ "Q15482209", "Q3135043" ], [ "Q15482209", "Q24734848" ] ] }, "8622928": { "PMID": "8622928", "ArticleTitle": "Chemical egg defense in a green lacewing (Ceraeochrysa smithi).", "AbstractText": "The green lacewing Ceraeochrysa smithi (Neuroptera, Chrysopidae), like other members of its family, lays its eggs on stalks, but it is unusual in that it coats these stalks with droplets of an oily fluid. The liquid consists of a mixture of fatty acids, an ester, and a series of straight-chain aldehydes. Relative to the eggs of a congeneric chrysopid that lacks stalk fluid, the eggs of C. smithi proved well protected against ants. Components of the fluid, in an assay with a cockroach, proved potently irritant. Following emergence from the egg, C. smithi larvae imbibe the stalk fluid, thereby possibly deriving nutritive benefit, defensive advantage, or both.", "id": "Q37648537", "doi": "10.1073/PNAS.93.8.3280", "chemicals": [ { "id": "Q61476", "type": "class", "label": "fatty acids" }, { "id": "Q101487", "type": "class", "label": "ester" }, { "id": "Q101497", "type": "class", "label": "aldehydes" } ], "organisms": [ { "id": "Q2042434", "label": "Ceraeochrysa smithi" } ], "relations": [ [ "Q2042434", "Q61476" ], [ "Q2042434", "Q101487" ], [ "Q2042434", "Q101497" ] ] }, "28117586": { "PMID": "28117586", "ArticleTitle": "Griseofulvin Derivative and Indole Alkaloids from Penicillium griseofulvum CPCC 400528.", "AbstractText": "A new griseofulvin derivative, 4'-demethoxy-4'-N-isopentylisogriseofulvin (1), three new indole alkaloids, 2-demethylcyclopiamide E (2), 2-demethylsperadine F (3), and clopiamine C (4), and five known metabolites (5-9) were isolated from Penicillium griseofulvum CPCC 400528. Compound 1 is the first reported griseofulvin analogue with an N-isopentane group and the first example of a naturally occurring N-containing griseofulvin analogue. Their structures and absolute configurations were elucidated through extensive spectroscopic analyses, calculated ECD, and single-crystal X-ray diffraction (Cu K\u03b1). The possible biogenetic pathway of 1-3 was proposed. Compounds 1, 2, and 5 exhibited anti-HIV activities with IC50 values of 33.2, 20.5, and 12.6 \u03bcM, respectively.", "id": "Q48317917", "doi": "10.1021/ACS.JNATPROD.6B00829", "chemicals": [ { "id": "Q105003701", "pubchem_id": "129909733", "type": "chemical", "label": "4'-demethoxy-4'-N-isopentylisogriseofulvin", "class": "griseofulvin derivative" }, { "id": "Q104198980", "pubchem_id": "137206669", "type": "chemical", "label": "2-demethylcyclopiamide E", "class": "indole alkaloids" }, { "id": "Q105339622", "pubchem_id": "129909734", "type": "chemical", "label": "2-demethylsperadine F", "class": "indole alkaloids" }, { "id": "Q105157377", "pubchem_id": "129909750", "type": "chemical", "label": "clopiamine C", "class": "indole alkaloids" } ], "organisms": [ { "id": "Q10622943", "label": "Penicillium griseofulvum" } ], "relations": [ [ "Q10622943", "Q105003701" ], [ "Q10622943", "Q104198980" ], [ "Q10622943", "Q105339622" ], [ "Q10622943", "Q105157377" ] ] }, "25875311": { "PMID": "25875311", "ArticleTitle": "Bioactive Maleic Anhydrides and Related Diacids from the Aquatic Hyphomycete Tricladium castaneicola.", "AbstractText": "Four maleic anhydride derivatives, tricladolides A-D (1-4), and three alkylidene succinic acid derivatives, tricladic acids A-C (5-7), were isolated from the aquatic hyphomycete Tricladium castaneicola. The structures of these compounds were determined by spectroscopic analysis, and all were found to be novel. The compounds exhibited inhibitory activity against fungi, particularly Phytophthora sp., a plant pathogen of oomycetes. The inhibitory activity of these metabolites revealed the importance of the cyclic anhydride structure and the lipophilicity of the alkyl side chain. On the other hand, the cytotoxicity of the compounds against B16 melanoma cells indicated that the cyclic anhydride structure was not essential.", "id": "Q78442130", "doi": "10.1021/NP500773S", "chemicals": [ { "id": "Q77420615", "pubchem_id": "11564943", "type": "chemical", "label": "Tricladolide C", "class": "anhydride" }, { "id": "Q75068985", "pubchem_id": "11593996", "type": "chemical", "label": "Tricladolide A", "class": "anhydride" }, { "id": "Q77378135", "pubchem_id": "139584923", "type": "chemical", "label": "Tricladic acid A", "class": "" }, { "id": "Q105368935", "pubchem_id": "11673117", "type": "chemical", "label": "Tricladolide B", "class": "anhydride" }, { "id": "Q77517255", "pubchem_id": "11708371", "type": "chemical", "label": "Tricladolide D", "class": "anhydride" }, { "id": "Q77385604", "pubchem_id": "122178993", "type": "chemical", "label": "Tricladic acid B", "class": "" }, { "id": "Q77420760", "pubchem_id": "24871163", "type": "chemical", "label": "Tricladic acid C", "class": "" } ], "organisms": [ { "id": "Q10703346", "label": "Tricladium castaneicola" } ], "relations": [ [ "Q10703346", "Q77420615" ], [ "Q10703346", "Q75068985" ], [ "Q10703346", "Q77378135" ], [ "Q10703346", "Q105368935" ], [ "Q10703346", "Q77517255" ], [ "Q10703346", "Q77385604" ], [ "Q10703346", "Q77420760" ] ] }, "12781809": { "PMID": "12781809", "ArticleTitle": "Antifungal activity of sterols and triterpenes isolated from Ganoderma annulare.", "AbstractText": "Three sterols, 5alpha-ergost-7-en-3beta-ol, 5alpha-ergosta-7,22-dien-3beta-ol and 5,8-epidioxy-5alpha,8alpha-ergosta-6,22-dien-3beta-ol and five triterpenes, applanoxidic acids A, C, F, G and H, have been isolated from Ganoderma annulare. The applanoxidic acids A, C and F were found to inhibit the growth of the fungi Microsporum cannis and Trichophyton mentagrophytes at concentrations of 500 to 1000 microg/ml.", "id": "Q44462303", "doi": "10.1016/S0367-326X(03)00064-9", "chemicals": [ { "id": "Q15410967", "pubchem_id": "5283646", "type": "chemical", "label": "5alpha-ergost-7-en-3beta-ol", "class": "sterols" }, { "id": "Q27109324", "pubchem_id": "5283628", "type": "chemical", "label": "5alpha-ergosta-7,22-dien-3beta-ol", "class": "sterols" }, { "id": "Q77279536", "pubchem_id": "10437034", "type": "chemical", "label": "Applanoxidic acid H", "class": "triterpenes" }, { "id": "Q77386479", "pubchem_id": "9983822", "type": "chemical", "label": "Applanoxidic acid F", "class": "triterpenes" }, { "id": "Q104995064", "pubchem_id": "11756156", "type": "chemical", "label": "Applanoxidic acid A", "class": "triterpenes" }, { "id": "Q110186250", "pubchem_id": "44584252", "type": "chemical", "label": "Applanoxidic acid G", "class": "triterpenes" }, { "id": "12781809CHEM1", "pubchem_id": "", "type": "chemical", "label": "Applanoxidic acid C", "class": "triterpenes" }, { "id": "12781809CHEM2", "pubchem_id": "", "type": "chemical", "label": "5,8-epidioxy-5alpha,8alpha-ergosta-6,22-dien-3beta-ol", "class": "sterols" } ], "organisms": [ { "id": "Q104096280", "label": "Ganoderma annulare" } ], "relations": [ [ "Q104096280", "Q15410967" ], [ "Q104096280", "Q27109324" ], [ "Q104096280", "Q77279536" ], [ "Q104096280", "Q77386479" ], [ "Q104096280", "Q104995064" ], [ "Q104096280", "Q110186250" ], [ "Q104096280", "12781809CHEM1" ], [ "Q104096280", "12781809CHEM2" ] ] }, "26701647": { "PMID": "26701647", "ArticleTitle": "Cytotoxic sesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola.", "AbstractText": "Twenty previously unknown compounds and two known metabolites, merulin A and merulin D, were isolated from the endophytic fungus Pseudolagarobasidium acaciicola, which was isolated from a mangrove tree, Bruguiera gymnorrhiza. Structures of the 20 compounds were elucidated by analysis of spectroscopic data. The absolute configuration of seven of these compounds was addressed by a single crystal X-ray analysis using CuK\u03b1 radiation and an estimate of the Flack parameter. Three compounds also possessed a tricyclic ring system. Terpene endoperoxides isolated exhibited cytotoxic activity, while those without an endoperoxide moiety did not show activity. The endoperoxide moiety of sesquiterpenes has significant impact on cytotoxic activity, and thus is an important functionality for cytotoxicity. One terpene endoperoxide displayed potent cytotoxic activity (IC50 0.28\u03bcM), and selectively exhibited activity against the HL-60 cell line.", "id": "Q38809284", "doi": "10.1016/J.PHYTOCHEM.2015.11.016", "chemicals": [ { "id": "Q80218", "type": "class", "label": "sesquiterpenes" }, { "id": "Q105230210", "pubchem_id": "46831716", "type": "chemical", "label": "merulin A", "class": "sesquiterpenes" }, { "id": "Q27137391", "pubchem_id": "70698134", "type": "chemical", "label": "merulin D", "class": "sesquiterpenes" } ], "organisms": [ { "id": "Q103811117", "label": "Pseudolagarobasidium acaciicola" } ], "relations": [ [ "Q103811117", "Q80218" ], [ "Q103811117", "Q105230210" ], [ "Q103811117", "Q27137391" ] ] }, "7381508": { "PMID": "7381508", "ArticleTitle": "Antimicrobial agents from higher plants. Antimicrobial isoflavanoids and related substances from Glycyrrhiza glabra L. var. typica.", "AbstractText": "Bioassay-directed fractionation of Glycyrrhiza glabra L. var. typica resulted in the isolation and characterization of glabridin (I), glabrol (2), glabrene (3), 3-hydroxyglabrol (4), 4'-O-methylglabridin (5), 3'-methoxyglabridin (6), formononetin (7), phaseollinisoflavan (8), hispaglabridin A (9), hispaglabridin B (13), salicylic acid and O-acetyl salicylic acid. Of these, hispaglabridin A, hispaglabridin B, 4'-O-methylglabridin, glabridin, glabrol and 3-hydroxyglabrol possess significant antimicrobial activity in vitro; hispaglabridin A, hispaglabridin B, 3'-methoxyglabridin, 4'-O-methylglabridin 3-hydroxyglabrol, phaseollinisoflavan, salicylic acid, and O, acetyl salicylic acid are newly found in Glycyrrhiza sp.; and hispaglabridin A, hispaglabridin B, 3'-methoxyglabridin, 4'-O-methylglabridin, and 3-hydroxyglabrol are new to the literature and their structures are proposed herein.", "id": "Q71214999", "doi": "10.1021/NP50008A004", "chemicals": [ { "id": "Q27105239", "pubchem_id": "162412", "type": "chemical", "label": "phaseollinisoflavan", "class": "isoflavanoids" }, { "id": "Q193572", "pubchem_id": "338", "type": "chemical", "label": "salicylic acid", "class": "isoflavanoids" }, { "id": "Q27106874", "pubchem_id": "442774", "type": "chemical", "label": "hispaglabridin A", "class": "isoflavanoids" }, { "id": "Q27256248", "pubchem_id": "15228661", "type": "chemical", "label": "hispaglabridin B", "class": "isoflavanoids" }, { "id": "Q27278192", "pubchem_id": "480854", "type": "chemical", "label": "3-hydroxyglabrol", "class": "isoflavanoids" }, { "id": "Q18216", "pubchem_id": "2244", "type": "chemical", "label": "O-acetyl salicylic acid", "class": "isoflavanoids" }, { "id": "Q408859", "pubchem_id": "5280378", "type": "chemical", "label": "formononetin", "class": "isoflavanoids" }, { "id": "Q27276872", "pubchem_id": "11596309", "type": "chemical", "label": "glabrol", "class": "isoflavanoids" }, { "id": "Q2386110", "pubchem_id": "124052", "type": "chemical", "label": "glabridin", "class": "isoflavanoids" }, { "id": "Q27275267", "pubchem_id": "480774", "type": "chemical", "label": "glabrene", "class": "isoflavanoids" }, { "id": "Q104390847", "pubchem_id": "5319664", "type": "chemical", "label": "4'-O-methylglabridin", "class": "isoflavanoids" }, { "id": "Q110204828", "pubchem_id": "5319439", "type": "chemical", "label": "3'-methoxyglabridin", "class": "isoflavanoids" } ], "organisms": [ { "id": "Q257106", "label": "Glycyrrhiza glabra" } ], "relations": [ [ "Q257106", "Q27105239" ], [ "Q257106", "Q193572" ], [ "Q257106", "Q27106874" ], [ "Q257106", "Q27256248" ], [ "Q257106", "Q27278192" ], [ "Q257106", "Q18216" ], [ "Q257106", "Q408859" ], [ "Q257106", "Q27276872" ], [ "Q257106", "Q2386110" ], [ "Q257106", "Q27275267" ], [ "Q257106", "Q104390847" ], [ "Q257106", "Q110204828" ] ] }, "11421752": { "PMID": "11421752", "ArticleTitle": "Bombardolides: new antifungal and antibacterial gamma-lactones from the coprophilous fungus Bombardioidea anartia.", "AbstractText": "Chemical studies of organic extracts from cultures of the coprophilous fungus Bombardioidea anartia have led to the discovery of bombardolides A--D (1--4), a series of new antifungal and antibacterial metabolites. Three of these metabolites (1--3) were obtained as inseparable pairs of geometric isomers. A new 3-substituted phenol (5) and the known compound asterriquinone B4 were also encountered. The structures of compounds 1--5 were determined by analysis of NMR and MS data.", "id": "Q43650160", "doi": "10.1021/NP000617U", "chemicals": [ { "id": "Q77521898", "pubchem_id": "10397433", "type": "chemical", "label": "bombardolide B", "class": "gamma-lactones" }, { "id": "Q77493539", "pubchem_id": "10330245", "type": "chemical", "label": "bombardolide C", "class": "gamma-lactones" }, { "id": "Q77560531", "pubchem_id": "10261701", "type": "chemical", "label": "bombardolide A", "class": "gamma-lactones" }, { "id": "Q77515043", "pubchem_id": "10375070", "type": "chemical", "label": "bombardolide D", "class": "gamma-lactones" }, { "id": "11421752CHEM1", "pubchem_id": "", "type": "chemical", "label": "asterriquinone B4", "class": "" } ], "organisms": [ { "id": "Q10432728", "label": "Bombardioidea anartia" } ], "relations": [ [ "Q10432728", "Q77521898" ], [ "Q10432728", "Q77493539" ], [ "Q10432728", "Q77560531" ], [ "Q10432728", "Q77515043" ], [ "Q10432728", "11421752CHEM1" ] ] }, "7170750": { "PMID": "7170750", "ArticleTitle": "Sterols of the cultured euglenid Eutreptia viridis: a novel delta 23-unsaturated sterol.", "AbstractText": "The sterol mixture isolated from the marine alga Eutreptia viridis consists mainly of delta 5,7-dienes which account for 80% of the free sterols. Eighteen different sterols were detected, including a novel sterol with the rare delta 23-unsaturation, viz. 24-ethylcholesta-5,7,23Z-trien-3 beta-o1.", "id": "Q42266208", "doi": "10.1016/0039-128X(82)90018-6", "chemicals": [ { "id": "Q143623", "type": "class", "label": "sterol" }, { "id": "Q105383096", "pubchem_id": "6439697", "type": "chemical", "label": "24-ethylcholesta-5,7,23Z-trien-3 beta-o1", "class": "sterol" } ], "organisms": [ { "id": "Q2340113", "label": "Eutreptia viridis" } ], "relations": [ [ "Q2340113", "Q143623" ], [ "Q2340113", "Q105383096" ] ] }, "11076547": { "PMID": "11076547", "ArticleTitle": "Ancistrolikokines A-C: new 5,8'-coupled naphthylisoquinoline alkaloids from Ancistrocladus likoko.", "AbstractText": "Three new naphthylisoquinoline alkaloids, ancistrolikokines A-C (1-3), have been isolated and structurally assigned from Ancistrocladus likoko, as well as the known compound korupensamine A (4). Their 5,8'-coupling hints at a close biogenetic relationship of A. likoko to other Central African Ancistrocladus species. Compounds 1-4 showed good to moderate antimalarial activities when evaluated in vitro against the NF54 and K1 strains of Plasmodium falciparum.", "id": "Q46491034", "doi": "10.1021/NP000199T", "chemicals": [ { "id": "Q104911232", "pubchem_id": "10000664", "type": "chemical", "label": "Ancistrolikokine B", "class": "naphthylisoquinoline alkaloids" }, { "id": "Q104915348", "pubchem_id": "10476499", "type": "chemical", "label": "Ancistrolikokine A", "class": "naphthylisoquinoline alkaloids" }, { "id": "Q105267413", "pubchem_id": "10024375", "type": "chemical", "label": "Ancistrolikokine C", "class": "naphthylisoquinoline alkaloids" }, { "id": "Q27114680", "pubchem_id": "392421", "type": "chemical", "label": "Korupensamine A", "class": "" } ], "organisms": [ { "id": "Q17240498", "label": "Ancistrocladus likoko" } ], "relations": [ [ "Q17240498", "Q104911232" ], [ "Q17240498", "Q104915348" ], [ "Q17240498", "Q105267413" ], [ "Q17240498", "Q27114680" ] ] }, "12662112": { "PMID": "12662112", "ArticleTitle": "New sesterterpene metabolites from the Mediterranean sponge Cacospongia scalaris.", "AbstractText": "Two new sesterterpene metabolites, 16-acetoxy-dihydrodeoxoscalarin (1) and astakolactin (2), were isolated from the sponge Cacospongia scalaris, collected from the gulf of Astakos, Greece, along with furoscalarol (3) and deoxoscalarin (4), which have not been reported from C. scalaris in the past. The unpalatability of the sponge to fish was traced by field feeding assays to the fractions containing dihydrofurospongin-2. The structures of the new metabolites were elucidated by interpretation of their NMR data and high-resolution mass spectral measurements.", "id": "Q48008924", "doi": "10.1021/NP020471U", "chemicals": [ { "id": "Q105291999", "pubchem_id": "639670", "type": "chemical", "label": "astakolactin", "class": "sesterterpenes" }, { "id": "Q27136202", "pubchem_id": "21631391", "type": "chemical", "label": "deoxoscalarin", "class": "" }, { "id": "Q105263702", "pubchem_id": "11092177", "type": "chemical", "label": "16-acetoxy-dihydrodeoxoscalarin", "class": "sesterterpenes" }, { "id": "Q104402562", "pubchem_id": "21574601", "type": "chemical", "label": "furoscalarol", "class": "" } ], "organisms": [ { "id": "Q104909849", "label": "Cacospongia scalaris" }, { "id": "Q2376788", "label": "Scalarispongia scalaris" } ], "relations": [ [ "Q104909849", "Q105291999" ], [ "Q104909849", "Q27136202" ], [ "Q104909849", "Q105263702" ], [ "Q104909849", "Q104402562" ] ] }, "4040667": { "PMID": "4040667", "ArticleTitle": "Distribution of paralytic toxins in California shellfish.", "AbstractText": "Samples of Saxidomus nuttali and Mytilus californianus collected during the 1981 dinoflagellate bloom at Bodega Bay, California, were analyzed for the presence of paralytic toxins. Neck tissue of S. nuttali contained saxitoxin (STX) and neoSTX (95% of the total toxicity), whereas the bodies contained neoSTX and a mixture of the gonyautoxins. In a sample of M. californianus the presence of neoSTX and the gonyautoxins was demonstrated, whereas a second sample, collected at a different site, contained almost exclusively neoSTX.", "id": "Q46218717", "doi": "10.1016/0041-0101(85)90159-X", "chemicals": [ { "id": "Q6040896", "pubchem_id": "21117946", "type": "chemical", "label": "neoSTX", "class": "" }, { "id": "Q412694", "pubchem_id": "56947150", "type": "chemical", "label": "saxitoxin", "class": "" }, { "id": "Q25323866", "type": "class", "label": "gonyautoxins" } ], "organisms": [ { "id": "Q3798403", "label": "Saxidomus nuttalli" }, { "id": "Q3016358", "label": "Mytilus californianus" } ], "relations": [ [ "Q3798403", "Q412694" ], [ "Q3798403", "Q6040896" ], [ "Q3798403", "Q25323866" ], [ "Q3016358", "Q6040896" ], [ "Q3016358", "Q25323866" ] ] }, "10514303": { "PMID": "10514303", "ArticleTitle": "Highly oxygenated pseudopterane and cembranolide diterpenes from the Caribbean sea feather Pseudopterogorgia bipinnata.", "AbstractText": "A chemical study of the sea feather Pseudopterogorgia bipinnata from Colombia has produced four known metabolites, namely, kallolide A (1), bipinnatin A (2), bipinnatin C (3), and bipinnatin J (4), in addition to nine previously undescribed diterpenes possessing an uncommonly high level of oxygenation. One of them, bipinnapterolide A (5), is a new representative of the pseudopterane family of diterpenes possessing the rare 2,3-epoxy-1,4-dione moiety. The other metabolites, bipinnatins G-I (6-8) and bipinnatolides F-J (9-13), are highly oxygenated cembranolide diterpenes. Their chemical structures including relative stereochemistry were established by detailed analysis of the spectral data in addition to X-ray diffraction analysis and NMR spectral comparisons with known pseudopterane and cembranolide models.", "id": "Q73066332", "doi": "10.1021/NP990064R", "chemicals": [ { "id": "Q105251495", "pubchem_id": "101607567", "type": "chemical", "label": "bipinnatin A", "class": "diterpenes" }, { "id": "Q105152727", "pubchem_id": "10689866", "type": "chemical", "label": "Bipinnatolide J", "class": "diterpenes" }, { "id": "Q105240482", "pubchem_id": "100951301", "type": "chemical", "label": "Bipinnatolide I", "class": "diterpenes" }, { "id": "10514303CHEM2", "pubchem_id": "", "type": "chemical", "label": "Bipinnatolide F", "class": "diterpenes" }, { "id": "Q105309596", "pubchem_id": "10689865", "type": "chemical", "label": "bipinnapterolide A", "class": "diterpenes" }, { "id": "Q105365186", "pubchem_id": "100951297", "type": "chemical", "label": "Bipinnatolide G", "class": "diterpenes" }, { "id": "Q4915449", "pubchem_id": "5470115", "type": "chemical", "label": "Bipinnatin J", "class": "diterpenes" }, { "id": "Q104945389", "pubchem_id": "101607296", "type": "chemical", "label": "Bipinnatin G", "class": "diterpenes" }, { "id": "10514303CHEM1", "pubchem_id": "101607297", "type": "chemical", "label": "Bipinnatin H", "class": "diterpenes" }, { "id": "Q105259226", "pubchem_id": "100951298", "type": "chemical", "label": "Bipinnatolide H", "class": "diterpenes" }, { "id": "Q105001815", "pubchem_id": "394352", "type": "chemical", "label": "kallolide A", "class": "diterpenes" }, { "id": "Q104986163", "pubchem_id": "21668771", "type": "chemical", "label": "Bipinnatin I", "class": "diterpenes" }, { "id": "Q82898695", "pubchem_id": "129977", "type": "chemical", "label": "bipinnatin C", "class": "diterpenes" } ], "organisms": [ { "id": "Q2674103", "label": "Pseudopterogorgia bipinnata" } ], "relations": [ [ "Q2674103", "Q105001815" ], [ "Q2674103", "Q105251495" ], [ "Q2674103", "Q82898695" ], [ "Q2674103", "Q4915449" ], [ "Q2674103", "Q105309596" ], [ "Q2674103", "Q104945389" ], [ "Q2674103", "10514303CHEM1" ], [ "Q2674103", "Q104986163" ], [ "Q2674103", "10514303CHEM2" ], [ "Q2674103", "Q105365186" ], [ "Q2674103", "Q105259226" ], [ "Q2674103", "Q105240482" ], [ "Q2674103", "Q105152727" ] ] }, "7766005": { "PMID": "7766005", "ArticleTitle": "Anguivine and isoanguivine, steroid alkaloid glycosides from Solanum anguivi.", "AbstractText": "In addition to solamargine, two new steroid alkaloid glycosides, anguivine and isoanguivine, have been isolated from the roots of Solanum anguivi, the structures of which have been elucidated as (25R)-3 beta-[O-alpha-L-rhamnopyranosyl-(1-->2)-O-[beta-D- xylopyranosyl-(1-->3)]-beta-D-glucopyranosyloxy]-22 alpha N-spirosol-5-ene and (25R)-3 beta-[O-alpha-L-rhamnopyranosyl-(1-->2)-O-[beta-D-xylopyranosyl- (1-->3)-beta-D-galactopyranosyloxy]-22 alpha N-spirosol-5-ene.", "id": "Q30321404", "doi": "10.1016/S0031-9422(00)89600-4", "chemicals": [ { "id": "Q104968211", "pubchem_id": "101678903", "type": "chemical", "label": "anguivine", "class": "glycosides" }, { "id": "Q3489126", "pubchem_id": "73611", "type": "chemical", "label": "solamargine", "class": "glycosides" }, { "id": "Q104968210", "pubchem_id": "101678904", "type": "chemical", "label": "isoanguivine", "class": "glycosides" } ], "organisms": [ { "id": "Q15533802", "label": "Solanum anguivi" } ], "relations": [ [ "Q15533802", "Q104968211" ], [ "Q15533802", "Q3489126" ], [ "Q15533802", "Q104968210" ] ] }, "10479320": { "PMID": "10479320", "ArticleTitle": "New geodiamolides from the sponge Cymbastela sp. collected in Papua New Guinea.", "AbstractText": "Geodiamolides J-P (11-17) and R (19), eight new cyclic depsipetides, have been isolated from the marine sponge Cymbastela sp. collected in Papua New Guinea. The serine residue in geodiamolides L-P (13-17) and R (19) has not been previously found in this family of compounds.", "id": "Q46205188", "doi": "10.1021/NP990155O", "chemicals": [ { "id": "Q105240966", "pubchem_id": "10842037", "type": "chemical", "label": "Geodiamolide L", "class": "cyclic depsipetides" }, { "id": "Q105125221", "pubchem_id": "10817517", "type": "chemical", "label": "Geodiamolide M", "class": "cyclic depsipetides" }, { "id": "Q105110806", "pubchem_id": "10627557", "type": "chemical", "label": "Geodiamolide P", "class": "cyclic depsipetides" }, { "id": "Q105155453", "pubchem_id": "11802296", "type": "chemical", "label": "Geodiamolide R", "class": "cyclic depsipetides" }, { "id": "Q105309577", "pubchem_id": "10531010", "type": "chemical", "label": "Geodiamolide N", "class": "cyclic depsipetides" }, { "id": "Q105203771", "pubchem_id": "10628110", "type": "chemical", "label": "Geodiamolide O", "class": "cyclic depsipetides" }, { "id": "Q104999502", "pubchem_id": "10603750", "type": "chemical", "label": "Geodiamolide J", "class": "cyclic depsipetides" }, { "id": "Q105144876", "pubchem_id": "10603004", "type": "chemical", "label": "Geodiamolide K", "class": "cyclic depsipetides" } ], "organisms": [ { "id": "Q3454193", "label": "Cymbastela" } ], "relations": [ [ "Q3454193", "Q105240966" ], [ "Q3454193", "Q105125221" ], [ "Q3454193", "Q105110806" ], [ "Q3454193", "Q105155453" ], [ "Q3454193", "Q105309577" ], [ "Q3454193", "Q105203771" ], [ "Q3454193", "Q104999502" ], [ "Q3454193", "Q105144876" ] ] }, "10096849": { "PMID": "10096849", "ArticleTitle": "New lamellarin alkaloids from the australian ascidian, didemnum chartaceum.", "AbstractText": "Five novel lamellarin-class alkaloids have been isolated from a Great Barrier Reef ascidian, Didemnum chartaceum. The structures of the 20-sulfated derivatives of lamellarins B, C, and L (1-3); the 8-sulfated derivative of lamellarin G (4), plus a nonsulfated compound, lamellarin Z (5), were identified by interpretation of spectroscopic data. Lamellarin G 8-sulfate (4) is the first example of this class of compounds sulfated at the C-8 position, while lamellarin Z (5) is the first example of a dimethoxylated lamellarin. The known lamellarins A, B, C, E, G, and L (6-11), plus the triacetate derivatives of lamellarins D (12) and N (13), were also isolated. An aberration in the integration of signals in the 1H NMR spectra of the 20-sulfated derivatives of lamellarins B, C, and L (1-3) led to NMR relaxation studies. T1 values were calculated for all protons in the sulfated lamellarins (1-4) and their corresponding nonsulfated derivatives (7, 8, 10, 11). Interestingly, the protons ortho to the sulfate group in compounds (1-4) had T1 values up to five times larger than the corresponding protons in their nonsulfated derivatives (7, 8, 10, 11).", "id": "Q74651866", "doi": "10.1021/NP9803530", "chemicals": [ { "id": "Q109469241", "type": "class", "label": "lamellarin alkaloids" }, { "id": "Q104402723", "pubchem_id": "100967178", "type": "chemical", "label": "Lamellarin A", "class": "lamellarin alkaloids" }, { "id": "Q105152292", "pubchem_id": "10769574", "type": "chemical", "label": "Lamellarin G 8-sulfate", "class": "lamellarin alkaloids" }, { "id": "Q83033315", "pubchem_id": "5481591", "type": "chemical", "label": "Lamellarin N", "class": "lamellarin alkaloids" }, { "id": "Q105146463", "pubchem_id": "9913933", "type": "chemical", "label": "Lamellarin L", "class": "lamellarin alkaloids" }, { "id": "Q105370952", "pubchem_id": "5353706", "type": "chemical", "label": "Lamellarin C", "class": "lamellarin alkaloids" }, { "id": "Q83017675", "pubchem_id": "5491996", "type": "chemical", "label": "Lamellarin E", "class": "lamellarin alkaloids" }, { "id": "Q105215963", "pubchem_id": "10076040", "type": "chemical", "label": "Lamellarin B", "class": "lamellarin alkaloids" }, { "id": "Q18344928", "pubchem_id": "9892144", "type": "chemical", "label": "Lamellarin D", "class": "lamellarin alkaloids" }, { "id": "Q105206129", "pubchem_id": "10505131", "type": "chemical", "label": "Lamellarin Z", "class": "lamellarin alkaloids" } ], "organisms": [ { "id": "Q6459373", "label": "Didemnum chartaceum" } ], "relations": [ [ "Q6459373", "Q109469241" ], [ "Q6459373", "Q104402723" ], [ "Q6459373", "Q105152292" ], [ "Q6459373", "Q83033315" ], [ "Q6459373", "Q105146463" ], [ "Q6459373", "Q105370952" ], [ "Q6459373", "Q83017675" ], [ "Q6459373", "Q105215963" ], [ "Q6459373", "Q18344928" ], [ "Q6459373", "Q105206129" ] ] }, "24983843": { "PMID": "24983843", "ArticleTitle": "Streptomyces araujoniae Produces a Multiantibiotic Complex with Ionophoric Properties to Control Botrytis cinerea.", "AbstractText": "A recently described actinomycete species (Streptomyces araujoniae ASBV-1(T)) is effective against many phytopathogenic fungi. In this study, we evaluated the capacity of this species to inhibit Botrytis cinerea development in strawberry pseudofruit, and we identified the chemical structures of its bioactive compounds. An ethyl acetate crude extract (0.1 mg ml(-1)) of ASBV-1(T) fermentation broth completely inhibited fungus growth in strawberry pseudofruit under storage conditions. The crude extract was fractionated by preparative high-performance liquid chromatography; the active fraction was further evaluated by tandem mass spectrometry. ASBV-1(T) produced a multiantibiotic complex with ionophoric properties. This complex contained members of the macrotetralides class (including monactin, dinactin, trinactin, and tetranactin) and the cyclodepsipeptide valinomycin, all of which were active against B. cinerea. Furthermore, the addition of 2 mM MgSO4 and 1 mM ZnSO4 enhanced macrotetralide and valinomycin production, respectively, in the culture broth. These compounds are considered to be the main active molecules that S. araujoniae produces to control B. cinerea. Their low to moderate toxicity to humans and the environment justifies the application of ASBV-1(T) in biological control programs that aim to mitigate the damage caused by this phytopathogen.", "id": "Q34427382", "doi": "10.1094/PHYTO-11-13-0327-R", "chemicals": [ { "id": "Q77372919", "pubchem_id": "169015", "type": "chemical", "label": "monactin", "class": "macrotetralides" }, { "id": "Q105370508", "pubchem_id": "248000", "type": "chemical", "label": "dinactin", "class": "macrotetralides" }, { "id": "Q77378369", "pubchem_id": "169021", "type": "chemical", "label": "trinactin", "class": "macrotetralides" }, { "id": "Q27108411", "pubchem_id": "441165", "type": "chemical", "label": "tetranactin", "class": "macrotetralides" }, { "id": "Q417504", "pubchem_id": "3000706", "type": "chemical", "label": "valinomycin", "class": "cyclodepsipeptide" } ], "organisms": [ { "id": "Q22286920", "label": "Streptomyces araujoniae" } ], "relations": [ [ "Q22286920", "Q77372919" ], [ "Q22286920", "Q105370508" ], [ "Q22286920", "Q77378369" ], [ "Q22286920", "Q27108411" ], [ "Q22286920", "Q417504" ] ] }, "16038554": { "PMID": "16038554", "ArticleTitle": "Koniamborine, the first pyrano[3,2-b]indole alkaloid and other secondary metabolites from Boronella koniambiensis.", "AbstractText": "Two new alkaloids, (-)-cis-1,2-dihydroxy-1,2-dihydromedicosmine (3) and koniamborine (4), have been isolated from Boronella koniambiensis aerial parts. Their structures have been established from NMR and mass data. Koniamborine is a novel type of alkaloid, which derives from the pyrano[3,2-b]indole basic skeleton, described for the first time from nature. 6-Methoxy-1-methylisatin, also present in the plant material, can be considered biogenetically as a degradation product of the fused pyrone ring of 4.", "id": "Q46614156", "doi": "10.1021/NP050013W", "chemicals": [ { "id": "16038554CHEM1", "pubchem_id": "101747434", "type": "chemical", "label": "(-)-cis-1,2-dihydroxy-1,2-dihydromedicosmine", "class": "alkaloids" }, { "id": "Q105164334", "pubchem_id": "11345225", "type": "chemical", "label": "Koniamborine", "class": "alkaloids" }, { "id": "Q105215033", "pubchem_id": "19772337", "type": "chemical", "label": "6-Methoxy-1-methylisatin", "class": "alkaloids" } ], "organisms": [ { "id": "Q15401193", "label": "Boronella koniambiensis" } ], "relations": [ [ "Q15401193", "16038554CHEM1" ], [ "Q15401193", "Q105164334" ], [ "Q15401193", "Q105215033" ] ] }, "26147582": { "PMID": "26147582", "ArticleTitle": "Chemical Composition and Antioxidant and Antibacterial Activities of an Essential Oil Extracted from an Edible Seaweed, Laminaria japonica L.", "AbstractText": "Laminaria japonica L. is among the most commonly consumed seaweeds in northeast Asia. In the present study, L. japonica essential oil (LJEO) was extracted by microwave-hydrodistillation and analyzed by gas chromatography and mass spectroscopy. LJEO contained 21 volatile compounds, comprising 99.76% of the total volume of the essential oil, primarily tetradeconoic acid (51.75%), hexadecanoic acid (16.57%), (9Z,12Z)-9,12-Octadecadienoic acid (12.09%), and (9Z)-hexadec-9-enoic acid (9.25%). Evaluation of the antibacterial potential against three foodborne pathogens, Bacillus cereus ATCC 10876, Escherichia coli O157:H7 ATCC 43890, and Staphylococcus aureus ATCC 49444, revealed that LJEO at a concentration of 25 mg/paper disc exerted high antibacterial activity against S. aureus (11.5 \u00b1 0.58 mm inhibition zone) and B. cereus (10.5 \u00b1 0.57 mm inhibition zone), but no inhibition of E. coli O157:H7. LJEO also displayed DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging activity (80.45%), superoxide anion scavenging activity (54.03%), and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical and hydroxyl radical scavenging at 500 \u00b5g/mL. Finally, LJEO showed high inhibition of lipid peroxidation with strong reducing power. In conclusion, LJEO from edible seaweed is an inexpensive but favorable resource with strong antibacterial capacity as well as free radical scavenging and antioxidant activity; therefore, it has the potential for use in the food, cosmetics, and pharmaceutical industries.", "id": "Q54264926", "doi": "10.3390/MOLECULES200712093", "chemicals": [ { "id": "Q170885", "type": "class", "label": "essential oil" }, { "id": "Q416222", "pubchem_id": "8042", "type": "chemical", "label": "tetradeconoic acid", "class": "" }, { "id": "Q209727", "pubchem_id": "985", "type": "chemical", "label": "hexadecanoic acid", "class": "" }, { "id": "Q407426", "pubchem_id": "5280450", "type": "chemical", "label": "(9Z,12Z)-9,12-Octadecadienoic acid", "class": "" }, { "id": "Q412366", "pubchem_id": "445638", "type": "chemical", "label": "(9Z)-hexadec-9-enoic acid", "class": "" } ], "organisms": [ { "id": "Q104253539", "label": "Laminaria japonica" } ], "relations": [ [ "Q104253539", "Q170885" ], [ "Q104253539", "Q416222" ], [ "Q104253539", "Q209727" ], [ "Q104253539", "Q407426" ], [ "Q104253539", "Q412366" ] ] }, "11140525": { "PMID": "11140525", "ArticleTitle": "Acetylenes and dichloroanisoles from Psathyrella scobinacea.", "AbstractText": "The Et2O extract from Psathyrella scobinacea culture fluids contained three new acetylenic alcohols: deca-5,7,9-triynol, (-)hepta-4,6-diyne-2,3-diol, and (-)hept-cis 4-en-6-yne-2,3-diol; two known dichloroanisoles: 3,5-dichloro-4-methoxybenzaldehyde and 3,5-dichloro-4-methoxybenzyl alcohol; and three known acetylenic acids: octa-2,4,6-triynoic acid, dec-trans-2-ene-4,6,8-triynoic acid and its cis-isomer.", "id": "Q31805157", "doi": "10.1016/S0031-9422(00)00217-X", "chemicals": [ { "id": "Q77381152", "pubchem_id": "12051452", "type": "chemical", "label": "deca-5,7,9-triynol", "class": "acetylenic alcohols" }, { "id": "Q75059572", "pubchem_id": "12051453", "type": "chemical", "label": "(-)hepta-4,6-diyne-2,3-diol", "class": "acetylenic alcohols" }, { "id": "Q75062994", "pubchem_id": "101717885", "type": "chemical", "label": "(-)hept-cis 4-en-6-yne-2,3-diol", "class": "acetylenic alcohols" }, { "id": "Q77496896", "pubchem_id": "883207", "type": "chemical", "label": "3,5-dichloro-4-methoxybenzaldehyde", "class": "dichloroanisoles" }, { "id": "Q77420594", "pubchem_id": "893589", "type": "chemical", "label": "3,5-dichloro-4-methoxybenzyl alcohol", "class": "dichloroanisoles" }, { "id": "Q75067543", "pubchem_id": "12051451", "type": "chemical", "label": "octa-2,4,6-triynoic acid", "class": "acetylenic acids" }, { "id": "11140525CHEM1", "pubchem_id": "", "type": "chemical", "label": "dec-trans-2-ene-4,6,8-triynoic acid", "class": "acetylenic acids" }, { "id": "11140525CHEM2", "pubchem_id": "", "type": "chemical", "label": "dec-cis-2-ene-4,6,8-triynoic acid", "class": "acetylenic acids" } ], "organisms": [ { "id": "Q81029805", "label": "Psathyrella scobinacea" } ], "relations": [ [ "Q81029805", "Q77381152" ], [ "Q81029805", "Q75059572" ], [ "Q81029805", "Q75062994" ], [ "Q81029805", "Q77496896" ], [ "Q81029805", "Q77420594" ], [ "Q81029805", "Q75067543" ], [ "Q81029805", "11140525CHEM1" ], [ "Q81029805", "11140525CHEM2" ] ] }, "11254130": { "PMID": "11254130", "ArticleTitle": "The mtmVUC genes of the mithramycin gene cluster in Streptomyces argillaceus are involved in the biosynthesis of the sugar moieties.", "AbstractText": "Mithramycin is a glycosylated aromatic polyketide produced by Streptomyces argillaceus, and is used as an antitumor drug. Three genes (mtmV, mtmU and mtmC) from the mithramycin gene cluster have been cloned, and characterized by DNA sequencing and by analysis of the products that accumulate in nonproducing mutants, which were generated by insertional inactivation of these genes. The mtm V gene codes for a 2,3-dehydratase that catalyzes early and common steps in the biosynthesis of the three sugars found in mithramycin (D-olivose, D-oliose and D-mycarose); its inactivation caused the accumulation of the nonglycosylated intermediate premithramycinone. The mtmU gene codes for a 4-ketoreductase involved in D-oliose biosynthesis, and its inactivation resulted in the accumulation of premithramycinone and premithramycin A , the first glycosylated intermediate which contains a D-olivose unit. The third gene, mtmC, is involved in D-mycarose biosynthesis and codes for a C-methyltransferase. Two mutants with lesions in the mtmC gene accumulated mithramycin intermediates lacking the D-mycarose moiety but containing D-olivose units attached to C-12a in which the 4-keto group is unreduced. This suggests that mtmC could code for a second enzyme activity, probably a D-olivose 4-ketoreductase, and that the glycosyltransferase responsible for the incorporation of D-olivose (MtmGIV) shows some degree of flexibility with respect to its sugar co-substrate, since the 4-ketoanalog is also transferred. A pathway is proposed for the biosynthesis of the three sugar moieties in mithramycin.", "id": "Q43545010", "doi": "10.1007/S004380000372", "chemicals": [ { "id": "Q104993830", "pubchem_id": "10888063", "type": "chemical", "label": "D-olivose", "class": "" }, { "id": "Q76100279", "pubchem_id": "443795", "type": "chemical", "label": "premithramycinone", "class": "" }, { "id": "Q105102404", "pubchem_id": "29051", "type": "chemical", "label": "Mithramycin", "class": "aromatic polyketide" }, { "id": "Q76100285", "pubchem_id": "443796", "type": "chemical", "label": "premithramycin A", "class": "" }, { "id": "Q104993832", "pubchem_id": "57115074", "type": "chemical", "label": "D-oliose", "class": "" }, { "id": "Q27114061", "pubchem_id": "169005", "type": "chemical", "label": "D-mycarose", "class": "" } ], "organisms": [ { "id": "Q104096702", "label": "Streptomyces argillaceus" } ], "relations": [ [ "Q104096702", "Q104993830" ], [ "Q104096702", "Q76100279" ], [ "Q104096702", "Q105102404" ], [ "Q104096702", "Q76100285" ], [ "Q104096702", "Q104993832" ], [ "Q104096702", "Q27114061" ] ] }, "10726860": { "PMID": "10726860", "ArticleTitle": "Quaternary isoquinoline alkaloids from Stephania cepharantha.", "AbstractText": "From the quaternary alkaloidal fraction of the dried tubers of Stephania cepharantha, two new isoquinoline alkaloids, stecepharine and tetradehydroreticuline have been isolated along with the known compounds, magnoflorine, menisperine, steponine, cyclanoline, oblongine, cis-N-methylcapaurine and 2'-N-methylisotetrandrine. cis-N-Methylcapaurine (=9-O-methylstecepharine) was isolated as a natural product for the first time. Their structures were determined on the basis of spectroscopic evidence.", "id": "Q73569937", "doi": "10.1248/CPB.48.370", "chemicals": [ { "id": "Q15410909", "pubchem_id": "3082134", "type": "chemical", "label": "cyclanoline", "class": "isoquinoline alkaloids" }, { "id": "Q104974086", "pubchem_id": "15432815", "type": "chemical", "label": "9-O-methylstecepharine", "class": "isoquinoline alkaloids" }, { "id": "Q15426208", "pubchem_id": "73337", "type": "chemical", "label": "magnoflorine", "class": "isoquinoline alkaloids" }, { "id": "Q105198584", "pubchem_id": "10741066", "type": "chemical", "label": "tetradehydroreticuline", "class": "isoquinoline alkaloids" }, { "id": "Q105133403", "pubchem_id": "15432819", "type": "chemical", "label": "steponine", "class": "isoquinoline alkaloids" }, { "id": "Q82925967", "pubchem_id": "161487", "type": "chemical", "label": "menisperine", "class": "isoquinoline alkaloids" }, { "id": "Q105035504", "pubchem_id": "15432813", "type": "chemical", "label": "stecepharine", "class": "isoquinoline alkaloids" }, { "id": "Q115948496", "pubchem_id": "15432817", "type": "chemical", "label": "2'-N-methylisotetrandrine", "class": "isoquinoline alkaloids" }, { "id": "Q110077209", "pubchem_id": "157129", "type": "chemical", "label": "oblongine", "class": "isoquinoline alkaloids" } ], "organisms": [ { "id": "Q10742635", "label": "Stephania cepharantha" } ], "relations": [ [ "Q10742635", "Q15410909" ], [ "Q10742635", "Q104974086" ], [ "Q10742635", "Q15426208" ], [ "Q10742635", "Q105198584" ], [ "Q10742635", "Q105133403" ], [ "Q10742635", "Q82925967" ], [ "Q10742635", "Q105035504" ], [ "Q10742635", "Q115948496" ], [ "Q10742635", "Q110077209" ] ] }, "24753190": { "PMID": "24753190", "ArticleTitle": "Chemical and toxicological investigations of a previously unknown poisonous European mushroom Tricholoma terreum.", "AbstractText": "The established tradition of consuming and marketing wild mushrooms has focused attention on mycotoxicity, which has become a global issue. In the present study, we describe the toxins found in a previously unknown poisonous European mushroom Tricholoma terreum. Fifteen new triterpenoids terreolides\u2005A-F (1-6) and saponaceolides\u2005H-P (8-16) were isolated from the fruiting bodies of the toxic mushroom T. terreum. Terreolides\u2005A-C (1-3) possessed a unique 5/6/7 trioxaspiroketal system, whereas terreolides D-F (4-6) possessed an unprecedented carbon skeleton. Two abundant compounds in the mushroom, saponaceolide\u2005B (7) and saponaceolide\u2005M (13), displayed acute toxicity, with LD50 values of 88.3 and 63.7\u2005mg\u2009kg(-1) when administered orally in mice. Both compounds were found to increase serum creatine kinase levels in mice, indicating that T. terreum may be the cause of mushroom poisoning ultimately leading to rhabdomyolysis.", "id": "Q54358334", "doi": "10.1002/CHEM.201400226", "chemicals": [ { "id": "Q75055122", "pubchem_id": "139583161", "type": "chemical", "label": "saponaceolide\u2005H", "class": "triterpenoids" }, { "id": "Q75065224", "pubchem_id": "139583665", "type": "chemical", "label": "saponaceolide\u2005I", "class": "triterpenoids" }, { "id": "Q105276236", "pubchem_id": "139586495", "type": "chemical", "label": "terreolide\u2005C", "class": "triterpenoids" }, { "id": "Q75063094", "pubchem_id": "139583486", "type": "chemical", "label": "terreolide\u2005D", "class": "triterpenoids" }, { "id": "Q75054991", "pubchem_id": "139583148", "type": "chemical", "label": "saponaceolide\u2005O", "class": "triterpenoids" }, { "id": "Q77419751", "pubchem_id": "139585296", "type": "chemical", "label": "saponaceolide\u2005J", "class": "triterpenoids" }, { "id": "Q77503877", "pubchem_id": "139586312", "type": "chemical", "label": "terreolide\u2005A", "class": "triterpenoids" }, { "id": "Q77513386", "pubchem_id": "139586741", "type": "chemical", "label": "saponaceolide\u2005K", "class": "triterpenoids" }, { "id": "Q105238622", "pubchem_id": "139588150", "type": "chemical", "label": "saponaceolide\u2005P", "class": "triterpenoids" }, { "id": "Q77386218", "pubchem_id": "139585219", "type": "chemical", "label": "terreolide\u2005F", "class": "triterpenoids" }, { "id": "Q77370466", "pubchem_id": "139584499", "type": "chemical", "label": "terreolide\u2005E", "class": "triterpenoids" }, { "id": "Q77560895", "pubchem_id": "139587239", "type": "chemical", "label": "saponaceolide\u2005L", "class": "triterpenoids" }, { "id": "Q77506325", "pubchem_id": "139586428", "type": "chemical", "label": "terreolide\u2005B", "class": "triterpenoids" }, { "id": "Q77281465", "pubchem_id": "139584249", "type": "chemical", "label": "saponaceolide\u2005N", "class": "triterpenoids" }, { "id": "Q75065184", "pubchem_id": "139583662", "type": "chemical", "label": "saponaceolide\u2005M", "class": "triterpenoids" }, { "id": "Q105250468", "pubchem_id": "5468843", "type": "chemical", "label": "saponaceolide\u2005B", "class": "triterpenoids" } ], "organisms": [ { "id": "Q27266", "label": "Tricholoma terreum" } ], "relations": [ [ "Q27266", "Q75055122" ], [ "Q27266", "Q75065224" ], [ "Q27266", "Q105276236" ], [ "Q27266", "Q75063094" ], [ "Q27266", "Q75054991" ], [ "Q27266", "Q77419751" ], [ "Q27266", "Q77503877" ], [ "Q27266", "Q77513386" ], [ "Q27266", "Q105238622" ], [ "Q27266", "Q77386218" ], [ "Q27266", "Q77370466" ], [ "Q27266", "Q77560895" ], [ "Q27266", "Q77506325" ], [ "Q27266", "Q77281465" ], [ "Q27266", "Q75065184" ], [ "Q27266", "Q105250468" ] ] }, "21348447": { "PMID": "21348447", "ArticleTitle": "Didemnidines A and B, indole spermidine alkaloids from the New Zealand ascidian Didemnum sp.", "AbstractText": "Two new indole spermidine alkaloids, didemnidines A (1) and B (2), have been isolated from the New Zealand ascidian Didemnum sp. The structures of the metabolites, determined by analysis of 2D NMR spectra and confirmed via synthesis, embody an indole-3-glyoxylamide moiety linked to the N(1) position of spermidine, the latter motif being particularly rare among marine natural products. Didemnidine B and a synthetic precursor exhibited mild in vitro growth inhibition of Plasmodium falciparum with IC(50)'s of 15 and 8.4 \u03bcM, respectively.", "id": "Q58848493", "doi": "10.1021/NP1008619", "chemicals": [ { "id": "Q27135781", "pubchem_id": "52951535", "type": "chemical", "label": "Didemnidine A", "class": "indole spermidine alkaloids" }, { "id": "Q27135782", "pubchem_id": "52950926", "type": "chemical", "label": "Didemnidine B", "class": "indole spermidine alkaloids" } ], "organisms": [ { "id": "Q153605", "label": "Didemnum" } ], "relations": [ [ "Q153605", "Q27135781" ], [ "Q153605", "Q27135782" ] ] }, "10963458": { "PMID": "10963458", "ArticleTitle": "Glycosidic compounds of murolic, protoconstipatic and allo-murolic acids from lichens of Central Asia.", "AbstractText": "Eleven compounds isolated from the extract of the Central Asian lichens comprised eight new glycosides having murolic, protoconstipatic and allo-murolic acids, as the aglycones and a saccharide moiety linked at C-18 made up of one or two sugars (glucose and apiose or rhamnose or xylose or arabinose). The structures were elucidated by using extensive spectroscopic analysis (1D and 2D NMR, MS, IR, UV and CD) and chemical methods.", "id": "Q44034228", "doi": "10.1016/S0031-9422(00)00147-3", "chemicals": [ { "id": "Q192639", "type": "class", "label": "glycosides" }, { "id": "Q75065060", "pubchem_id": "194489", "type": "chemical", "label": "protoconstipatic acid", "class": "" }, { "id": "Q77495815", "pubchem_id": "101047266", "type": "chemical", "label": "allo-murolic acid", "class": "" }, { "id": "Q83098342", "pubchem_id": "194349", "type": "chemical", "label": "murolic acid", "class": "" } ], "organisms": [ ], "relations": [ ] }, "18304594": { "PMID": "18304594", "ArticleTitle": "Bioactive triterpene derivatives from latex of two Euphorbia species.", "AbstractText": "We have investigated the antifeedant and toxic effects of 23 semisynthetic terpenoid derivatives obtained through chemical modifications of the major components of Euphorbia resinifera (alpha-euphol and alpha-euphorbol) and E. officinarum (obtusifoliol and 31-norlanostenol) latex on several insect species (Spodoptera littoralis, Myzus persicae and Rhopalosiphum padi), their selective cytotoxicity on insect Sf9 and mammalian CHO cells and their phytotoxic effects on Lactuca sativa. The conversions focused mainly on positions 3,7,11, and 24 with several oxidizing agents. A total of 18 compounds affected S. littoralis growth (IGR). Our results support the importance of the C-3 substituent, suggest the involvement of the C-7 substituent and indicate that the C-3 hydroxyl is not essential for the IGR effect. Overall, Sf9 cells were more sensitive to the active compounds than CHO cells. All of these compounds had non selective moderate phytotoxic effects on radicle elongation of L. sativa.", "id": "Q42030218", "doi": "10.1016/J.PHYTOCHEM.2008.01.004", "chemicals": [ { "id": "Q426694", "type": "class", "label": "terpenoid" }, { "id": "Q105329031", "pubchem_id": "10863111", "type": "chemical", "label": "alpha-euphorbol", "class": "triterpenes" }, { "id": "Q104251263", "pubchem_id": "65252", "type": "chemical", "label": "obtusifoliol", "class": "triterpenes" }, { "id": "Q27106574", "pubchem_id": "441678", "type": "chemical", "label": "alpha-euphol", "class": "triterpenes" }, { "id": "Q105122529", "pubchem_id": "14845298", "type": "chemical", "label": "31-norlanostenol", "class": "triterpenes" } ], "organisms": [ { "id": "Q2658650", "label": "Euphorbia resinifera" }, { "id": "Q5851807", "label": "Euphorbia officinarum" } ], "relations": [ [ "Q2658650", "Q426694" ], [ "Q2658650", "Q27106574" ], [ "Q2658650", "Q105329031" ], [ "Q5851807", "Q426694" ], [ "Q5851807", "Q104251263" ], [ "Q5851807", "Q105122529" ] ] }, "25506824": { "PMID": "25506824", "ArticleTitle": "Metabolism of skin-absorbed resveratrol into its glucuronized form in mouse skin.", "AbstractText": "Resveratrol (RESV) is a plant polyphenol, which is thought to have beneficial metabolic effects in laboratory animals as well as in humans. Following oral administration, RESV is immediately catabolized, resulting in low bioavailability. This study compared RESV metabolites and their tissue distribution after oral uptake and skin absorption. Metabolomic analysis of various mouse tissues revealed that RESV can be absorbed and metabolized through skin. We detected sulfated and glucuronidated RESV metabolites, as well as dihydroresveratrol. These metabolites are thought to have lower pharmacological activity than RESV. Similar quantities of most RESV metabolites were observed 4 h after oral or skin administration, except that glucuronidated RESV metabolites were more abundant in skin after topical RESV application than after oral administration. This result is consistent with our finding of glucuronidated RESV metabolites in cultured skin cells. RESV applied to mouse ears significantly suppressed inflammation in the TPA inflammation model. The skin absorption route could be a complementary, potent way to achieve therapeutic effects with RESV.", "id": "Q34704230", "doi": "10.1371/JOURNAL.PONE.0115359", "chemicals": [ { "id": "Q407329", "pubchem_id": "445154", "type": "chemical", "label": "Resveratrol", "class": "plant polyphenol" }, { "id": "Q5276414", "pubchem_id": "185914", "type": "chemical", "label": "dihydroresveratrol", "class": "" } ], "organisms": [ ], "relations": [ ] }, "11374946": { "PMID": "11374946", "ArticleTitle": "Polychlorinated acetamides from the cyanobacterium Microcoleus lyngbyaceus.", "AbstractText": "Several new compounds were isolated from the organic extract of the cyanobacterium Microcoleus lyngbyaceus, and their structures were determined by spectroscopic means. Polychlorinated acetamidoalkynes and alkanes were the major metabolites. 6-Acetamido-1,1,1-trichloroundecane, a positional isomer of the naturally occurring 5-acetamido-1,1,1-trichloroundecane, was synthesized in six steps from delta-decanolactone.", "id": "Q43618587", "doi": "10.1021/NP000452P", "chemicals": [ { "id": "Q72591894", "type": "class", "label": "acetamides" }, { "id": "Q41581", "type": "class", "label": "alkanes" }, { "id": "Q77491055", "pubchem_id": "11120674", "type": "chemical", "label": "5-Acetamido-1,1,1-trichloroundecane", "class": "" }, { "id": "11374946CHEM1", "pubchem_id": "", "type": "chemical", "label": "6-Acetamido-1,1,1-trichloroundecane", "class": "" } ], "organisms": [ { "id": "Q67360286", "label": "Microcoleus lyngbyaceus" } ], "relations": [ [ "Q67360286", "Q72591894" ], [ "Q67360286", "Q41581" ], [ "Q67360286", "Q77491055" ], [ "Q67360286", "11374946CHEM1" ] ] }, "21612806": { "PMID": "21612806", "ArticleTitle": "Phenolic compounds from the cultured mycobionts of Graphis proserpens.", "AbstractText": "Spore-derived mycobionts of the lichen Graphis proserpens were cultivated on a malt-yeast extract medium supplemented with 10% sucrose and their metabolites were investigated. Isocoumarin derivatives 1-3 and 7-oxo-5,7-dihydrooxepino[4,3,2-de]isochromene derivatives, proserins A-C (4-6), were isolated along with three known isocoumarin derivatives and three benzoic acid derivatives. Their structures were determined by spectroscopic methods.", "id": "Q78287230", "doi": "10.1016/J.PHYTOCHEM.2011.04.017", "chemicals": [ { "id": "Q109587342", "type": "class", "label": "Isocoumarin" }, { "id": "Q56085456", "type": "class", "label": "benzoic acid" }, { "id": "Q77512176", "pubchem_id": "101805480", "type": "chemical", "label": "Proserin A", "class": "" }, { "id": "Q104197822", "pubchem_id": "101805481", "type": "chemical", "label": "Proserin B", "class": "" }, { "id": "Q103816375", "pubchem_id": "101805482", "type": "chemical", "label": "Proserin C", "class": "" } ], "organisms": [ { "id": "Q10508268", "label": "Graphis proserpens" } ], "relations": [ [ "Q10508268", "Q109587342" ], [ "Q10508268", "Q56085456" ], [ "Q10508268", "Q77512176" ], [ "Q10508268", "Q104197822" ], [ "Q10508268", "Q103816375" ] ] }, "31168648": { "PMID": "31168648", "ArticleTitle": "Characterization and Complete Genome Analysis of the Carbazomycin B-Producing Strain Streptomyces luteoverticillatus SZJ61.", "AbstractText": "Members of marine Actinobacteria have been highly regarded as potentially important sources of antimicrobial compounds. Here, we isolated a strain of Actinobacteria, SZJ61, and showed that it inhibits the in vitro growth of fungi pathogenic to plants. This new isolate was identified as Streptomyces luteoverticillatus by morphological, biochemical and genetic analyses. Antifungal compounds were isolated from S. luteoverticillatus strain SZJ61 and characterized as carbazomycin B by nuclear magnetic resonance spectra. We then sequenced the genome of the S. luteoverticillatus SZJ61 strain, which consists of only one 7,367,863\u00a0bp linear chromosome that has a G+C content of 72.05%. Thirty-five putative biosynthetic gene clusters for secondary metabolites, including a variety of bioactive products, were found. Mining of the genome sequence information revealed the putative biosynthetic gene cluster of carbazomycin B. This genomic information is valuable for interpreting the biosynthetic mechanisms of diverse bioactive compounds that have potential applications in the pharmaceutical industry.", "id": "Q92552352", "doi": "10.1007/S00284-019-01711-X", "chemicals": [ { "id": "Q75053371", "pubchem_id": "166449", "type": "chemical", "label": "Carbazomycin B", "class": "" } ], "organisms": [ { "id": "Q62851585", "label": "Streptomyces luteoverticillatus" } ], "relations": [ [ "Q62851585", "Q75053371" ] ] }, "19572613": { "PMID": "19572613", "ArticleTitle": "Cycloaspeptides F and G, Cyclic Pentapeptides from a Cordyceps-colonizing isolate of Isaria farinosa.", "AbstractText": "Cycloaspeptides F (1) and G (2), two new cyclic pentapeptides, and the known cycloaspeptides A (3), C (4), and bisdethiodi(methylthio)hyalodendrin (5) have been isolated from the crude extract of the fungus Isaria farinosa that colonizes Cordyceps sinensis. The structures of 1 and 2 were elucidated primarily by NMR and MS methods. The absolute configuration of 1 was assigned using Marfey's method on its acid hydrolysate. Compounds 1 and 2 showed cytotoxic effects against HeLa and MCF7 cell lines, displaying the same magnitude of activity toward the MCF7 cells as the positive control 5-fluorouracil.", "id": "Q78442870", "doi": "10.1021/NP900205M", "chemicals": [ { "id": "Q77518564", "pubchem_id": "11296670", "type": "chemical", "label": "cycloaspeptide A", "class": "cyclic pentapeptides" }, { "id": "Q75058529", "pubchem_id": "44234959", "type": "chemical", "label": "Cycloaspeptide F", "class": "cyclic pentapeptides" }, { "id": "Q77279528", "pubchem_id": "44234960", "type": "chemical", "label": "Cycloaspeptide G", "class": "cyclic pentapeptides" }, { "id": "Q105314658", "pubchem_id": "13942399", "type": "chemical", "label": "bisdethiodi(methylthio)hyalodendrin", "class": "cyclic pentapeptides" }, { "id": "Q105300838", "pubchem_id": "45273572", "type": "chemical", "label": "cycloaspeptide C", "class": "cyclic pentapeptides" } ], "organisms": [ { "id": "Q54366535", "label": "Isaria farinosa" } ], "relations": [ [ "Q54366535", "Q77518564" ], [ "Q54366535", "Q75058529" ], [ "Q54366535", "Q77279528" ], [ "Q54366535", "Q105314658" ], [ "Q54366535", "Q105300838" ] ] }, "23650897": { "PMID": "23650897", "ArticleTitle": "Chemical composition and antioxidant activity of Algerian propolis.", "AbstractText": "Chemical composition of propolis samples from north Algeria was characterized by chromatographic and spectroscopic analyses. High-performance liquid chromatorgaphy with diode-array detection (HPLC-DAD) fingerprint of the methanol extracts allowed the definition of two main types of Algerian propolis (AP) directly related to their secondary metabolite composition. Investigation of two representative types of AP by preparative chromatographic procedure and mass spectrometric (MS) and NMR techniques led to the identification of their main constituents: caffeate esters and flavonoids from an AP type rich in phenolic compounds (PAP) and labdane and clerodane diterpenes, together with a polymethoxyflavonol, from an AP type containing mainly diterpenes (DAP). Subsequently, two specific HPLC-MS/MS methods for detection of PAP and DAP markers were developed to study the chemical composition of propolis samples of different north Algerian regions. Antioxidant activity of AP samples was evaluated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay, and a significant free-radical scavenging effect was observed for propolis of the PAP series rich in polyphenols.", "id": "Q39355198", "doi": "10.1021/JF400779W", "chemicals": [ { "id": "Q184398", "pubchem_id": "", "type": "chemical", "label": "propolis", "class": "" } ], "organisms": [ ], "relations": [ ] }, "21261297": { "PMID": "21261297", "ArticleTitle": "Configurational assignment of cyclic peroxy metabolites provides an insight into their biosynthesis: isolation of plakortolides, seco-plakortolides, and plakortones from the Australian marine sponge Plakinastrella clathrata.", "AbstractText": "Sixteen new compounds, comprising nine new plakortolides K-S (1-9), four seco-plakortolides (10-13), and three plakortones (14-16), were isolated from the Australian sponge Plakinastrella clathrata. Structural elucidation, including relative configurational assignment, was based on extensive spectroscopic analysis, while the absolute configurations of 1-4 were deduced from (1)H NMR analyses on MPA esters derived from Zn/AcOH reduction products. Diastereomeric sets of plakortolides, e.g., K and L, or M and N, differed in configuration at C-3/C-4 rather than at C-6, a stereochemical result that compromises a biosynthetic pathway involving Diels-Alder cycloaddition of molecular oxygen to a \u0394(3,5)-diunsaturated fatty acid precursor. The biosynthesis may plausibly involve cyclization of a 6-hydroperoxydienoic acid intermediate following stereospecific introduction of the hydroperoxy group into a polyketide-derived precursor. Isolated seco-plakortolides converted under mild conditions into plakortones with full retention of configuration, suggesting C-6 hydroxy attack on an \u03b1,\u03b2-unsaturated lactone intermediate. The NMR data reported for the compound named plakortolide E are inconsistent with the current literature structure and are those of the corresponding seco-plakortolide (19). The reported conversion of the metabolite into a plakortone ether on storage is consistent with this structural revision.", "id": "Q46654797", "doi": "10.1021/NP100620X", "chemicals": [ { "id": "Q27136915", "pubchem_id": "51042207", "type": "chemical", "label": "plakortolide Q", "class": "" }, { "id": "Q27136910", "pubchem_id": "51042204", "type": "chemical", "label": "plakortolide N", "class": "" }, { "id": "Q27136908", "pubchem_id": "51042202", "type": "chemical", "label": "plakortolide L", "class": "" }, { "id": "Q27136916", "pubchem_id": "51042405", "type": "chemical", "label": "plakortolide R", "class": "" }, { "id": "Q27136909", "pubchem_id": "51042203", "type": "chemical", "label": "plakortolide M", "class": "" }, { "id": "Q27136914", "pubchem_id": "51042206", "type": "chemical", "label": "plakortolide P", "class": "" }, { "id": "Q27136917", "pubchem_id": "51042406", "type": "chemical", "label": "plakortolide S", "class": "" }, { "id": "Q27136911", "pubchem_id": "51042205", "type": "chemical", "label": "plakortolide O", "class": "" }, { "id": "Q27136907", "pubchem_id": "51041525", "type": "chemical", "label": "plakortolide K", "class": "" } ], "organisms": [ { "id": "Q4116771", "label": "Plakinastrella clathrata" } ], "relations": [ [ "Q4116771", "Q27136915" ], [ "Q4116771", "Q27136910" ], [ "Q4116771", "Q27136908" ], [ "Q4116771", "Q27136916" ], [ "Q4116771", "Q27136909" ], [ "Q4116771", "Q27136914" ], [ "Q4116771", "Q27136917" ], [ "Q4116771", "Q27136911" ], [ "Q4116771", "Q27136907" ] ] }, "15270574": { "PMID": "15270574", "ArticleTitle": "New lamellarin alkaloids from the Indian ascidian Didemnum obscurum and their antioxidant properties.", "AbstractText": "Three new lamellarin alkaloids, lamellarins gamma (1), alpha (2), and epsilon (3), along with eight known lamellarin alkaloids, lamellarins M (4), K (5), K-diacetate (6), K-triacetate (7), U (8), I (9), C-diacetate (10), and X-triacetate (11), have been isolated from the Indian ascidian Didemnum obscurum. The structures of 1-11 were established using standard spectroscopic techniques. The structure of lamellarin K-triacetate (7) was further confirmed by X-ray crystallographic analysis. The antioxidant properties of lamellarin gamma, lamellarin gamma-monoacetate, lamellarins K, U, and I, and lamellarin C-diacetate were evaluated.", "id": "Q80373142", "doi": "10.1021/NP030503T", "chemicals": [ { "id": "Q109469241", "label": "lamellarin alkaloids", "type": "class" }, { "id": "Q105151130", "pubchem_id": "11238077", "type": "chemical", "label": "Lamellarin epsilon" }, { "id": "Q105287587", "pubchem_id": "44559518", "type": "chemical", "label": "Lamellarin gamma" }, { "id": "Q104913352", "pubchem_id": "102074099", "type": "chemical", "label": "Lamellarin K-diacetate" }, { "id": "Q105279134", "pubchem_id": "16096736", "type": "chemical", "label": "Lamellarin C diacetate" }, { "id": "Q105185481", "pubchem_id": "9871626", "type": "chemical", "label": "Lamellarin M" }, { "id": "Q105035251", "pubchem_id": "5353707", "type": "chemical", "label": "Lamellarin U" }, { "id": "Q105152375", "pubchem_id": "9807866", "type": "chemical", "label": "Lamellarin I" }, { "id": "Q104994944", "pubchem_id": "102074100", "type": "chemical", "label": "Lamellarin K-triacetate" }, { "id": "Q105169898", "pubchem_id": "44559517", "type": "chemical", "label": "Lamellarin C-diacetate" }, { "id": "Q104971053", "pubchem_id": "9958686", "type": "chemical", "label": "lamellarin K" }, { "id": "Q105212703", "pubchem_id": "11477790", "type": "chemical", "label": "Lamellarin alpha" }, { "id": "Q105225867", "pubchem_id": "16096757", "type": "chemical", "label": "Lamellarin X-triacetate" } ], "organisms": [ { "id": "Q4925396", "label": "Didemnum obscurum" } ], "relations": [ [ "Q4925396", "Q109469241" ], [ "Q4925396", "Q105287587" ], [ "Q4925396", "Q105212703" ], [ "Q4925396", "Q105151130" ], [ "Q4925396", "Q105185481" ], [ "Q4925396", "Q104971053" ], [ "Q4925396", "Q104913352" ], [ "Q4925396", "Q104994944" ], [ "Q4925396", "Q105035251" ], [ "Q4925396", "Q105152375" ], [ "Q4925396", "Q105169898" ], [ "Q4925396", "Q105225867" ] ] }, "32401511": { "PMID": "32401511", "ArticleTitle": "The Cocultured Nigrospora oryzae and Collectotrichum gloeosporioides, Irpex lacteus, and the Plant Host Dendrobium officinale Bidirectionally Regulate the Production of Phytotoxins by Anti-phytopathogenic Metabolites.", "AbstractText": "The distinctive nature of the endophyte Irpex lacteus, host plant, and the phytopathogen Collectotrichum gloeosporioides resulted in both negative and positive regulation of the production of phytotoxins from Nigrospora oryzae. The coculture of nonhomologous I. lacteus and N. oryzae resulted in a greater number of anti-phytopathogenic metabolites from the dominant endophyte than the coculture of homologous I. lacteus and N. oryzae. The coculture of the phytopathogen N. oryzae and either the nonhomologous (isolation of I. lacteus and N. oryzae from the different plants) or homologous (isolation of I. lacteus and N. oryzae from the same plant) endophyte I. lacteus from different sources indicated that the nonhomologous I. lacteus grew faster than the homologous I. lacteus, and the production of phytotoxic azaphilone from the phytopathogenic N. oryzae decreased due to the inhibition resulting from being cocultured with nonhomologous I. lacteus. On the other hand, the production of phytotoxic azaphilone was promoted by the coculture of two phytopathogens, N. oryzae and C. gloeosporioides. The extract of the host plant, Dendrobium officinale, also increased anti-phytopathogenic metabolite production. Six new phytotoxic azaphilones from N. oryzae, four new tremulane sesquiterpenes from I. lacteus, and a new polyketone were isolated. The endophyte-phytopathogen, phytopathogen-phytopathogen, and endophyte-phytopathogen-host interactions can induce the chemical diversity of novel anti-phytopathogenic metabolites.", "id": "Q94655971", "doi": "10.1021/ACS.JNATPROD.0C00036", "chemicals": [ { "id": "Q19932714", "type": "class", "label": "azaphilones" }, { "id": "Q80218", "type": "class", "label": "sesquiterpenes" }, { "id": "Q3395534", "type": "class", "label": "polyketone" } ], "organisms": [ { "id": "Q103811004", "label": "Nigrospora oryzae" }, { "id": "Q5231679", "label": "Irpex lacteus" } ], "relations": [ [ "Q103811004", "Q19932714" ], [ "Q103811004", "Q3395534" ], [ "Q5231679", "Q80218" ], [ "Q5231679", "Q3395534" ] ] }, "32102178": { "PMID": "32102178", "ArticleTitle": "Polyketide Derivatives from Mangrove Derived Endophytic Fungus Pseudopestalotiopsis theae.", "AbstractText": "Chemical investigation of secondary metabolites from the endophytic fungus Pseudopestalotiopsis theae led to the isolation of eighteen new polyketide derivatives, pestalotheols I-Q (1-9) and cytosporins O-W (15-23), together with eight known analogs (10-14 and 24-26). The structures of the new compounds were elucidated by HRMS and 1D and 2D NMR data, as well as by comparison with literature data. Modified Mosher's method was applied to determine the absolute configuration of some compounds. Compound 23 showed significant cytotoxicity against the mouse lymphoma cell line L5178Y with an IC50 value of 3.0 \u03bcM. Furthermore, compounds 22 and 23 showed moderate antibacterial activity against drug-resistant Acinetobacter baumannii (ATCC BAA-1605) in combination with sublethal colistin concentrations.", "id": "Q89895111", "doi": "10.3390/MD18020129", "chemicals": [ { "id": "Q516751", "type": "class", "label": "polyketide derivatives" }, { "id": "Q110170942", "pubchem_id": "156581906", "type": "chemical", "label": "Cytosporin P", "class": "polyketide derivatives" }, { "id": "Q110170943", "pubchem_id": "156581907", "type": "chemical", "label": "Cytosporin Q", "class": "polyketide derivatives" }, { "id": "Q110170940", "pubchem_id": "156581904", "type": "chemical", "label": "Pestalotheol Q", "class": "polyketide derivatives" }, { "id": "Q110170941", "pubchem_id": "156581905", "type": "chemical", "label": "Cytosporin O", "class": "polyketide derivatives" }, { "id": "Q110170946", "pubchem_id": "156581910", "type": "chemical", "label": "Cytosporin S", "class": "polyketide derivatives" }, { "id": "Q110170947", "pubchem_id": "156581911", "type": "chemical", "label": "Cytosporin T/U", "class": "polyketide derivatives" }, { "id": "Q110170944", "pubchem_id": "156581908", "type": "chemical", "label": "Cytosporin R", "class": "polyketide derivatives" }, { "id": "Q110170945", "pubchem_id": "156581909", "type": "chemical", "label": "Pestalotheol I", "class": "polyketide derivatives" }, { "id": "Q110170950", "pubchem_id": "156581914", "type": "chemical", "label": "Pestalotheol J", "class": "polyketide derivatives" }, { "id": "Q110170951", "pubchem_id": "156581915", "type": "chemical", "label": "Pestalotheol K", "class": "polyketide derivatives" }, { "id": "Q110170948", "pubchem_id": "156581912", "type": "chemical", "label": "Cytosporin V", "class": "polyketide derivatives" }, { "id": "Q110170949", "pubchem_id": "156581913", "type": "chemical", "label": "Cytosporin W", "class": "polyketide derivatives" }, { "id": "Q110170954", "pubchem_id": "156581918", "type": "chemical", "label": "Pestalotheol N", "class": "polyketide derivatives" }, { "id": "Q110170955", "pubchem_id": "156581919", "type": "chemical", "label": "Pestalotheol O", "class": "polyketide derivatives" }, { "id": "Q110170952", "pubchem_id": "156581916", "type": "chemical", "label": "Pestalotheol L", "class": "polyketide derivatives" }, { "id": "Q110170953", "pubchem_id": "156581917", "type": "chemical", "label": "Pestalotheol M", "class": "polyketide derivatives" }, { "id": "Q110170956", "pubchem_id": "156581920", "type": "chemical", "label": "Pestalotheol P", "class": "polyketide derivatives" } ], "organisms": [ { "id": "Q104083776", "label": "Pseudopestalotiopsis theae" } ], "relations": [ [ "Q104083776", "Q516751" ], [ "Q104083776", "Q110170945" ], [ "Q104083776", "Q110170950" ], [ "Q104083776", "Q110170951" ], [ "Q104083776", "Q110170952" ], [ "Q104083776", "Q110170953" ], [ "Q104083776", "Q110170954" ], [ "Q104083776", "Q110170955" ], [ "Q104083776", "Q110170956" ], [ "Q104083776", "Q110170940" ], [ "Q104083776", "Q110170941" ], [ "Q104083776", "Q110170942" ], [ "Q104083776", "Q110170943" ], [ "Q104083776", "Q110170944" ], [ "Q104083776", "Q110170946" ], [ "Q104083776", "Q110170947" ], [ "Q104083776", "Q110170948" ], [ "Q104083776", "Q110170949" ] ] }, "21995505": { "PMID": "21995505", "ArticleTitle": "Lanostane and hopane triterpenes from the entomopathogenic fungus Hypocrella sp. BCC 14524.", "AbstractText": "Seven new lanostane-type triterpenes, hypocrellols A-G (1-7), and six new hopane-type triterpenes, 7\u03b2,15\u03b1-dihydroxy-22(29)-hopene (8), 3\u03b2,7\u03b2-dihydroxy-22(29)-hopene (9), 3\u03b2-acetoxy-15\u03b1-hydroxy-22(29)-hopene (10), 3\u03b2,7\u03b2,15\u03b1,22-tetrahydroxyhopane (11), 3\u03b2-acetoxy-7\u03b2,15\u03b1,22-trihydroxyhopane (12), and 7\u03b2,15\u03b1,22-trihydroxyhopane (13), were isolated from the scale insect pathogenic fungus Hypocrella sp. BCC 14524. The structures of the new compounds were elucidated by analyses of the NMR spectroscopic and mass spectrometry data. The structure of 1 was confirmed by X-ray crystallography.", "id": "Q52729037", "doi": "10.1021/NP200429B", "chemicals": [ { "id": "Q108527275", "type": "class", "label": "lanostane-type triterpenes" }, { "id": "Q108573225", "type": "class", "label": "hopane-type triterpenes" }, { "id": "Q27137971", "pubchem_id": "56602466", "type": "chemical", "label": "3beta,7beta-Dihydroxy-22(29)-hopene", "class": "hopane-type triterpenes" }, { "id": "Q105253355", "pubchem_id": "101966745", "type": "chemical", "label": "Hypocrellol F", "class": "lanostane-type triterpenes" }, { "id": "Q27137963", "pubchem_id": "56602069", "type": "chemical", "label": "Hypocrellol A", "class": "lanostane-type triterpenes" }, { "id": "Q27137965", "pubchem_id": "56602268", "type": "chemical", "label": "Hypocrellol C", "class": "lanostane-type triterpenes" }, { "id": "Q27137973", "pubchem_id": "56602468", "type": "chemical", "label": "3Beta,7Beta,15Alpha,22-Tetrahydroxyhopane", "class": "hopane-type triterpenes" }, { "id": "Q27137974", "pubchem_id": "56599468", "type": "chemical", "label": "3beta-Acetoxy-7beta,15alpha,22-trihydroxyhopane", "class": "hopane-type triterpenes" }, { "id": "Q27137966", "pubchem_id": "56602269", "type": "chemical", "label": "Hypocrellol D", "class": "lanostane-type triterpenes" }, { "id": "Q27137967", "pubchem_id": "56602270", "type": "chemical", "label": "Hypocrellol E", "class": "lanostane-type triterpenes" }, { "id": "Q27137972", "pubchem_id": "56602467", "type": "chemical", "label": "3beta-Acetoxy-15alpha-hydroxy-22(29)-hopene", "class": "hopane-type triterpenes" }, { "id": "Q27137975", "pubchem_id": "56599469", "type": "chemical", "label": "7beta,15alpha,22-Trihydroxyhopane", "class": "hopane-type triterpenes" }, { "id": "Q27137964", "pubchem_id": "56602267", "type": "chemical", "label": "Hypocrellol B", "class": "lanostane-type triterpenes" }, { "id": "Q27137970", "pubchem_id": "56602465", "type": "chemical", "label": "7beta,15alpha-Dihydroxy-22(29)-hopene", "class": "hopane-type triterpenes" }, { "id": "Q77521401", "pubchem_id": "101966746", "type": "chemical", "label": "Hypocrellol G", "class": "lanostane-type triterpenes" } ], "organisms": [ { "id": "Q10530050", "label": "Hypocrella" } ], "relations": [ [ "Q10530050", "Q108527275" ], [ "Q10530050", "Q108573225" ], [ "Q10530050", "Q27137963" ], [ "Q10530050", "Q27137964" ], [ "Q10530050", "Q27137965" ], [ "Q10530050", "Q27137966" ], [ "Q10530050", "Q27137967" ], [ "Q10530050", "Q105253355" ], [ "Q10530050", "Q77521401" ], [ "Q10530050", "Q27137970" ], [ "Q10530050", "Q27137971" ], [ "Q10530050", "Q27137972" ], [ "Q10530050", "Q27137973" ], [ "Q10530050", "Q27137974" ], [ "Q10530050", "Q27137975" ] ] }, "26582262": { "PMID": "26582262", "ArticleTitle": "Phenalenone derivatives and the unusual tricyclic sesterterpene acid from the marine fungus Lophiostoma bipolare BCC25910.", "AbstractText": "Ten compounds including nine phenalenone derivatives (five bipolarides and four bipolarols) and a sesterterpene acid (bipolarenic acid), were isolated from a marine isolated of the fungus Lophiostoma bipolare (BCC25910), along with the known compounds, (-)-scleroderolide, (-)-sclerodin, and oxasetin. Chemical structures were elucidated based on NMR spectroscopic data and HRESIMS analysis. In addition, the absolute configurations of the phenalenones were resolved using specific rotations and chemical means, while the relative configuration of bipolarenic acid was confirmed by X-ray crystallographic analysis. The compounds were evaluated for biological activity against the Plasmodium falciparum K-1 strain, Candida albicans, and Bacillus cereus, and for cytotoxicity against both cancerous and non-cancerous cells.", "id": "Q40306046", "doi": "10.1016/J.PHYTOCHEM.2015.11.003", "chemicals": [ { "id": "Q77493992", "type": "class", "label": "phenalenone derivatives" }, { "id": "Q76724062", "type": "class", "label": "sesterterpene acid" }, { "id": "Q63409819", "pubchem_id": "13786694", "type": "chemical", "label": "(-)-scleroderolide", "class": "" }, { "id": "Q77378908", "pubchem_id": "136825051", "type": "chemical", "label": "(-)-sclerodin", "class": "" }, { "id": "Q77484329", "pubchem_id": "54699136", "type": "chemical", "label": "oxasetin", "class": "" }, { "id": "Q110172436", "pubchem_id": "156583040", "type": "chemical", "label": "Bipolarenic acid", "class": "sesterterpene acid" } ], "organisms": [ { "id": "Q104095796", "label": "Lophiostoma bipolare" } ], "relations": [ [ "Q104095796", "Q77493992" ], [ "Q104095796", "Q76724062" ], [ "Q104095796", "Q110172436" ], [ "Q104095796", "Q63409819" ], [ "Q104095796", "Q77378908" ], [ "Q104095796", "Q77484329" ] ] }, "28767052": { "PMID": "28767052", "ArticleTitle": "Strepchazolins A and B: Two New Alkaloids from a Marine Streptomyces chartreusis NA02069.", "AbstractText": "Two new alkaloids, strepchazolins A (1) and B (2), together with a previously reported compound, streptazolin (3), were isolated from a marine actinomycete, Streptomyces chartreusis NA02069, collected in the Coast of Hainan Island, China. The structures of new compounds were determined by extensive NMR, mass spectroscopic and X-ray crystallographic analysis, as well as modified Mosher's method. Compound 1 showed weak anti-Bacillus subtilis activity with the MIC value of 64.0 \u03bcM, and weak inhibitory activity against acetylcholinesterase (AChE) in vitro with IC50 value of 50.6 \u03bcM, while its diastereoisomer, Compound 2, is almost inactive.", "id": "Q39612339", "doi": "10.3390/MD15080244", "chemicals": [ { "id": "Q70702", "type": "class", "label": "alkaloids" }, { "id": "Q105122826", "pubchem_id": "139590509", "type": "chemical", "label": "Strepchazolin A", "class": "alkaloids" }, { "id": "Q105122827", "pubchem_id": "139590510", "type": "chemical", "label": "Strepchazolin B", "class": "alkaloids" }, { "id": "Q7623339", "pubchem_id": "11769676", "type": "chemical", "label": "Streptazolin", "class": "alkaloids" } ], "organisms": [ { "id": "Q22287085", "label": "Streptomyces chartreusis" } ], "relations": [ [ "Q22287085", "Q70702" ], [ "Q22287085", "Q105122826" ], [ "Q22287085", "Q105122827" ], [ "Q22287085", "Q7623339" ] ] }, "31468974": { "PMID": "31468974", "ArticleTitle": "Cytotoxic Microcolin Lipopeptides from the Marine Cyanobacterium Moorea producens.", "AbstractText": "Nine new linear lipopeptides, microcolins E-M (1-9), together with four known related compounds, microcolins A-D (10-13), were isolated from the marine cyanobacterium Moorea producens using bioassay-guided and LC-MS/MS molecular networking approaches. Catalytic hydrogenation of microcolins A-D (10-13) yielded two known compounds, 3,4-dihydromicrocolins A and B (14, 15), and two new derivatives, 3,4-dihydromicrocolins C and D (16, 17), respectively. The structures of these new compounds were determined by a combination of spectroscopic and advanced Marfey's analysis. Structurally unusual amino acid units, 4-methyl-2-(methylamino)pent-3-enoic (Mpe) acid and 2-amino-4-methylhexanoic acid (N-Me-homoisoleucine), in compounds 1-3 and 8, respectively, are rare residues in naturally occurring peptides. These metabolites showed significant cytotoxic activity against H-460 human lung cancer cells with IC50 values ranging from 6 nM to 5.0 \u03bcM. The variations in structure and attendant biological activities provided fresh insights concerning structure-activity relationships for the microcolin class of lipopeptides.", "id": "Q93006344", "doi": "10.1021/ACS.JNATPROD.9B00549", "chemicals": [ { "id": "Q2903964", "type": "class", "label": "lipopeptides" }, { "id": "Q110168862", "pubchem_id": "139291932", "type": "chemical", "label": "Microcolin F", "class": "lipopeptides" }, { "id": "Q110168863", "pubchem_id": "139291920", "type": "chemical", "label": "Microcolin G", "class": "lipopeptides" }, { "id": "Q110168861", "pubchem_id": "139291904", "type": "chemical", "label": "Microcolin E", "class": "lipopeptides" }, { "id": "Q110168864", "pubchem_id": "139292112", "type": "chemical", "label": "Microcolin H", "class": "lipopeptides" }, { "id": "31468974CHEM5", "type": "chemical", "label": "Microcolin J", "class": "lipopeptides" }, { "id": "31468974CHEM6", "type": "chemical", "label": "Microcolin K", "class": "lipopeptides" }, { "id": "Q110168865", "pubchem_id": "139291778", "type": "chemical", "label": "Microcolin I", "class": "lipopeptides" }, { "id": "Q110168868", "pubchem_id": "145721221", "type": "chemical", "label": "Microcolin L", "class": "lipopeptides" }, { "id": "Q110168869", "pubchem_id": "139291861", "type": "chemical", "label": "Microcolin M", "class": "lipopeptides" }, { "id": "31468974CHEM6", "type": "chemical", "label": "Microcolin B", "class": "lipopeptides" }, { "id": "Q115971683", "pubchem_id": "9918460", "type": "chemical", "label": "Microcolin A", "class": "lipopeptides" }, { "id": "31468974CHEM7", "pubchem_id": "145740432", "type": "chemical", "label": "Microcolin C", "class": "lipopeptides" }, { "id": "31468974CHEM8", "type": "chemical", "label": "Microcolin D", "class": "lipopeptides" }, { "id": "31468974CHEM1", "type": "chemical", "label": "3,4-dihydromicrocolins A", "class": "lipopeptides" }, { "id": "31468974CHEM2", "type": "chemical", "label": "3,4-dihydromicrocolins B", "class": "lipopeptides" }, { "id": "31468974CHEM3", "type": "chemical", "label": "3,4-dihydromicrocolins C", "class": "lipopeptides" }, { "id": "31468974CHEM4", "type": "chemical", "label": "3,4-dihydromicrocolins D", "class": "lipopeptides" } ], "organisms": [ { "id": "Q293131", "label": "Moorea producens" } ], "relations": [ [ "Q293131", "Q2903964" ], [ "Q293131", "Q110168861" ], [ "Q293131", "Q110168862" ], [ "Q293131", "Q110168863" ], [ "Q293131", "Q110168864" ], [ "Q293131", "Q110168865" ], [ "Q293131", "31468974CHEM5" ], [ "Q293131", "31468974CHEM6" ], [ "Q293131", "Q110168868" ], [ "Q293131", "Q110168869" ], [ "Q293131", "Q115971683" ], [ "Q293131", "31468974CHEM6" ], [ "Q293131", "31468974CHEM7" ], [ "Q293131", "31468974CHEM8" ], [ "Q293131", "31468974CHEM1" ], [ "Q293131", "31468974CHEM2" ], [ "Q293131", "31468974CHEM3" ], [ "Q293131", "31468974CHEM4" ] ] }, "10580385": { "PMID": "10580385", "ArticleTitle": "Melithiazols, new beta-methoxyacrylate inhibitors of the respiratory chain isolated from myxobacteria. Production, isolation, physico-chemical and biological properties.", "AbstractText": "New antibiotic compounds, melithiazols, were isolated from the culture broth of strains of the myxobacteria Melittangium lichenicola, Archangium gephyra, and Myxococcus stipitatus. The compounds belong to the group of beta-methoxyacrylate (MOA) inhibitors and are related to the myxothiazols. The melithiazols show high antifungal activity, but are less toxic than myxothiazol A and its methyl ester in a growth inhibition assay with mouse cell cultures. The melithiazols inhibit NADH oxidation by submitochondrial particles from beef heart. Melithiazol A blocks the electron transport within the bc1-segment (complex III) and causes a red shift in the reduced spectrum of cytochrome b.", "id": "Q73224687", "doi": "10.7164/ANTIBIOTICS.52.721", "chemicals": [ { "id": "10580385CLASS1", "type": "class", "label": "beta-methoxyacrylate (MOA) inhibitors" }, { "id": "Q27149175", "pubchem_id": "23724543", "type": "chemical", "label": "Melithiazol A", "class": "beta-methoxyacrylate (MOA) inhibitors" } ], "organisms": [ { "id": "Q25839114", "label": "Archangium gephyra" }, { "id": "Q25863063", "label": "Melittangium lichenicola" }, { "id": "Q26268321", "label": "Myxococcus stipitatus" } ], "relations": [ [ "Q25863063", "Q27149175" ], [ "Q25863063", "10580385CLASS1" ], [ "Q25839114", "Q27149175" ], [ "Q25839114", "10580385CLASS1" ], [ "Q26268321", "Q27149175" ], [ "Q26268321", "10580385CLASS1" ] ] }, "2705770": { "PMID": "2705770", "ArticleTitle": "Mycotoxin production by Fusarium oxysporum and Fusarium sporotrichioides isolated from Baccharis spp. from Brazil.", "AbstractText": "Fusarium oxysporum isolated from roots of and soil around Baccharis species from Brazil produced the trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and 3'-OH T-2 (TC-1), whereas Fusarium sporotrichioides from the same source produced T-2 toxin, HT-2 toxin, acetyl T-2, neosolaniol, TC-1, 3'-OH HT-2 (TC-3), iso-T-2, T-2 triol, T-2 tetraol, and the nontrichothecenes moniliformin and fusarin C. Several unknown toxins were found but not identified. Not found were macrocyclic trichothecenes, zearalenone, wortmannin, and fusarochromanone (TDP-1).", "id": "Q35731793", "doi": "10.1128/AEM.55.1.254-255.1989", "chemicals": [ { "id": "Q257954", "type": "class", "label": "trichothecenes" }, { "id": "Q76423525", "pubchem_id": "14009388", "type": "chemical", "label": "Iso-T-2", "class": "trichothecenes" }, { "id": "Q76423359", "pubchem_id": "13797589", "type": "chemical", "label": "T-2 triol", "class": "trichothecenes" }, { "id": "Q83128950", "pubchem_id": "3034745", "type": "chemical", "label": "T-2 tetraol", "class": "trichothecenes" }, { "id": "Q104918914", "pubchem_id": "15571694", "type": "chemical", "label": "diacetoxyscirpenol", "class": "trichothecenes" }, { "id": "Q904389", "pubchem_id": "40452", "type": "chemical", "label": "Moniliformin", "class": "" }, { "id": "Q63399720", "pubchem_id": "13818797", "type": "chemical", "label": "Neosolaniol", "class": "trichothecenes" }, { "id": "Q27896361", "pubchem_id": "121596580", "type": "chemical", "label": "3'-OH T-2", "class": "trichothecenes" }, { "id": "Q27896911", "pubchem_id": "10093830", "type": "chemical", "label": "HT-2 Toxin", "class": "trichothecenes" }, { "id": "Q27155879", "pubchem_id": "6435894", "type": "chemical", "label": "Fusarin C", "class": "" }, { "id": "Q63392226", "pubchem_id": "5284461", "type": "chemical", "label": "T-2 toxin", "class": "trichothecenes" }, { "id": "Q27896356", "pubchem_id": "44559327", "type": "chemical", "label": "3'-OH HT-2", "class": "trichothecenes" }, { "id": "Q76616880", "pubchem_id": "49796734", "type": "chemical", "label": "Acetyl T-2", "class": "trichothecenes" }, { "id": "2705770CHEM1", "pubchem_id": "10040286", "type": "chemical", "label": "TC-1", "class": "trichothecenes" } ], "organisms": [ { "id": "Q5114748", "label": "Fusarium sporotrichioides" }, { "id": "Q139958", "label": "Fusarium oxysporum" } ], "relations": [ [ "Q139958", "Q257954" ], [ "Q139958", "Q63392226" ], [ "Q139958", "Q27896911" ], [ "Q139958", "Q104918914" ], [ "Q139958", "Q27896361" ], [ "Q5114748", "Q257954" ], [ "Q5114748", "Q63392226" ], [ "Q5114748", "Q27896911" ], [ "Q5114748", "Q76616880" ], [ "Q5114748", "Q63399720" ], [ "Q5114748", "Q27896361" ], [ "Q5114748", "Q27896356" ], [ "Q5114748", "Q76423525" ], [ "Q5114748", "Q904389" ], [ "Q5114748", "Q27155879" ], [ "Q5114748", "2705770CHEM1" ] ] }, "32031805": { "PMID": "32031805", "ArticleTitle": "Identification of Holrhizins E-Q Reveals the Diversity of Nonribosomal Lipopeptides in Paraburkholderia rhizoxinica.", "AbstractText": "The products of a nonribosomal peptide synthetase gene, holA, from Paraburkholderia rhizoxinica were investigated using our recently established recombineering technique. Fifteen products, including 13 new linear lipopeptides, holrhizins E-Q (2-8, 10-15), together with the two known holrhizins A and B (1, 9), were detected in the activated mutant, and their structures were identified using HRESIMS, NMR spectroscopy, Marfey's analysis, and feeding experiments with labeled amino acids. The lipohexapeptides 1-3 and 7-14 differ in three amino acid residues and the N-terminal fatty acid chains. The diversity of the holrhizins originates from the substrate flexibility of the A4, A5, and A6 domains as well as the starter C domain in the biosynthetic pathway.", "id": "Q89592406", "doi": "10.1021/ACS.JNATPROD.9B00927", "chemicals": [ { "id": "Q2903964", "type": "class", "label": "lipopeptides" }, { "id": "Q104915928", "pubchem_id": "146684039", "type": "chemical", "label": "Holrhizin A", "class": "lipopeptides" }, { "id": "Q110169134", "pubchem_id": "156009905", "type": "chemical", "label": "Holrhizin M", "class": "lipopeptides" }, { "id": "Q110169135", "pubchem_id": "156016285", "type": "chemical", "label": "Holrhizin N", "class": "lipopeptides" }, { "id": "Q110169133", "pubchem_id": "156013988", "type": "chemical", "label": "Holrhizin L", "class": "lipopeptides" }, { "id": "Q110169138", "pubchem_id": "156017269", "type": "chemical", "label": "Holrhizin Q", "class": "lipopeptides" }, { "id": "Q110169139", "pubchem_id": "156012095", "type": "chemical", "label": "Holrhizin J", "class": "lipopeptides" }, { "id": "Q110169136", "pubchem_id": "156012549", "type": "chemical", "label": "Holrhizin O", "class": "lipopeptides" }, { "id": "Q110169137", "pubchem_id": "156016499", "type": "chemical", "label": "Holrhizin P", "class": "lipopeptides" }, { "id": "Q110169142", "pubchem_id": "156014171", "type": "chemical", "label": "Holrhizin G", "class": "lipopeptides" }, { "id": "Q110169143", "pubchem_id": "139697253", "type": "chemical", "label": "Holrhizin H", "class": "lipopeptides" }, { "id": "Q110169140", "pubchem_id": "156018277", "type": "chemical", "label": "Holrhizin E", "class": "lipopeptides" }, { "id": "Q110169141", "pubchem_id": "156012473", "type": "chemical", "label": "Holrhizin F", "class": "lipopeptides" }, { "id": "Q110169144", "pubchem_id": "156014439", "type": "chemical", "label": "Holrhizin I", "class": "lipopeptides" }, { "id": "Q110169145", "pubchem_id": "156010712", "type": "chemical", "label": "Holrhizin K", "class": "lipopeptides" }, { "id": "32031805CHEM1", "type": "chemical", "label": "Holrhizin B", "class": "lipopeptides" } ], "organisms": [ { "id": "Q26270609", "label": "Paraburkholderia rhizoxinica" } ], "relations": [ [ "Q26270609", "Q2903964" ], [ "Q26270609", "Q110169140" ], [ "Q26270609", "Q110169141" ], [ "Q26270609", "Q110169142" ], [ "Q26270609", "Q110169143" ], [ "Q26270609", "Q110169144" ], [ "Q26270609", "Q110169139" ], [ "Q26270609", "Q110169145" ], [ "Q26270609", "Q110169133" ], [ "Q26270609", "Q110169134" ], [ "Q26270609", "Q110169135" ], [ "Q26270609", "Q110169136" ], [ "Q26270609", "Q110169137" ], [ "Q26270609", "Q110169138" ], [ "Q26270609", "Q104915928" ], [ "Q26270609", "32031805CHEM1" ] ] }, "32864967": { "PMID": "32864967", "ArticleTitle": "Bioactive Alkaloids from the Actinomycete Actinoalloteichus sp. ZZ1866.", "AbstractText": "The new alkaloids marinacarbolines E-Q (1-10, 12-14), caerulomycin N (15), and actinoallonaphthyridine A (16), together with the known marinacarboline C (11) and cyanogramide (17), were isolated from the actinomycete Actinoalloteichus sp. ZZ1866. The structures of the isolated compounds were elucidated based on their HRESIMS data, extensive NMR spectroscopic analyses, Mosher's method, ECD calculations, single-crystal X-ray diffraction analysis, and chemical degradation studies. Marinacarbolines E-L (1-8) share an indole-pyridone-imidazole tetracyclic skeleton, which is the first example of this kind of skeleton. Caerulomycin N (15) and cyanogramide (17) exhibited cytotoxic activity against both human glioma U251 and U87MG cells with IC50 values of 2.0-7.2 \u03bcM. Marinacarbolines E (1), G (3), I (5), and M (9) showed cytotoxic activity against U87MG cells with IC50 values of 2.3-8.9 \u03bcM.", "id": "Q99631975", "doi": "10.1021/ACS.JNATPROD.0C00588", "chemicals": [ { "id": "Q70702", "type": "class", "label": "alkaloids" }, { "id": "Q110169318", "pubchem_id": "156580848", "type": "chemical", "label": "Marinacarboline E", "class": "alkaloids" }, { "id": "Q27137936", "pubchem_id": "56601461", "type": "chemical", "label": "Marinacarboline C", "class": "alkaloids" }, { "id": "Q77376937", "pubchem_id": "102143687", "type": "chemical", "label": "cyanogramide", "class": "alkaloids" }, { "id": "32864967CHEM1", "pubchem_id": "156580852", "type": "chemical", "label": "caerulomycin N", "class": "alkaloids" }, { "id": "Q110169319", "pubchem_id": "156580849", "type": "chemical", "label": "Marinacarboline O", "class": "alkaloids" }, { "id": "Q110169317", "pubchem_id": "156580847", "type": "chemical", "label": "Marinacarboline N", "class": "alkaloids" }, { "id": "Q110169320", "pubchem_id": "156580850", "type": "chemical", "label": "Marinacarboline P", "class": "alkaloids" }, { "id": "Q110169321", "pubchem_id": "156580851", "type": "chemical", "label": "Marinacarboline Q", "class": "alkaloids" }, { "id": "Q110169326", "pubchem_id": "156580855", "type": "chemical", "label": "Marinacarboline G", "class": "alkaloids" }, { "id": "Q110169327", "pubchem_id": "156580856", "type": "chemical", "label": "Marinacarboline H", "class": "alkaloids" }, { "id": "Q110169324", "pubchem_id": "156580853", "type": "chemical", "label": "Actinoallonaphthyridine A", "class": "alkaloids" }, { "id": "Q110169325", "pubchem_id": "156580854", "type": "chemical", "label": "Marinacarboline F", "class": "alkaloids" }, { "id": "Q110169330", "pubchem_id": "156580859", "type": "chemical", "label": "Marinacarboline K", "class": "alkaloids" }, { "id": "Q110169331", "pubchem_id": "156580860", "type": "chemical", "label": "Marinacarboline L", "class": "alkaloids" }, { "id": "Q110169328", "pubchem_id": "156580857", "type": "chemical", "label": "Marinacarboline I", "class": "alkaloids" }, { "id": "Q110169329", "pubchem_id": "156580858", "type": "chemical", "label": "Marinacarboline J", "class": "alkaloids" }, { "id": "Q110169316", "pubchem_id": "156580846", "type": "chemical", "label": "Marinacarboline M", "class": "alkaloids" } ], "organisms": [ { "id": "Q4676909", "label": "Actinoalloteichus" } ], "relations": [ [ "Q4676909", "Q70702" ], [ "Q4676909", "Q110169318" ], [ "Q4676909", "Q110169325" ], [ "Q4676909", "Q110169326" ], [ "Q4676909", "Q110169327" ], [ "Q4676909", "Q110169328" ], [ "Q4676909", "Q110169329" ], [ "Q4676909", "Q110169330" ], [ "Q4676909", "Q110169331" ], [ "Q4676909", "Q110169316" ], [ "Q4676909", "Q110169317" ], [ "Q4676909", "Q110169319" ], [ "Q4676909", "Q110169320" ], [ "Q4676909", "Q110169321" ], [ "Q4676909", "32864967CHEM1" ], [ "Q4676909", "Q110169324" ], [ "Q4676909", "Q27137936" ], [ "Q4676909", "Q77376937" ] ] }, "25879502": { "PMID": "25879502", "ArticleTitle": "Identification and biological evaluation of secondary metabolites from the endolichenic fungus Aspergillus versicolor.", "AbstractText": "A chemical investigation of the endolichenic fungus Aspergillus versicolor (125a), which was found in the lichen Lobaria quercizans, resulted in the isolation of four novel diphenyl ethers, named diorcinols F-H (1-3, resp.) and 3-methoxyviolaceol-II (4), eight new bisabolane sesquiterpenoids, named (-)-(R)-cyclo-hydroxysydonic acid (5), (-)-(7S,8R)-8-hydroxysydowic acid (6), (-)-(7R,10S)-10-hydroxysydowic acid (7), (-)-(7R,10R)-iso-10-hydroxysydowic acid (8), (-)-12-acetoxy-1-deoxysydonic acid (9), (-)-12-acetoxysydonic acid (10), (-)-12-hydroxysydonic acid (11), and (-)-(R)-11-dehydrosydonic acid (12), two new tris(pyrogallol ethers), named sydowiols D (13) and E (14), and fifteen known compounds, 15-29. All of the structures were determined by spectroscopic analyses, and a number of them were further identified through chemical transformations and electronic circular dichroism (ECD) calculations. Preliminary bioassays of these isolates for the determination of their inhibitory activities against the fungus Candida albicans, and their cytotoxicities against the human cancer cell lines PC3, A549, A2780, MDA-MB-231, and HEPG2 were also evaluated.", "id": "Q38886575", "doi": "10.1002/CBDV.201400146", "chemicals": [ { "id": "Q77501858", "pubchem_id": "139586231", "type": "chemical", "label": "Diorcinol G", "class": "diphenyl ethers" }, { "id": "Q77515989", "pubchem_id": "139586850", "type": "chemical", "label": "(-)-12-Acetoxy-1-deoxysydonic acid", "class": "bisabolane sesquiterpenoids" }, { "id": "Q77570484", "pubchem_id": "139587620", "type": "chemical", "label": "3-methoxyviolaceol-II", "class": "diphenyl ethers" }, { "id": "Q77498956", "pubchem_id": "139586105", "type": "chemical", "label": "(-)-(R)-11-dehydrosydonic acid", "class": "bisabolane sesquiterpenoids" }, { "id": "Q105259575", "pubchem_id": "139588348", "type": "chemical", "label": "(-)-(7S,8R)-8-hydroxysydowic acid", "class": "bisabolane sesquiterpenoids" }, { "id": "Q77368740", "pubchem_id": "139584427", "type": "chemical", "label": "(-)-12-Acetoxysydonic acid", "class": "bisabolane sesquiterpenoids" }, { "id": "Q77378494", "pubchem_id": "139584932", "type": "chemical", "label": "(-)-(7R,10S)-10-hydroxysydowic acid", "class": "bisabolane sesquiterpenoids" }, { "id": "Q105119535", "pubchem_id": "38351305", "type": "chemical", "label": "(-)-12-Hydroxysydonic acid", "class": "bisabolane sesquiterpenoids" }, { "id": "Q75059772", "pubchem_id": "137635137", "type": "chemical", "label": "Sydowiol E", "class": "tris(pyrogallol ethers)" }, { "id": "Q77310100", "pubchem_id": "139584285", "type": "chemical", "label": "(-)-(R)-cyclo-hydroxysydonic acid", "class": "bisabolane sesquiterpenoids" }, { "id": "Q77563639", "pubchem_id": "139587338", "type": "chemical", "label": "Diorcinol H", "class": "diphenyl ethers" }, { "id": "Q77386497", "pubchem_id": "137661595", "type": "chemical", "label": "Sydowiol D", "class": "tris(pyrogallol ethers)" }, { "id": "Q77573908", "pubchem_id": "139587783", "type": "chemical", "label": "Diorcinol F", "class": "diphenyl ethers" }, { "id": "Q105221284", "pubchem_id": "139588049", "type": "chemical", "label": "(-)-(7R,10R)-iso-10-hydroxysydowic acid", "class": "bisabolane sesquiterpenoids" } ], "organisms": [ { "id": "Q10420082", "label": "Aspergillus versicolor" } ], "relations": [ [ "Q10420082", "Q77573908" ], [ "Q10420082", "Q77501858" ], [ "Q10420082", "Q77563639" ], [ "Q10420082", "Q77570484" ], [ "Q10420082", "Q77310100" ], [ "Q10420082", "Q105259575" ], [ "Q10420082", "Q77378494" ], [ "Q10420082", "Q105221284" ], [ "Q10420082", "Q77515989" ], [ "Q10420082", "Q77368740" ], [ "Q10420082", "Q105119535" ], [ "Q10420082", "Q77498956" ], [ "Q10420082", "Q77386497" ], [ "Q10420082", "Q75059772" ] ] }, "12048016": { "PMID": "12048016", "ArticleTitle": "Glucosinolates of seven medicinal plants from Thailand.", "AbstractText": "Nasturtium montanum was shown to contain glucobrassicin, 9-methylthionyl glucosinolate, oct-7-enyl glucosinolate, non-7-enyl glucosinolate, dec-7-enyl glucosinolate, methylsulfonyloctyl glucosinolate, methylsulfonylnonyl glucosinolate, methylsulfonyldecyl glucosinolate, benzyl glucosinolate, and Cleome chelidonii contained glucocapparin and glucocleomin. Raphanus sativus contained sulforaphene, plus sulforaphane, glucodehydroerucin, and gluconapin; Lepidum sativum contained benzyl glucosinolate and glucotropaeolin; Eruca versicaria contained glucoerucin; Cleome viscosa contained glucocapparin and glucocleomin, while Gynandropsis gynandra contained glucocapparin.", "id": "Q44016741", "doi": "10.1016/S0367-326X(02)00061-8", "chemicals": [ { "id": "Q104253435", "pubchem_id": "9601691", "type": "chemical", "label": "Glucobrassicin", "class": "Glucosinolates" }, { "id": "12048016CHEM1", "type": "chemical", "label": "9-methylthionyl glucosinolate", "class": "Glucosinolates" }, { "id": "12048016CHEM2", "type": "chemical", "label": "oct-7-enyl glucosinolate", "class": "Glucosinolates" }, { "id": "12048016CHEM3", "type": "chemical", "label": "non-7-enyl glucosinolate", "class": "Glucosinolates" }, { "id": "12048016CHEM4", "type": "chemical", "label": "dec-7-enyl glucosinolate", "class": "Glucosinolates" }, { "id": "12048016CHEM5", "type": "chemical", "label": "methylsulfonyloctyl glucosinolate", "class": "Glucosinolates" }, { "id": "12048016CHEM6", "type": "chemical", "label": "methylsulfonylnonyl glucosinolate", "class": "Glucosinolates" }, { "id": "12048016CHEM7", "type": "chemical", "label": "methylsulfonyldecyl glucosinolate", "class": "Glucosinolates" }, { "id": "12048016CHEM8", "type": "chemical", "label": "glucocapparin", "class": "Glucosinolates" }, { "id": "12048016CHEM9", "type": "chemical", "label": "glucodehydroerucin", "class": "Glucosinolates" }, { "id": "Q27106756", "pubchem_id": "656539", "type": "chemical", "label": "glucoerucin", "class": "Glucosinolates" }, { "id": "Q63398656", "pubchem_id": "9548620", "type": "chemical", "label": "Gluconapin", "class": "Glucosinolates" }, { "id": "Q110185018", "pubchem_id": "656498", "type": "chemical", "label": "glucotropaeolin", "class": "Glucosinolates" }, { "id": "Q27102224", "pubchem_id": "6537197", "type": "chemical", "label": "Benzyl glucosinolate ", "class": "Glucosinolates" }, { "id": "Q7294040", "pubchem_id": "6433206", "type": "chemical", "label": "sulforaphene", "class": "Glucosinolates" }, { "id": "Q104253438", "pubchem_id": "131751515", "type": "chemical", "label": "Glucocleomin", "class": "Glucosinolates" }, { "id": "Q424489", "pubchem_id": "5350", "type": "chemical", "label": "Sulforaphane", "class": "Glucosinolates" } ], "organisms": [ { "id": "Q5395935", "label": "Eruca versicaria" }, { "id": "Q19849772", "label": "Gynandropsis gynandra" }, { "id": "Q19732005", "label": "Nasturtium montanum" }, { "id": "Q15517536", "label": "Cleome chelidonii" }, { "id": "Q2978925", "label": "Cleome viscosa" }, { "id": "Q27033", "label": "Lepidium sativum" }, { "id": "Q7224565", "label": "Raphanus sativus" } ], "relations": [ [ "Q19732005", "Q104253435" ], [ "Q19732005", "12048016CHEM1" ], [ "Q19732005", "12048016CHEM2" ], [ "Q19732005", "12048016CHEM3" ], [ "Q19732005", "12048016CHEM4" ], [ "Q19732005", "12048016CHEM5" ], [ "Q19732005", "12048016CHEM6" ], [ "Q19732005", "12048016CHEM7" ], [ "Q19732005", "Q27102224" ], [ "Q15517536", "12048016CHEM8" ], [ "Q15517536", "Q104253438" ], [ "Q7224565", "Q7294040" ], [ "Q7224565", "Q424489" ], [ "Q7224565", "12048016CHEM9" ], [ "Q7224565", "Q63398656" ], [ "Q27033", "Q27102224" ], [ "Q27033", "Q110185018" ], [ "Q5395935", "Q27106756" ], [ "Q2978925", "12048016CHEM8" ], [ "Q2978925", "Q104253438" ], [ "Q19849772", "12048016CHEM8" ] ] }, "19180458": { "PMID": "19180458", "ArticleTitle": "Revision of the absolute configuration at C(23) of lanostanoids and isolation of secondary metabolites from formosan soft coral Nephthea erecta.", "AbstractText": "Three new oxygenated ergostanoids, 1-3, one known ergostanoid, 4, one new trinoreudesmadienone, 5, one new calamenene type sesquiterpene, 6, and one known aristolane-type sesquiterpene, (-)-aristolone (7), have been isolated from the AcOEt extract of the soft coral Nephthea erecta. The structures of these compounds were determined by extensive spectroscopic and X-ray crystallographic analysis, as well as Mosher's method. We revised the absolute configuration at C(23) in the side chain of some lanostanoids as a result of the Mosher's products of 1 (i.e., 1a and 1b). The cytotoxicities against selected cancer cells and the anti-inflammatory effects of these tested metabolites 1-7 were determined in vitro.", "id": "Q39889501", "doi": "10.1002/CBDV.200800015", "chemicals": [ { "id": "Q108654505", "type": "class", "label": "ergostanoids" }, { "id": "Q80218", "type": "class", "label": "calamenene type sesquiterpene" }, { "id": "19180458CHEM1", "pubchem_id": "", "type": "chemical", "label": "trinoreudesmadienone", "class": "" }, { "id": "Q82976182", "pubchem_id": "165536", "type": "chemical", "label": "(-)-aristolone", "class": "aristolane-type sesquiterpene" } ], "organisms": [ { "id": "Q3273134", "label": "Nephthea erecta" } ], "relations": [ [ "Q3273134", "Q108654505" ], [ "Q3273134", "19180458CHEM1" ], [ "Q3273134", "Q80218" ], [ "Q3273134", "Q82976182" ] ] }, "19535116": { "PMID": "19535116", "ArticleTitle": "Prenylated flavanones and flavanonols as chemical markers in Glycosmis species (Rutaceae).", "AbstractText": "Fifteen prenylated or geranylated flavanones and flavanonols were isolated from the leaf extracts of different Glycosmis species collected in Thailand and Malaysia. All structures were elucidated by spectroscopic methods, especially 1D and 2D NMR. Six compounds were described for the first time and two were only known so far as synthetic products. The chemotaxonomic significance of flavanoid accumulation within the genus Glycosmis is highlighted.", "id": "Q51658170", "doi": "10.1016/J.PHYTOCHEM.2009.05.007", "chemicals": [ { "id": "Q3073451", "type": "class", "label": "flavanones" }, { "id": "Q3073454", "type": "class", "label": "flavanonols" } ], "organisms": [ { "id": "Q3235310", "label": "Glycosmis" } ], "relations": [ [ "Q3235310", "Q3073451" ], [ "Q3235310", "Q3073454" ] ] }, "17268990": { "PMID": "17268990", "ArticleTitle": "Eupatoriopicrin 19-O-Linolenoate and Other Constituents from Eupatorium cannabium.", "AbstractText": "The investigation of the roots and aerial parts of EUPATORIUM CANNABIUM afforded, in addition to the sesquiterpene lactones eupatolide, eupatoriopicrin, and eucannabinolide isolated previously, eight further lactones, three of which are new. Furthermore, in addition to known compounds, a new clerodane derivative and two further tremetone derivatives as well as 10-acetoxyneryl acetate were isolated.", "id": "Q79703817", "doi": "10.1055/S-2006-962665", "chemicals": [ { "id": "Q27106570", "pubchem_id": "5281461", "type": "chemical", "label": "Eupatoriopicrin", "class": "sesquiterpene lactones" }, { "id": "Q27106567", "pubchem_id": "5281460", "type": "chemical", "label": "Eupatolide", "class": "sesquiterpene lactones" }, { "id": "Q27106876", "pubchem_id": "5281471", "type": "chemical", "label": "Eucannabinolide", "class": "sesquiterpene lactones" }, { "id": "Q59078", "type": "class", "label": "lactones" }, { "id": "Q67866114", "pubchem_id": "13857176", "type": "chemical", "label": "10-acetoxyneryl acetate", "class": "" }, { "id": "Q106040655", "pubchem_id": "21144838", "type": "chemical", "label": "clerodane", "class": "" }, { "id": "Q18208345", "pubchem_id": "78673", "type": "chemical", "label": "tremetone", "class": "" } ], "organisms": [ { "id": "Q744339", "label": "Eupatorium cannabinum" } ], "relations": [ [ "Q744339", "Q27106567" ], [ "Q744339", "Q27106570" ], [ "Q744339", "Q27106876" ], [ "Q744339", "Q59078" ], [ "Q744339", "Q106040655" ], [ "Q744339", "Q18208345" ], [ "Q744339", "Q67866114" ] ] }, "18986198": { "PMID": "18986198", "ArticleTitle": "Cytotoxic polyketides from a marine-derived fungus Aspergillus glaucus.", "AbstractText": "Eight new aromatic polyketides (2, 4-6, 8, 14, 16, and 17) together with eight known analogues (3, 7, 9-13, and 15) were isolated from the marine-derived fungus Aspergillus glaucus. The structures and stereochemistry of the new compounds were elucidated by spectroscopic and chemical methods, and their cytotoxicities were evaluated against the HL-60 and A-549 cell lines.", "id": "Q51675392", "doi": "10.1021/NP800303T", "chemicals": [ { "id": "Q66124525", "type": "class", "label": "aromatic polyketides" } ], "organisms": [ { "id": "Q18230950", "label": "Aspergillus glaucus" } ], "relations": [ [ "Q18230950", "Q66124525" ] ] }, "2045821": { "PMID": "2045821", "ArticleTitle": "Identification and characterization of two new methylicosadienoic acids from Erylus formosus.", "AbstractText": "The novel fatty acids 18-methyl-5,9-icosadienoic acid [1] and 19-methyl-5,9-icosadienoic acid [2] were identified in the Caribbean sponge Erylus formosus. Other interesting fatty acids identified were the branched acids 3-methylpentadecanoic acid and 3-methylhexadecanoic acid, which are known to possess larvicidal activity. The most stable conformation of the new acid 19-methyl-5,9-icosadienoic acid is also presented as predicted by Molecular Mechanics (MM2) calculations. The sterol composition of E. formosus is also reported.", "id": "Q54690050", "doi": "10.1021/NP50073A041", "chemicals": [ { "id": "2045821CHEM1", "pubchem_id": "5312317", "type": "chemical", "label": "18-methyl-5,9-icosadienoic acid", "class": "fatty acids" }, { "id": "2045821CHEM2", "pubchem_id": "3035622", "type": "chemical", "label": "19-methyl-5,9-icosadienoic acid", "class": "fatty acids" }, { "id": "Q82943980", "pubchem_id": "3016330", "type": "chemical", "label": "3-Methylhexadecanoic acid", "class": "fatty acids" }, { "id": "Q82224196", "pubchem_id": "5282693", "type": "chemical", "label": "3-methylpentadecanoic acid", "class": "fatty acids" } ], "organisms": [ { "id": "Q3521354", "label": "Erylus formosus" } ], "relations": [ [ "Q3521354", "2045821CHEM1" ], [ "Q3521354", "2045821CHEM2" ], [ "Q3521354", "Q82224196" ], [ "Q3521354", "Q82943980" ] ] }, "32902982": { "PMID": "32902982", "ArticleTitle": "Penithoketone and Penithochromones A-L, Polyketides from the Deep-Sea-Derived Fungus Penicillium thomii YPGA3.", "AbstractText": "Twelve new polyketides, including a naphthoquinone derivative, penithoketone (1), and 11 chromone derivatives, penithochromones A-L (2-12), together with three known compounds (13-15) were isolated from the deep-sea-derived fungus Penicillium thomii YPGA3. The structures of the metabolites were elucidated based on extensive analyses of the spectroscopic data, and the configuration of 1 was resolved by quantum chemical calculations of NMR shifts and ECD spectra and comparisons to experimental data. Compound 1, containing a naphthoquinone-derived moiety substituted with a butenolide unit, represents a new modified naphthoquinone skeleton. Interestingly, the 5,7-dioxygenated chromone derivatives 2-13 possessed different alkyl acid or alkyl ester side chain lengths, and those with side chain lengths of seven carbon atoms were discovered from nature for the first time. The metabolites were evaluated for their cytotoxicity against four cancer cell lines; compounds 1 and 15 were found to be active, with IC50 values ranging from 4.9 to 9.1 \u03bcM.", "id": "Q99236987", "doi": "10.1021/ACS.JNATPROD.0C00571", "chemicals": [ { "id": "Q110169358", "pubchem_id": "156580886", "type": "chemical", "label": "Penithochromone H", "class": "polyketides" }, { "id": "Q110169359", "pubchem_id": "156580887", "type": "chemical", "label": "Penithochromone I", "class": "polyketides" }, { "id": "Q110169362", "pubchem_id": "156580889", "type": "chemical", "label": "Penithochromone K", "class": "polyketides" }, { "id": "Q110169363", "pubchem_id": "156580890", "type": "chemical", "label": "Penithoketone", "class": "polyketides" }, { "id": "Q110169361", "pubchem_id": "156580888", "type": "chemical", "label": "Penithochromone J", "class": "polyketides" }, { "id": "Q110169366", "pubchem_id": "156580893", "type": "chemical", "label": "Penithochromone C", "class": "polyketides" }, { "id": "Q110169367", "pubchem_id": "156580894", "type": "chemical", "label": "Penithochromone D", "class": "polyketides" }, { "id": "Q110169364", "pubchem_id": "156580891", "type": "chemical", "label": "Penithochromone A", "class": "polyketides" }, { "id": "Q110169365", "pubchem_id": "156580892", "type": "chemical", "label": "Penithochromone B", "class": "polyketides" }, { "id": "Q110169370", "pubchem_id": "156580897", "type": "chemical", "label": "Penithochromone G", "class": "polyketides" }, { "id": "Q110169368", "pubchem_id": "156580895", "type": "chemical", "label": "Penithochromone E", "class": "polyketides" }, { "id": "Q110169369", "pubchem_id": "156580896", "type": "chemical", "label": "Penithochromone F", "class": "polyketides" }, { "id": "Q115972176", "pubchem_id": "75528853", "type": "chemical", "label": "Penithochromone L", "class": "polyketides" } ], "organisms": [ { "id": "Q10623076", "label": "Penicillium thomii" } ], "relations": [ [ "Q10623076", "Q110169363" ], [ "Q10623076", "Q110169364" ], [ "Q10623076", "Q110169365" ], [ "Q10623076", "Q110169366" ], [ "Q10623076", "Q110169367" ], [ "Q10623076", "Q110169368" ], [ "Q10623076", "Q110169369" ], [ "Q10623076", "Q110169370" ], [ "Q10623076", "Q110169358" ], [ "Q10623076", "Q110169359" ], [ "Q10623076", "Q110169361" ], [ "Q10623076", "Q110169362" ], [ "Q10623076", "Q115972176" ] ] }, "15114506": { "PMID": "15114506", "ArticleTitle": "Acetylcholinesterase enzyme inhibitory effects of amaryllidaceae alkaloids.", "AbstractText": "Twenty-three Amaryllidaceae alkaloids having several different ring types were evaluated for their acetylcholinesterase enzyme (AChE) inhibitory activity. The alkaloid 1- O-acetyllycorine (IC50 : 0.96 +/- 0.04) showed significant AChE inhibitory activity. In addition, crinine (IC50 : 461 +/- 14), crinamidine (IC50 : 300 +/- 27), epivittatine (IC50 : 239 +/- 9), 6-hydroxycrinamine (IC50 : 490 +/- 7), N-desmethyl-8alpha-ethoxypretazettine (IC50 : 234 +/- 13) N-desmethyl-8beta-ethoxypretazettine (IC50 : 419 +/- 8), lycorine (IC50 : 213 +/- 1), and 1,2-di- O-acetyllycorine (IC50 : 211 +/- 10) had weak activity. Lycorine-type alkaloids were the most active alkaloids with 1- O-acetyllycorine exhibiting inhibitory effects two-fold more potent than that of galanthamine.", "id": "Q44870308", "doi": "10.1055/S-2004-818919", "chemicals": [ { "id": "Q27114310", "pubchem_id": "399204", "type": "chemical", "label": "Crinamidine", "class": "alkaloids" }, { "id": "Q27114096", "pubchem_id": "443672", "type": "chemical", "label": "1-O-Acetyllycorine", "class": "alkaloids" }, { "id": "Q27114311", "pubchem_id": "398937", "type": "chemical", "label": "Crinine", "class": "alkaloids" }, { "id": "Q105242583", "pubchem_id": "12304132", "type": "chemical", "label": "epivittatine", "class": "alkaloids" }, { "id": "Q105382710", "pubchem_id": "44559503", "type": "chemical", "label": "6-hydroxycrinamine", "class": "alkaloids" }, { "id": "Q104990840", "pubchem_id": "15483835", "type": "chemical", "label": "N-desmethyl-8alpha-ethoxypretazettine", "class": "alkaloids" }, { "id": "Q104990841", "pubchem_id": "15483836", "type": "chemical", "label": "N-desmethyl-8beta-ethoxypretazettine", "class": "alkaloids" }, { "id": "Q420314", "pubchem_id": "72378", "type": "chemical", "label": "Lycorine", "class": "alkaloids" }, { "id": "Q105154209", "pubchem_id": "10429288", "type": "chemical", "label": "1,2-di-O-acetyllycorine", "class": "alkaloids" } ], "organisms": [ { "id": "Q155848", "label": "Amaryllidaceae" } ], "relations": [ [ "Q155848", "Q27114096" ], [ "Q155848", "Q27114311" ], [ "Q155848", "Q27114310" ], [ "Q155848", "Q105242583" ], [ "Q155848", "Q105382710" ], [ "Q155848", "Q104990840" ], [ "Q155848", "Q104990841" ], [ "Q155848", "Q420314" ], [ "Q155848", "Q105154209" ] ] }, "10737204": { "PMID": "10737204", "ArticleTitle": "Coumarin-related compounds as plant growth inhibitors from two rutaceous plants in Thailand.", "AbstractText": "Chemical investigation of naturally occurring plant growth inhibitors from Rutaceous plants in Thailand led us to identify five 7-methoxycoumarins and one 5,7-dimethoxycoumarin from Murraya paniculata, and six furanocoumarins from Citrus aurantifolia. Of these compounds, murranganon senecioate (1) is a new natural compound found in M. paniculata. Minumicrolin (6) was found to be highly active against the 2nd leaf sheath elongation of rice seedlings.", "id": "Q57147253", "doi": "10.1271/BBB.64.420", "chemicals": [ { "id": "10737204CLASS1", "type": "class", "label": "7-methoxycoumarins" }, { "id": "Q3599218", "pubchem_id": "2775", "type": "chemical", "label": "5,7-dimethoxycoumarin", "class": "" }, { "id": "Q414774", "type": "class", "label": "furanocoumarins" }, { "id": "Q27117043", "pubchem_id": "10931", "type": "chemical", "label": "murranganon senecioate", "class": "" }, { "id": "Q103818464", "pubchem_id": "389002", "type": "chemical", "label": "Minumicrolin", "class": "" } ], "organisms": [ { "id": "Q104864732", "label": "Citrus aurantifolia" }, { "id": "Q238591", "label": "Murraya paniculata" } ], "relations": [ [ "Q238591", "10737204CLASS1" ], [ "Q238591", "Q3599218" ], [ "Q104864732", "Q414774" ], [ "Q238591", "Q27117043" ], [ "Q238591", "Q103818464" ] ] }, "16792401": { "PMID": "16792401", "ArticleTitle": "Ethyl-branched aldehydes, ketones, and diketones from caimans (Caiman and Paleosuchus; Crocodylia, Reptilia).", "AbstractText": "Secretions from the paracloacal glands of alligators (Alligator spp.) and caimans (Caiman spp., Melanosuchus niger, and Paleosuchus spp.) were examined by GC-MS. The secretions of the common caiman (C. crocodilus), the broad-snouted caiman (C. latirostris), the yacare caiman (C. yacare), the dwarf caiman (P. palpebrosus), and the smooth-fronted caiman (P. trigonatus) yielded a new family of 43 aliphatic carbonyl compounds that includes aldehydes, ketones, and beta-diketones with an ethyl branch adjacent to the carbonyl group. The identification of these glandular components and the syntheses and stereochemical investigations of selected compounds are described.", "id": "Q31045908", "doi": "10.1021/NP0600797", "chemicals": [ { "id": "Q101497", "type": "class", "label": "aldehydes" }, { "id": "Q170744", "type": "class", "label": "ketones" } ], "organisms": [ { "id": "Q272582", "label": "Caiman crocodilus" }, { "id": "Q644453", "label": "Caiman latirostris" }, { "id": "Q756678", "label": "Caiman yacare" }, { "id": "Q757363", "label": "Paleosuchus palpebrosus" }, { "id": "Q473521", "label": "Paleosuchus trigonatus" } ], "relations": [ [ "Q272582", "Q101497" ], [ "Q272582", "Q170744" ], [ "Q644453", "Q101497" ], [ "Q644453", "Q170744" ], [ "Q756678", "Q101497" ], [ "Q756678", "Q170744" ], [ "Q757363", "Q101497" ], [ "Q757363", "Q170744" ], [ "Q473521", "Q101497" ], [ "Q473521", "Q170744" ] ] }, "18479164": { "PMID": "18479164", "ArticleTitle": "Hualyzin, a symmetrical urea derivative isolated from Penicillium herquei isolate GA4.", "AbstractText": "Penicillium herquei isolate GA4 was isolated from the infected Conchocelis of Porphyra yezoensis. A large-scale fermentation using yeast extract sucrose medium and repeated chromatography afforded a new symmetrical urea derivative, hualyzin (1). The structure was determined by detailed NMR spectroscopic investigations and MS fragmentation analysis.", "id": "Q34778562", "doi": "10.1021/NP700751B", "chemicals": [ { "id": "Q77310813", "pubchem_id": "139584356", "type": "chemical", "label": "hualyzin", "class": "urea derivative" } ], "organisms": [ { "id": "Q10622946", "label": "Penicillium herquei" } ], "relations": [ [ "Q10622946", "Q77310813" ] ] }, "15900287": { "PMID": "15900287", "ArticleTitle": "In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4/5 phenotypes.", "AbstractText": "Phytochemical-mediated modulation of cytochrome P450 (CYP) activity may underlie many herb-drug interactions. Single-time point phenotypic metabolic ratios were used to determine whether long-term supplementation of goldenseal ( Hydrastis canadensis ), black cohosh ( Cimicifuga racemosa ), kava kava ( Piper methysticum ), or valerian ( Valeriana officinalis ) extracts affected CYP1A2, CYP2D6, CYP2E1, or CYP3A4/5 activity. Twelve healthy volunteers (6 women) were randomly assigned to receive goldenseal, black cohosh, kava kava, or valerian for 28 days. For each subject, a 30-day washout period was interposed between each supplementation phase. Probe drug cocktails of midazolam and caffeine, followed 24 hours later by chlorzoxazone and debrisoquin (INN, debrisoquine), were administered before (baseline) and at the end of supplementation. Presupplementation and postsupplementation phenotypic trait measurements were determined for CYP3A4/5, CYP1A2, CYP2E1, and CYP2D6 by use of 1-hydroxymidazolam/midazolam serum ratios (1-hour sample), paraxanthine/caffeine serum ratios (6-hour sample), 6-hydroxychlorzoxazone/chlorzoxazone serum ratios (2-hour sample), and debrisoquin urinary recovery ratios (8-hour collection), respectively. The content of purported \"active\" phytochemicals was determined for each supplement. Comparisons of presupplementation and postsupplementation phenotypic ratio means revealed significant inhibition (approximately 40%) of CYP2D6 (difference, -0.228; 95% confidence interval [CI], -0.268 to -0.188) and CYP3A4/5 (difference, -1.501; 95% CI, -1.840 to -1.163) activity for goldenseal. Kava produced significant reductions (approximately 40%) in CYP2E1 only (difference, -0.192; 95% CI, -0.325 to -0.060). Black cohosh also exhibited statistically significant inhibition of CYP2D6 (difference, -0.046; 95% CI, -0.085 to -0.007), but the magnitude of the effect (approximately 7%) did not appear to be clinically relevant. No significant changes in phenotypic ratios were observed for valerian. Botanical supplements containing goldenseal strongly inhibited CYP2D6 and CYP3A4/5 activity in vivo, whereas kava inhibited CYP2E1 and black cohosh weakly inhibited CYP2D6. Accordingly, serious adverse interactions may result from the concomitant ingestion of goldenseal supplements and drugs that are CYP2D6 and CYP3A4/5 substrates. Kava kava and black cohosh may interact with CYP2E1 and CYP2D6 substrates, respectively. Valerian appears to be less likely to produce CYP-mediated herb-drug interactions.", "id": "Q34419646", "doi": "10.1016/J.CLPT.2005.01.009", "chemicals": [ ], "organisms": [ ], "relations": [ ] }, "11421732": { "PMID": "11421732", "ArticleTitle": "Dendocarbins A--N, new drimane sesquiterpenes from the nudibranch Dendrodoris carbunculosa.", "AbstractText": "Fourteen new sesquiterpenes of the drimane series dendocarbins A--N (1--14) were obtained from ethanol extracts of the Japanese nudibranch Dendrodoris carbunculosa, together with two known compounds, isodrimeninol (15) and 11-epivaldiviolide (16). All structures were elucidated mainly from spectral data, and most of these sesquiterpenes were found to exhibit cytotoxicity. In addition, isodrimeninol (15), the major sesquiterpene of this animal, was found to have a sharp peppery taste.", "id": "Q43650129", "doi": "10.1021/NP000639G", "chemicals": [ { "id": "Q105299814", "pubchem_id": "11021755", "type": "chemical", "label": "Dendocarbin G", "class": "drimane sesquiterpenes" }, { "id": "Q105284697", "pubchem_id": "10857966", "type": "chemical", "label": "Dendocarbin C", "class": "drimane sesquiterpenes" }, { "id": "Q104993313", "pubchem_id": "11322321", "type": "chemical", "label": "Isodrimeninol", "class": "sesquiterpenes" }, { "id": "Q105176793", "pubchem_id": "11129173", "type": "chemical", "label": "Dendocarbin F", "class": "drimane sesquiterpenes" }, { "id": "Q105149645", "pubchem_id": "10879534", "type": "chemical", "label": "Dendocarbin B", "class": "drimane sesquiterpenes" }, { "id": "Q105187319", "pubchem_id": "21592441", "type": "chemical", "label": "Dendocarbin N", "class": "drimane sesquiterpenes" }, { "id": "Q105341773", "pubchem_id": "10354740", "type": "chemical", "label": "11-Epivaldiviolide", "class": "sesquiterpenes" }, { "id": "Q105262222", "pubchem_id": "10922891", "type": "chemical", "label": "Dendocarbin H", "class": "drimane sesquiterpenes" }, { "id": "Q105008344", "pubchem_id": "11129314", "type": "chemical", "label": "Dendocarbin D", "class": "drimane sesquiterpenes" }, { "id": "Q105256309", "pubchem_id": "10911949", "type": "chemical", "label": "Dendocarbin A", "class": "drimane sesquiterpenes" }, { "id": "Q104994379", "pubchem_id": "10945374", "type": "chemical", "label": "Dendocarbin M", "class": "drimane sesquiterpenes" }, { "id": "Q105113321", "pubchem_id": "11065317", "type": "chemical", "label": "Dendocarbin E", "class": "drimane sesquiterpenes" }, { "id": "Q104994382", "pubchem_id": "11747525", "type": "chemical", "label": "Dendocarbin L", "class": "drimane sesquiterpenes" }, { "id": "Q105342598", "pubchem_id": "10334643", "type": "chemical", "label": "Dendocarbin J", "class": "drimane sesquiterpenes" }, { "id": "Q105342596", "pubchem_id": "11808534", "type": "chemical", "label": "Dendocarbin K", "class": "drimane sesquiterpenes" }, { "id": "Q105314037", "pubchem_id": "11109174", "type": "chemical", "label": "Dendocarbin I", "class": "drimane sesquiterpenes" } ], "organisms": [ { "id": "Q13584728", "label": "Dendrodoris carbunculosa" } ], "relations": [ [ "Q13584728", "Q105256309" ], [ "Q13584728", "Q105149645" ], [ "Q13584728", "Q105284697" ], [ "Q13584728", "Q105008344" ], [ "Q13584728", "Q105113321" ], [ "Q13584728", "Q105176793" ], [ "Q13584728", "Q105299814" ], [ "Q13584728", "Q105262222" ], [ "Q13584728", "Q105314037" ], [ "Q13584728", "Q105342598" ], [ "Q13584728", "Q105342596" ], [ "Q13584728", "Q104994382" ], [ "Q13584728", "Q104994379" ], [ "Q13584728", "Q105187319" ], [ "Q13584728", "Q104993313" ], [ "Q13584728", "Q105341773" ] ] }, "14646314": { "PMID": "14646314", "ArticleTitle": "Quantitative analysis of ephedrine analogues from ephedra species using 1H-NMR.", "AbstractText": "Four ephedrine analogues such as ephedrine, pseudoephedrine, methylephedrine, and methylpseudoephedrine were determined by (1)H-NMR from Ephedra species. In the region of delta 5.0-4.0, the signals of H-1 attached to the same carbon with a hydroxyl, were well separated from each other in CDCl(3). The amount of each alkaloid was calculated by the relative ratio of the intensity of H-1 signal to the known amount of internal standard, 200 microg of anthracene. This method allows rapid determination of the quantity of four ephedrine alkaloids from Ephedra species. The amount of these alkaloids was in the range of 1.0-2.0% of dry weight depending on the plant materials.", "id": "Q44674672", "doi": "10.1248/CPB.51.1382", "chemicals": [ { "id": "Q263958", "pubchem_id": "7028", "type": "chemical", "label": "Pseudoephedrine", "class": "alkaloid" }, { "id": "Q6951379", "pubchem_id": "7059596", "type": "chemical", "label": "methylpseudoephedrine", "class": "alkaloid" }, { "id": "Q219626", "pubchem_id": "9294", "type": "chemical", "label": "Ephedrine", "class": "alkaloid" }, { "id": "Q2331543", "pubchem_id": "64782", "type": "chemical", "label": "Methylephedrine", "class": "alkaloid" } ], "organisms": [ { "id": "Q838000", "label": "Ephedra" } ], "relations": [ [ "Q838000", "Q219626" ], [ "Q838000", "Q263958" ], [ "Q838000", "Q2331543" ], [ "Q838000", "Q6951379" ] ] }, "9917295": { "PMID": "9917295", "ArticleTitle": "Three new metabolites from marine-derived fungi of the genera coniothyrium and microsphaeropsis.", "AbstractText": "The marine sponges Ectyplasia perox and Myxilla incrustans were investigated for associated fungal strains. Among others, a Coniothyrium sp., from E. perox, and a Microsphaeropsis sp., from M. incrustans, were isolated, cultured, and investigated for their biologically active secondary metabolite contents. The new compound microsphaeropsisin (1) together with the known compounds (R)-mellein (4), (3R,4S)-hydroxymellein (5), (3R,4R)-hydroxymellein (6), and 4, 8-dihydroxy-3,4-dihydro-2H-naphthalen-1-one (7) were isolated from the Microsphaeropsis sp. From culture extracts of the Coniothyrium sp., the new compounds (3S)-(3',5'-dihydroxyphenyl)butan-2-one (2) and 2-(1'(E)-propenyl)-octa-4(E),6(Z)-diene-1,2-diol (3), together with the six known metabolites (3R)-6-methoxymellein (8), (3R)-6-methoxy-7-chloromellein (9), cryptosporiopsinol (10), phenylethanol, (p-hydroxyphenyl)ethanol, and 2-(hydroxymethyl)furan, were obtained. All structures were determined using spectroscopic methods. With the exception of 3, all compounds were tested for their antimicrobial properties, and all but 10 demonstrated significant antimicrobial activity in agar diffusion assays.", "id": "Q77901220", "doi": "10.1021/NP980341E", "chemicals": [ { "id": "Q3740715", "pubchem_id": "7409", "type": "chemical", "label": "phenylethanol", "class": "" }, { "id": "Q104399016", "pubchem_id": "114679", "type": "chemical", "label": "(R)-mellein", "class": "" }, { "id": "Q27284207", "pubchem_id": "10262028", "type": "chemical", "label": "(3R,4S)-hydroxymellein", "class": "" }, { "id": "Q77373436", "pubchem_id": "9993704", "type": "chemical", "label": "Microsphaeropsisin", "class": "" }, { "id": "Q27294545", "pubchem_id": "10420140", "type": "chemical", "label": "(3R,4R)-hydroxymellein", "class": "" }, { "id": "9917295CHEM1", "type": "chemical", "label": "4,8-dihydroxy-3,4-dihydro-2H-naphthalen-1-one", "class": "" }, { "id": "Q75055137", "pubchem_id": "10261700", "type": "chemical", "label": "(3S)-(3',5'-dihydroxyphenyl)butan-2-one", "class": "" }, { "id": "9917295CHEM2", "type": "chemical", "label": "2-(1'(E)-propenyl)-octa-4(E),6(Z)-diene-1,2-diol", "class": "" }, { "id": "Q76005998", "pubchem_id": "83412", "type": "chemical", "label": "(3R)-6-methoxymellein", "class": "" }, { "id": "9917295CHEM3", "type": "chemical", "label": "(3R)-6-methoxy-7-chloromellein", "class": "" }, { "id": "Q105182478", "pubchem_id": "155978925", "type": "chemical", "label": "cryptosporiopsinol", "class": "" }, { "id": "9917295CHEM4", "type": "chemical", "label": "phenylethanol", "class": "" }, { "id": "Q27114094", "pubchem_id": "102803", "type": "chemical", "label": "(p-hydroxyphenyl)ethanol", "class": "" }, { "id": "Q27335", "pubchem_id": "7361", "type": "chemical", "label": "2-(hydroxymethyl)furan", "class": "" } ], "organisms": [ { "id": "Q3686995", "label": "Coniothyrium" }, { "id": "Q10584803", "label": "Microsphaeropsis" } ], "relations": [ [ "Q10584803", "Q77373436" ], [ "Q10584803", "Q104399016" ], [ "Q10584803", "Q27284207" ], [ "Q10584803", "Q27294545" ], [ "Q10584803", "9917295CHEM1" ], [ "Q3686995", "Q75055137" ], [ "Q3686995", "9917295CHEM2" ], [ "Q3686995", "Q76005998" ], [ "Q3686995", "9917295CHEM3" ], [ "Q3686995", "Q105182478" ], [ "Q3686995", "9917295CHEM4" ], [ "Q3686995", "Q27114094" ], [ "Q3686995", "Q27335" ] ] }, "12482460": { "PMID": "12482460", "ArticleTitle": "Antioxidant flavonoids from leaves of Polygonum hydropiper L.", "AbstractText": "Ten flavonoid compounds were isolated from the dried leaves of Polygonum hydropiper L. (Laksa leaves), and identified as 3-O-alpha-L-rhamnopyranosyloxy-3',4',5,7-tetrahydroxyflavone; 3-O-beta-D-glucopyranosyloxy-4',5,7-trihydroxyflavone; 6-hydroxyapigenin; 6\"-O-(3,4,5-trihydroxybenzoyl) 3-O-beta-D-glucopyranosyloxy-3', 4', 5, 7-tetrahydroxyflavone; scutillarein; 6-hydroxyluteolin; 3',4',5,6,7-pentahydroxyflavone; 6-hydroxyluteolin-7-O-beta-D-glucopyranoside; quercetin 3-O-beta-D-glucuronide; 2\"-O-(3,4,5-trihydroxybenzoyl) quercitrin; quercetin. Evaluation of the antioxidative activity, conducted in vitro, by using electron spin resonance (ESR) and ultraviolet visible (UV-vis) spectrophotometric assays, showed that these isolated flavonoids possess strong antioxidative capabilities. Measurement of the Trolox equivalent antioxidant capacity (TEAC) values, against ABTS (2,2'-azinobis(3-ethyl-benzo-thiazoline-6-sulphonic acid) radicals and phenyl-tert-butyl nitrone (PBN) azo initiator (AI) also showed strong anti-oxidative activity. The most powerful of the antioxidants was 2\"-O-(3,4,5-trihydroxybenzoyl) quercitrin (galloyl quercitrin). A combination of two flavonoid compounds was tested for synergistic anti-oxidative capacity, but no significant improvement was observed.", "id": "Q44249338", "doi": "10.1016/S0031-9422(02)00504-6", "chemicals": [ { "id": "12482460CHEM1", "type": "chemical", "label": "3-O-alpha-L-rhamnopyranosyloxy-3',4',5,7-tetrahydroxyflavone", "class": "flavonoid" }, { "id": "12482460CHEM2", "type": "chemical", "label": "3-O-beta-D-glucopyranosyloxy-4',5,7-trihydroxyflavone", "class": "flavonoid" }, { "id": "Q2058351", "pubchem_id": "5281697", "type": "chemical", "label": "6-hydroxyapigenin", "class": "flavonoid" }, { "id": "12482460CHEM3", "type": "chemical", "label": "6\"-O-(3,4,5-trihydroxybenzoyl) 3-O-beta-D-glucopyranosyloxy-3', 4', 5, 7-tetrahydroxyflavone", "class": "flavonoid" }, { "id": "12482460CHEM4", "type": "chemical", "label": "scutillarein", "class": "flavonoid" }, { "id": "Q23055354", "pubchem_id": "5281642", "type": "chemical", "label": "6-hydroxyluteolin", "class": "flavonoid" }, { "id": "12482460CHEM5", "pubchem_id": "85981660", "type": "chemical", "label": "3',4',5,6,7-pentahydroxyflavone", "class": "flavonoid" }, { "id": "12482460CHEM6", "type": "chemical", "label": "6-hydroxyluteolin-7-O-beta-D-glucopyranoside", "class": "flavonoid" }, { "id": "Q6871627", "pubchem_id": "5274585", "type": "chemical", "label": "quercetin 3-O-beta-D-glucuronide", "class": "flavonoid" }, { "id": "12482460CHEM7", "type": "chemical", "label": "2\"-O-(3,4,5-trihydroxybenzoyl) quercitrin", "class": "flavonoid" }, { "id": "Q409478", "pubchem_id": "5280343", "type": "chemical", "label": "quercetin", "class": "flavonoid" }, { "id": "Q105145966", "pubchem_id": "10031482", "type": "chemical", "label": "2''-O-Galloylquercitrin", "class": "flavonoid" } ], "organisms": [ { "id": "Q160113", "label": "Polygonum hydropiper" } ], "relations": [ [ "Q160113", "12482460CHEM1" ], [ "Q160113", "12482460CHEM2" ], [ "Q160113", "Q2058351" ], [ "Q160113", "12482460CHEM3" ], [ "Q160113", "12482460CHEM4" ], [ "Q160113", "Q23055354" ], [ "Q160113", "12482460CHEM5" ], [ "Q160113", "12482460CHEM6" ], [ "Q160113", "Q6871627" ], [ "Q160113", "12482460CHEM7" ], [ "Q160113", "Q409478" ], [ "Q160113", "Q105145966" ] ] }, "15332867": { "PMID": "15332867", "ArticleTitle": "Cytotoxic lissoclimide-type diterpenes from the molluscs Pleurobranchusalbiguttatus and Pleurobranchus forskalii.", "AbstractText": "Three new chlorinated diterpenes, 6-8, along with five known ones, 1-5, were isolated from the molluscs Pleurobranchus albiguttatus and P. forskalii collected in the Philippines. These diterpenes are presumably metabolites of a Lissoclinum species of ascidian on which the molluscs have fed. The structures of the new compounds were determined by interpretation of their spectral data. Compounds 1 and 2 were found to be potent cytotoxins in the National Cancer Institute's screening panel of 60 tumor cell lines and showed some selectivity for melanomas. Two other samples exhibited solid tumor selectivity in a soft agar disk diffusion assay.", "id": "Q45033604", "doi": "10.1021/NP0499620", "chemicals": [ { "id": "Q59447", "type": "class", "label": "diterpenes" } ], "organisms": [ { "id": "Q6915340", "label": "Pleurobranchus albiguttatus" }, { "id": "Q3906681", "label": "Pleurobranchus forskalii" } ], "relations": [ [ "Q6915340", "Q59447" ], [ "Q3906681", "Q59447" ] ] }, "31855780": { "PMID": "31855780", "ArticleTitle": "Lanostane triterpenoids from cultivated fruiting bodies of the wood-rot basidiomycete Ganoderma casuarinicola.", "AbstractText": "Sixteen previously undescribed lanostane-type triterpenoids (1-16), together with fourteen known compounds, were isolated from cultivated fruiting bodies of the basidiomycete Ganoderma casuarinicola, a recently described species. The structures were elucidated on the basis of NMR spectroscopic and mass spectrometry data. Two of these compounds, 9 and 10, showed antimalarial activity with IC50 values of 9.7 and 9.2\u00a0\u03bcg/ml, respectively.", "id": "Q92121428", "doi": "10.1016/J.PHYTOCHEM.2019.112225", "chemicals": [ { "id": "Q108527275", "type": "class", "label": "Lanostane triterpenoids" } ], "organisms": [ { "id": "Q105785934", "label": "Ganoderma casuarinicola" } ], "relations": [ [ "Q105785934", "Q108527275" ] ] }, "11520227": { "PMID": "11520227", "ArticleTitle": "Cytotoxic diacetylenes from the stony coral Montipora species.", "AbstractText": "Ten new (1, 4-6, 9-14) and four known (2, 3, 7, 8) diacetylenes have been isolated from a brine shrimp active fraction of the methanolic extract of the stony coral Montipora sp. The structures were determined by combined spectroscopic methods. The compounds exhibited significant cytotoxicity against a small panel of human solid tumor cell lines. Montiporyne A (15), a previously reported congener, was also found to induce apoptosis in human colon tumor cell.", "id": "Q74419290", "doi": "10.1021/NP010148B", "chemicals": [ { "id": "Q9138795", "type": "class", "label": "diacetylenes" }, { "id": "Q110176796", "pubchem_id": "10353271", "type": "chemical", "label": "Montiporyne A", "class": "" } ], "organisms": [ { "id": "Q145782", "label": "Montipora" } ], "relations": [ [ "Q145782", "Q9138795" ], [ "Q145782", "Q110176796" ] ] }, "25974853": { "PMID": "25974853", "ArticleTitle": "Structural analysis of novel trehalose-based oligosaccharides from extremely stress-tolerant ascospores of Neosartorya fischeri (Aspergillus fischeri).", "AbstractText": "Different fungi, including the genera Neosartorya, Byssochlamys and Talaromyces, produce (asco)spores that survive pasteurization treatments and are regarded as the most stress-resistant eukaryotic cells. Here, the NMR analysis of a series of trehalose-based oligosaccharides, being compatible solutes that are accumulated to high levels in ascospores of the fungus Neosartorya fischeri, is presented. These oligosaccharides consist of an \u03b1,\u03b1-trehalose backbone, extended with one [\u03b1-D-Glcp-(1 \u2192 6)-\u03b1-D-Glcp-(1 \u2194 1)-\u03b1-D-Glcp; isobemisiose], two [\u03b1-D-Glcp-(1 \u2192 6)-\u03b1-D-Glcp-(1 \u2192 6)-\u03b1-D-Glcp-(1 \u2194 1)-\u03b1-D-Glcp] or three [\u03b1-D-Glcp-(1 \u2192 6)-\u03b1-D-Glcp-(1 \u2192 6)-\u03b1-D-Glcp-(1 \u2192 6)-\u03b1-D-Glcp-(1 \u2194 1)-\u03b1-D-Glcp] glucose units. The tetra- and pentasaccharide, dubbed neosartose and fischerose, respectively, have not been reported before to occur in nature.", "id": "Q35631915", "doi": "10.1016/J.CARRES.2015.04.006", "chemicals": [ { "id": "Q105133092", "pubchem_id": "14605946", "type": "chemical", "label": "Isobemisiose", "class": "oligosaccharides" }, { "id": "Q77520296", "pubchem_id": "139587049", "type": "chemical", "label": "Fischerose", "class": "oligosaccharides" }, { "id": "Q77385050", "pubchem_id": "53966394", "type": "chemical", "label": "Neosartose", "class": "oligosaccharides" } ], "organisms": [ { "id": "Q54370888", "label": "Neosartorya fischeri" } ], "relations": [ [ "Q54370888", "Q105133092" ], [ "Q54370888", "Q77385050" ], [ "Q54370888", "Q77520296" ] ] }, "12444711": { "PMID": "12444711", "ArticleTitle": "Aldehyde dehydrogenase inhibitors from the mushroom Clitocybe clavipes.", "AbstractText": "Five fatty acid derivatives including three novel compounds were isolated from the mushroom Clitocybe clavipe. Their structures were elucidated by spectral analyses. These compounds inhibited aldehyde dehydrogenase in vitro.", "id": "Q78552652", "doi": "10.1021/NP020200J", "chemicals": [ { "id": "Q72180630", "type": "class", "label": "fatty acid derivative" } ], "organisms": [ { "id": "Q2669211", "label": "Clitocybe clavipes" } ], "relations": [ [ "Q2669211", "Q72180630" ] ] }, "11524128": { "PMID": "11524128", "ArticleTitle": "3(2H)-Benzofuranones and chromanes from liquid cultures of the mycoparasitic fungus Coniothyrium minitans.", "AbstractText": "Two 3(2H)-benzofuranones and three chromanes were isolated from the mycoparasitic fungus Coniothyrium minitans. Their structures and absolute stereochemistry were determined by spectroscopic methods.", "id": "Q74428032", "doi": "10.1016/S0031-9422(01)00129-7", "chemicals": [ { "id": "Q109562462", "type": "class", "label": "3(2H)-benzofuranones" }, { "id": "Q73905244", "type": "class", "label": "chromanes" } ], "organisms": [ { "id": "Q2138553", "label": "Coniothyrium minitans" } ], "relations": [ [ "Q2138553", "Q109562462" ], [ "Q2138553", "Q73905244" ] ] }, "14723332": { "PMID": "14723332", "ArticleTitle": "A new pterocarpan, (-)-maackiain sulfate, from the roots of Sophora subprostrata.", "AbstractText": "A new pterocarpan, (-)-maackiain 3-sulfate (1) was isolated from the methanol extract of roots of Sophora subprostarata together with (-)-maackiain (2), trifolirhizin (3), lupeol (4), ononin (5), 7,4'-dihydroxyflavone (6), and (+)-syringaresinol (7). The structure of 1 was determined by analyses of 2D NMR and HRFABMS. Compounds 5-7 were isolated from this plant for the first time.", "id": "Q44727953", "doi": "10.1007/BF02994750", "chemicals": [ { "id": "Q7663351", "pubchem_id": "443023", "type": "chemical", "label": "(+)-Syringaresinol", "class": "" }, { "id": "Q27105234", "pubchem_id": "91510", "type": "chemical", "label": "(-)-maackiain", "class": "" }, { "id": "Q15410218", "pubchem_id": "5282073", "type": "chemical", "label": "7,4'-Dihydroxyflavone", "class": "" }, { "id": "Q409366", "pubchem_id": "259846", "type": "chemical", "label": "Lupeol", "class": "" }, { "id": "Q7094502", "pubchem_id": "442813", "type": "chemical", "label": "Ononin", "class": "" }, { "id": "Q27108480", "pubchem_id": "442827", "type": "chemical", "label": "Trifolirhizin", "class": "" }, { "id": "14723332CHEM1", "type": "chemical", "label": "(-)-maackiain 3-sulfate", "class": "pterocarpan" } ], "organisms": [ { "id": "Q50868516", "label": "Sophora subprostrata" } ], "relations": [ [ "Q50868516", "14723332CHEM1" ], [ "Q50868516", "Q27105234" ], [ "Q50868516", "Q27108480" ], [ "Q50868516", "Q409366" ], [ "Q50868516", "Q7094502" ], [ "Q50868516", "Q15410218" ], [ "Q50868516", "Q7663351" ] ] }, "11249099": { "PMID": "11249099", "ArticleTitle": "Sesqui- and diterpenoids from two Japanese and three European liverworts.", "AbstractText": "A new peroxy muurolane-type sesquiterpenoid was isolated from the ether extract of the Belgium liverwort Scapania undulata, together with three known ent-muurolanes. A new lepidozane-type sesquiterpenoid was isolated from the Japanese Porella subobtusa together with a known santalane- and two africane-type sesquiterpenoids. All structures were determined by means of NMR spectroscopic techniques. The chemosystematics of each species are discussed.", "id": "Q73615855", "doi": "10.1016/S0031-9422(00)00220-X", "chemicals": [ { "id": "Q47006373", "type": "class", "label": "sesquiterpenoid" }, { "id": "11249099CLASS1", "type": "class", "label": "ent-muurolanes" }, { "id": "Q108304682", "type": "class", "label": "santalane" } ], "organisms": [ { "id": "Q17269413", "label": "Porella subobtusa" }, { "id": "Q798052", "label": "Scapania undulata" } ], "relations": [ [ "Q798052", "Q47006373" ], [ "Q798052", "11249099CLASS1" ], [ "Q17269413", "Q108304682" ], [ "Q17269413", "Q47006373" ] ] }, "32867236": { "PMID": "32867236", "ArticleTitle": "Eighteen New Aeruginosamide Variants Produced by the Baltic Cyanobacterium Limnoraphis CCNP1324.", "AbstractText": "Cyanobactins are a large family of ribosomally synthesized and post-translationally modified cyanopeptides (RiPPs). Thus far, over a hundred cyanobactins have been detected in different free-living and symbiotic cyanobacteria. The majority of these peptides have a cyclic structure. The occurrence of linear cyanobactins, aeruginosamides and virenamide, has been reported sporadically and in few cyanobacterial taxa. In the current work, the production of cyanobactins by Limnoraphis sp. CCNP1324, isolated from the brackish water Baltic Sea, has been studied for the first time. In the strain, eighteen new aeruginosamide (AEG) variants have been detected. These compounds are characterized by the presence of prenyl and thiazole groups. A common element of AEGs produced by Limnoraphis sp. CCNP1324 is the sequence of the three C-terminal residues containing proline, pyrrolidine and methyl ester of thiazolidyne-4-carboxylic acid (Pro-Pyr-TzlCOOMe) or thiazolidyne-4-carboxylic acid (Pro-Pyr-TzlCOOH). The aeruginosamides with methylhomotyrosine (MeHTyr1) and with the unidentified N-terminal amino acids showed strong cytotoxic activity against human breast cancer cells (T47D).", "id": "Q99635017", "doi": "10.3390/MD18090446", "chemicals": [ { "id": "Q105220556", "pubchem_id": "10840603", "type": "chemical", "label": "aeruginosamide", "class": "" } ], "organisms": [ { "id": "Q27438471", "label": "Limnoraphis" } ], "relations": [ [ "Q27438471", "Q105220556" ] ] }, "21967034": { "PMID": "21967034", "ArticleTitle": "Isolation of talathermophilins from the thermophilic fungus Talaromyces thermophilus YM3-4.", "AbstractText": "Six indole alkaloids with various levels of prenylation were isolated from the thermophilic fungus Talaromyces thermophilus strain YM3-4. Their structures were identified by NMR and MS spectroscopic analyses. Compounds 1 and 2 are new analogues of the key versatile precursor notoamide E. Compound 3 is a novel analogue of preechinulin, and compound 4 was reported as a natural occurring cyclo(glycyltryptophyl) for the first time. The metabolite profile of this thermophilic organism displayed a biosynthetic pathway for talathermophilins.", "id": "Q43032803", "doi": "10.1021/NP200365Z", "chemicals": [ { "id": "Q76507472", "pubchem_id": "16127569", "type": "chemical", "label": "notoamide E", "class": "indole alkaloids" }, { "id": "Q27284843", "pubchem_id": "44445554", "type": "chemical", "label": "preechinulin", "class": "indole alkaloids" }, { "id": "Q27137374", "pubchem_id": "6997508", "type": "chemical", "label": "Cyclo(glycyltryptophyl)", "class": "indole alkaloids" } ], "organisms": [ { "id": "Q80855462", "label": "Talaromyces thermophilus" } ], "relations": [ [ "Q80855462", "Q76507472" ], [ "Q80855462", "Q27284843" ], [ "Q80855462", "Q27137374" ] ] }, "15771887": { "PMID": "15771887", "ArticleTitle": "Monomeric and dimeric dibenzofurans from cultured mycobionts of Lecanora iseana.", "AbstractText": "Spore-derived mycobionts of the lichen Lecanora iseana were cultivated on a malt-yeast extract medium supplemented with 10% sucrose and their metabolites were investigated. Four 3,7-dihydroxy-1,9-dimethyldibenzofuran derivatives along with the known 3,7-dihydroxy-1,9-dimethyldibenzofuran and five norlichexanthone derivatives were isolated. Their structures were determined by spectroscopic methods.", "id": "Q46383840", "doi": "10.1016/J.PHYTOCHEM.2004.12.031", "chemicals": [ { "id": "Q77501765", "pubchem_id": "21580524", "type": "chemical", "label": "3,7-Dihydroxy-1,9-dimethyldibenzofuran", "class": "" } ], "organisms": [ { "id": "Q10555767", "label": "Lecanora iseana" } ], "relations": [ [ "Q10555767", "Q77501765" ] ] }, "17336534": { "PMID": "17336534", "ArticleTitle": "Clavaminols A-F, novel cytotoxic 2-amino-3-alkanols from the ascidian Clavelina phlegraea.", "AbstractText": "The chemical investigation of the Mediterranean ascidian Clavelina phlegraea has led to the isolation of six new 2-amino-3-alkanol derivatives, clavaminols A-F (1-6). Their stereostructures were established by analysis of spectroscopic data and chemical conversion. Clavaminols A, B, C, and F were tested for their cytotoxic and pro-apoptotic properties and clavaminol A was shown to be the more potent cytotoxic compound of this series inducing cell death through activation of the apoptotic machinery.", "id": "Q40163544", "doi": "10.1016/J.BMC.2007.02.015", "chemicals": [ { "id": "Q104912102", "pubchem_id": "16739261", "type": "chemical", "label": "Clavaminol A", "class": "alkanol" }, { "id": "17336534CHEM1", "type": "chemical", "label": "Clavaminol D", "class": "alkanol" }, { "id": "17336534CHEM2", "type": "chemical", "label": "Clavaminol E", "class": "alkanol" }, { "id": "Q104914050", "pubchem_id": "44424869", "type": "chemical", "label": "Clavaminol B", "class": "alkanol" }, { "id": "Q105193748", "pubchem_id": "44424877", "type": "chemical", "label": "Clavaminol F", "class": "alkanol" }, { "id": "Q105340068", "pubchem_id": "44424870", "type": "chemical", "label": "Clavaminol C", "class": "alkanol" } ], "organisms": [ { "id": "Q4925704", "label": "Clavelina phlegraea" } ], "relations": [ [ "Q4925704", "Q104912102" ], [ "Q4925704", "Q104914050" ], [ "Q4925704", "Q105340068" ], [ "Q4925704", "17336534CHEM1" ], [ "Q4925704", "17336534CHEM2" ], [ "Q4925704", "Q105193748" ] ] }, "10488570": { "PMID": "10488570", "ArticleTitle": "Some lichen products have antimicrobial activity.", "AbstractText": "Antimicrobial activity in some lichens from south Spain has been studied. Some lichenical substances are also identified. The structures of all compounds were elucidated by physical, spectral and chemical methods. A very high activity against Gram-positive bacteria has been observed in lichens containing usnic acid.", "id": "Q72995095", "doi": "10.1515/ZNC-1999-7-824", "chemicals": [ ], "organisms": [ ], "relations": [ ] }, "11014279": { "PMID": "11014279", "ArticleTitle": "Triterpenoidal constituents from Eucalyptus camaldulensis var. obtusa leaves.", "AbstractText": "An investigation on the constituents of the fresh, uncrushed leaves of Ecalyptus camaldulensis var. obtusa has led to the isolation of the triterpenoid amirinic acid and four known triterpenoids ursolic acid lactone, betulinic acid, oleanolic acid and ursolic acid. Amirinic acid transformed into amirolide in deuterated chloroform at room temperature. The new products were characterized by exhaustive spectroscopic studies as 2alpha,3beta,7beta-trihydroxy-11alpha-methoxyurs -12-en-28-oic acid and 2alpha,3beta,7beta-trihydroxyurs-11-en-28,13beta -olide.", "id": "Q31443433", "doi": "10.1016/S0031-9422(00)00058-3", "chemicals": [ { "id": "Q416260", "pubchem_id": "64945", "type": "chemical", "label": "Ursolic acid", "class": "triterpenoid" }, { "id": "11014279CHEM1", "type": "chemical", "label": "Amirinic acid", "class": "triterpenoid" }, { "id": "Q384111", "pubchem_id": "64971", "type": "chemical", "label": "Betulinic acid", "class": "triterpenoid" }, { "id": "Q418628", "pubchem_id": "10494", "type": "chemical", "label": "Oleanolic acid", "class": "triterpenoid" }, { "id": "Q105127803", "pubchem_id": "21669105", "type": "chemical", "label": "Ursolic acid lactone", "class": "triterpenoid" } ], "organisms": [ { "id": "Q162822", "label": "Eucalyptus camaldulensis" } ], "relations": [ [ "Q162822", "11014279CHEM1" ], [ "Q162822", "Q416260" ], [ "Q162822", "Q384111" ], [ "Q162822", "Q418628" ], [ "Q162822", "Q416260" ] ] }, "9722492": { "PMID": "9722492", "ArticleTitle": "First chemical study of patagonian nudibranchs: A new seco-11, 12-spongiane, tyrinnal, from the defensive organs of tyrinna nobilis.", "AbstractText": "The Patagonian nudibranch Tyrinna nobilis contains a number of terpenoids, the novel seco-11,12-spongiane tyrinnal (1) and the known sesquiterpenoids dendrolasin (2), pallescensin A (3), and dehydropallescensin-2 (4). The metabolites probably derive from dietary sponges, thus suggesting a parallelism between the ecological relationships of T. nobilis and those of mollusks of genus Cadlina. The structure of 1 was determined by spectroscopic methods.", "id": "Q59306554", "doi": "10.1021/NP980073K", "chemicals": [ { "id": "Q104991697", "pubchem_id": "10788271", "type": "chemical", "label": "Tyrinnal", "class": "terpenoids" }, { "id": "Q104401490", "pubchem_id": "102317954", "type": "chemical", "label": "Dehydropallescensin-2", "class": "sesquiterpenoid" }, { "id": "Q104402335", "pubchem_id": "10867751", "type": "chemical", "label": "Pallescensin A", "class": "sesquiterpenoid" }, { "id": "Q27149763", "pubchem_id": "5316534", "type": "chemical", "label": "Dendrolasin", "class": "sesquiterpenoid" } ], "organisms": [ { "id": "Q59284393", "label": "Tyrinna nobilis" } ], "relations": [ [ "Q59284393", "Q104991697" ], [ "Q59284393", "Q27149763" ], [ "Q59284393", "Q104402335" ], [ "Q59284393", "Q104401490" ] ] }, "22083926": { "PMID": "22083926", "ArticleTitle": "Triterpenes from the fungus Poria cocos and their inhibitory activity on nitric oxide production in mouse macrophages via blockade of activating protein-1 pathway.", "AbstractText": "Two new triterpenes, 29-hydroxydehydrotumulosic acid (1) and 29-hydroxydehydropachymic acid (2), together with six known compounds, dehydropachymic acid (3), dehydrotumulosic acid (4), 29-hydroxypolyporenic acid C (5), polyporenic acid C (6), tumulosic acid (7), and pachymic acid (8), were isolated from the dried sclerotia of Poria cocos. In the in vitro bioassays, these isolated compounds reduced, in a dose-dependent manner, nitric oxide (NO) production from lipopolysaccharide (LPS)-induced RAW 264.7 cells, with compounds 5 and 6, the IC(50) values of which were 16.8\u00b12.7 and 18.2\u00b13.3 \u03bcM, respectively, exhibiting the greatest inhibition activity. Further Western blot analysis conducted on cells pre-treated with compounds 5 and 6, and luciferase assays on activator protein 1-dependent gene expression revealed that the inhibited NO release was attributed to the reduced expression of iNOs (=inducible NO synthase) enzymes, which might be regulated via the blockade of activator protein-1 signaling pathway.", "id": "Q39443039", "doi": "10.1002/CBDV.201100013", "chemicals": [ { "id": "Q27270257", "pubchem_id": "9805290", "type": "chemical", "label": "Polyporenic acid C", "class": "triterpene" }, { "id": "Q21099637", "pubchem_id": "5484385", "type": "chemical", "label": "Pachymic acid", "class": "triterpene" }, { "id": "Q77422688", "pubchem_id": "139585448", "type": "chemical", "label": "29-hydroxypolyporenic acid C", "class": "triterpene" }, { "id": "Q104399651", "pubchem_id": "15226717", "type": "chemical", "label": "Dehydropachymic acid", "class": "triterpene" }, { "id": "Q104399653", "pubchem_id": "12314446", "type": "chemical", "label": "Tumulosic acid", "class": "triterpene" }, { "id": "Q77279949", "pubchem_id": "137355885", "type": "chemical", "label": "29-Hydroxydehydropachymic acid", "class": "triterpene" }, { "id": "Q105148585", "pubchem_id": "15225964", "type": "chemical", "label": "Dehydrotumulosic acid", "class": "triterpene" }, { "id": "Q77494792", "pubchem_id": "56838283", "type": "chemical", "label": "29-Hydroxydehydrotumulosic acid", "class": "triterpene" } ], "organisms": [ { "id": "Q54370411", "label": "Poria cocos" } ], "relations": [ [ "Q54370411", "Q77494792" ], [ "Q54370411", "Q77279949" ], [ "Q54370411", "Q104399651" ], [ "Q54370411", "Q105148585" ], [ "Q54370411", "Q77422688" ], [ "Q54370411", "Q27270257" ], [ "Q54370411", "Q104399653" ], [ "Q54370411", "Q21099637" ] ] }, "24257925": { "PMID": "24257925", "ArticleTitle": "Identification of eight coumarins occurring with psoralen, xanthotoxin, and bergapten on leaf surfaces.", "AbstractText": "Surface extracts of the leaves of five species in the Umbelliferae, Citrus limon (Rutaceae), and Psoralea bituminosa (Leguminosae) were examined for the presence of coumarins, after a previous study had shown the presence of three psoralens. In the current investigation eight more coumarins were identified by mass spectrometric techniques: the simple coumarins scopoletin, scoparone, and osthol, the linear furanocoumarins imperatorin and phellopterin, the angular furanocoumarins angelicin and pimpinellin, and the pyranocoumarin seselin. Five of these occur in Apium graveolens, and scopoletin, scoparone, and imperatorin were each found in three of the species examined. The co-occurrence of all these coumarins on the surface may be significant in communication between the plant and its environment.", "id": "Q86811452", "doi": "10.1007/BF00993733", "chemicals": [ { "id": "Q3905067", "pubchem_id": "4825", "type": "chemical", "label": "Pimpinellin", "class": "furanocoumarin" }, { "id": "Q4338679", "pubchem_id": "10228", "type": "chemical", "label": "Osthol", "class": "coumarin" }, { "id": "Q3742334", "pubchem_id": "98608", "type": "chemical", "label": "Phellopterin", "class": "furanocoumarin" }, { "id": "Q27104968", "pubchem_id": "68229", "type": "chemical", "label": "Seselin", "class": "pyranocoumarin" }, { "id": "Q1649534", "pubchem_id": "10212", "type": "chemical", "label": "Imperatorin", "class": "furanocoumarin" }, { "id": "Q2472366", "pubchem_id": "5280460", "type": "chemical", "label": "Scopoletin", "class": "coumarin" }, { "id": "Q15424761", "pubchem_id": "8417", "type": "chemical", "label": "Scoparone", "class": "coumarin" }, { "id": "Q2849857", "pubchem_id": "10658", "type": "chemical", "label": "Angelicin", "class": "furanocoumarin" } ], "organisms": [ { "id": "Q500", "label": "Citrus limon" }, { "id": "Q28298", "label": "Apium graveolens" }, { "id": "Q145794", "label": "Umbelliferae" }, { "id": "Q1251922", "label": "Bituminaria bituminosa" } ], "relations": [ [ "Q145794", "Q2472366" ], [ "Q145794", "Q15424761" ], [ "Q145794", "Q4338679" ], [ "Q145794", "Q1649534" ], [ "Q145794", "Q3742334" ], [ "Q145794", "Q2849857" ], [ "Q145794", "Q3905067" ], [ "Q145794", "Q27104968" ], [ "Q500", "Q2472366" ], [ "Q500", "Q15424761" ], [ "Q500", "Q1649534" ], [ "Q1251922", "Q2472366" ], [ "Q1251922", "Q15424761" ], [ "Q1251922", "Q1649534" ], [ "Q28298", "Q2472366" ], [ "Q28298", "Q15424761" ], [ "Q28298", "Q2472366" ] ] }, "20091304": { "PMID": "20091304", "ArticleTitle": "Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation.", "AbstractText": "Titer improvement is a constant requirement in the fermentation industry. The traditional method of \"random mutation and screening\" has been very effective despite the considerable amount of time and resources it demands. Rational metabolic engineering, with the use of recombinant DNA technology, provides a novel, alternative strategy for titer improvement that complements the empirical method used in industry. Manipulation of the specific regulatory systems that govern secondary metabolite production is an important aspect of metabolic engineering that can efficiently improve fermentation titers. In this review, we use examples from Streptomyces secondary metabolism, the most prolific source of clinically used drugs, to demonstrate the power and utility of exploiting natural regulatory networks, in particular pathway-specific regulators, for titer improvement. Efforts to improve the titers of fredericamycin, C-1027, platensimycin, and platencin in our lab are highlighted.", "id": "Q36321025", "doi": "10.1007/S00253-009-2428-3", "chemicals": [ { "id": "Q27106006", "pubchem_id": "5281917", "type": "chemical", "label": "C-1027", "class": "" }, { "id": "Q105180180", "pubchem_id": "135430424", "type": "chemical", "label": "fredericamycin", "class": "" }, { "id": "Q27136732", "pubchem_id": "16745128", "type": "chemical", "label": "platencin", "class": "" }, { "id": "Q423275", "pubchem_id": "6857724", "type": "chemical", "label": "Platensimycin", "class": "" } ], "organisms": [ { "id": "Q1144013", "label": "Streptomyces" } ], "relations": [ [ "Q1144013", "Q105180180" ], [ "Q1144013", "Q27106006" ], [ "Q1144013", "Q423275" ], [ "Q1144013", "Q27136732" ] ] }, "26433383": { "PMID": "26433383", "ArticleTitle": "Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus T\u00fc 365.", "AbstractText": "Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus T\u00fc 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein biosynthesis interacting with elongation factor EF-Tu. Genome Mining revealed 32 gene clusters encoding the biosynthesis of diverse secondary metabolites in the genome of Streptomyces collinus T\u00fc 365, indicating an enormous biosynthetic potential of this strain. The structural diversity of secondary metabolisms predicted for S. collinus T\u00fc 365 includes PKS, NRPS, PKS-NRPS hybrids, a lanthipeptide, terpenes and siderophores. While some of these gene clusters were found to contain genes related to known secondary metabolites, which also could be detected in HPLC-MS analyses, most of the uncharacterized gene clusters are not expressed under standard laboratory conditions. With this study we aimed to characterize the genome information of S. collinus T\u00fc 365 to make use of gene clusters, which previously have not been described for this strain. We were able to connect the gene clusters of a lanthipeptide, a carotenoid, five terpenoid compounds, an ectoine, a siderophore and a spore pigment-associated gene cluster to their respective biosynthesis products.", "id": "Q40967708", "doi": "10.1007/S10295-015-1685-7", "chemicals": [ { "id": "Q105030668", "pubchem_id": "135452521", "type": "chemical", "label": "kirromycin", "class": "" } ], "organisms": [ { "id": "Q22287122", "label": "Streptomyces collinus" } ], "relations": [ [ "Q22287122", "Q105030668" ] ] }, "2490520": { "PMID": "2490520", "ArticleTitle": "Analytical aspects of drugs of natural origin.", "AbstractText": "The current importance of drugs of natural origin and their different phytotherapeutical preparations are mentioned. Analytical aspects related to vegetable drugs and their extracts are discussed. An overview is given on procedures used for the isolation of reference compounds, sample preparation for high-performance liquid chromatographic analysis, identification of vegetable drugs and detection of adulterants. The different approaches currently employed for the standardization of extracts are presented. The various aspects are discussed with the aid of illustrative examples.", "id": "Q38218188", "doi": "10.1016/0731-7085(89)80139-6", "chemicals": [ ], "organisms": [ ], "relations": [ ] }, "27778478": { "PMID": "27778478", "ArticleTitle": "Istamycin aminoglycosides profiling and their characterization in Streptomyces tenjimariensis ATCC 31603 culture using high-performance liquid chromatography with tandem mass spectrometry.", "AbstractText": "A high-performance liquid chromatography with electrospray ionization ion trap tandem mass spectrometry method was developed and validated for the robust profiling and characterization of biosynthetic congeners in the 2-deoxy-aminocyclitol istamycin pathway, from the fermentation broth of Streptomyces tenjimariensis ATCC 31603. Gradient elution on an Acquity CSH C18 column was performed with a gradient of 5\u00a0mM aqueous pentafluoropropionic acid and 50% acetonitrile. Sixteen natural istamycin congeners were profiled and quantified in descending order; istamycin A, istamycin B, istamycin A0 , istamycin B0, istamycin B1 , istamycin A1 , istamycin C, istamycin A2 , istamycin C1 , istamycin C0 , istamycin X0 , istamycin A3 , istamycin Y0 , istamycin B3 , and istamycin FU-10 plus istamycin AP. In addition, a total of five sets of 1- or 3-epimeric pairs were chromatographically separated using a macrocyclic glycopeptide-bonded chiral column. The lower limit of quantification of istamycin-A present in S. tenjimariensis fermentation was estimated to be 2.2\u00a0ng/mL. The simultaneous identification of a wide range of 2-deoxy-aminocyclitol-type istamycin profiles from bacterial fermentation was determined for the first time by employing high-performance liquid chromatography with tandem mass spectrometry analysis and the separation of istamycin epimers.", "id": "Q51124712", "doi": "10.1002/JSSC.201600925", "chemicals": [ { "id": "Q27155373", "pubchem_id": "13019101", "type": "chemical", "label": "Istamycin B0", "class": "aminoglycoside" }, { "id": "Q27155225", "pubchem_id": "156086", "type": "chemical", "label": "istamycin A", "class": "aminoglycoside" }, { "id": "Q27155377", "pubchem_id": "13187055", "type": "chemical", "label": "Istamycin C0", "class": "aminoglycoside" }, { "id": "Q27155374", "pubchem_id": "156088", "type": "chemical", "label": "Istamycin B", "class": "aminoglycoside" }, { "id": "Q27155366", "pubchem_id": "12851065", "type": "chemical", "label": "Istamycin AP", "class": "aminoglycoside" }, { "id": "Q27155380", "pubchem_id": "46174030", "type": "chemical", "label": "Istamycin C1", "class": "aminoglycoside" }, { "id": "Q27155378", "pubchem_id": "13187056", "type": "chemical", "label": "Istamycin C", "class": "aminoglycoside" }, { "id": "Q27155226", "pubchem_id": "13019099", "type": "chemical", "label": "Istamycin A0", "class": "aminoglycoside" }, { "id": "Q27155368", "pubchem_id": "13019103", "type": "chemical", "label": "Istamycin X0", "class": "aminoglycoside" }, { "id": "Q27155369", "pubchem_id": "46174025", "type": "chemical", "label": "Istamycin A1", "class": "aminoglycoside" }, { "id": "Q27155375", "pubchem_id": "46174028", "type": "chemical", "label": "Istamycin B1", "class": "aminoglycoside" }, { "id": "Q27155363", "pubchem_id": "46174023", "type": "chemical", "label": "Istamycin FU-10", "class": "aminoglycoside" }, { "id": "Q27155370", "pubchem_id": "46174026", "type": "chemical", "label": "Istamycin A2", "class": "aminoglycoside" }, { "id": "Q27155367", "pubchem_id": "13019104", "type": "chemical", "label": "Istamycin Y0", "class": "aminoglycoside" }, { "id": "Q27155372", "pubchem_id": "46174027", "type": "chemical", "label": "Istamycin A3", "class": "aminoglycoside" }, { "id": "Q27155376", "pubchem_id": "46174029", "type": "chemical", "label": "Istamycin B3", "class": "aminoglycoside" } ], "organisms": [ { "id": "Q103817341", "label": "Streptomyces tenjimariensis" } ], "relations": [ [ "Q103817341", "Q27155225" ], [ "Q103817341", "Q27155374" ], [ "Q103817341", "Q27155226" ], [ "Q103817341", "Q27155373" ], [ "Q103817341", "Q27155375" ], [ "Q103817341", "Q27155369" ], [ "Q103817341", "Q27155378" ], [ "Q103817341", "Q27155370" ], [ "Q103817341", "Q27155380" ], [ "Q103817341", "Q27155377" ], [ "Q103817341", "Q27155368" ], [ "Q103817341", "Q27155372" ], [ "Q103817341", "Q27155367" ], [ "Q103817341", "Q27155376" ], [ "Q103817341", "Q27155363" ], [ "Q103817341", "Q27155366" ] ] }, "9297463": { "PMID": "9297463", "ArticleTitle": "New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1',2'-dihydro-gamma-carotene, 1',2'-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoid composition of different strains.", "AbstractText": "The complete carotenoid composition of the thermophilic green sulfur bacterium Chlorobium tepidum strain TNO was determined by spectroscopic methods. Major carotenoids were four kinds of carotenes: gamma-carotene, chlorobactene, and their 1',2'-dihydro derivatives (1',2'-dihydro-gamma-carotene and 1',2'-dihydrochlorobactene). In lesser amounts, hydroxyl gamma-carotene, hydroxyl chlorobactene, and their glucoside fatty acid esters were found. The only esterified fatty acid present was laurate, and OH-chlorobactene glucoside laurate is a novel carotenoid. In other strains of C. tepidum, the same carotenoids were found, but the composition varied from strain to strain. The overall pigment composition in cells of strain TNO was 4 mol carotenoids and 40 mol bacteriochlorophyll c per mol bacteriochlorophyll a. The effects of nicotine on carotenoid biosynthesis in C. tepidum differed from those in the thermophilic green nonsulfur bacterium Chloroflexus aurantiacus.", "id": "Q43024868", "doi": "10.1007/S002030050498", "chemicals": [ { "id": "Q5520255", "pubchem_id": "5280791", "type": "chemical", "label": "gamma-carotene", "class": "carotene" }, { "id": "Q27149279", "pubchem_id": "10098570", "type": "chemical", "label": "chlorobactene", "class": "carotene" }, { "id": "9297463CHEM1", "pubchem_id": "70698922", "type": "chemical", "label": "OH-chlorobactene glucoside laurate", "class": "laurate" }, { "id": "9297463CHEM2", "type": "chemical", "label": "bacteriochlorophyll a", "class": "carotenoid" }, { "id": "9297463CHEM3", "type": "chemical", "label": "bacteriochlorophyll c", "class": "carotenoid" }, { "id": "Q27149277", "pubchem_id": "16061276", "type": "chemical", "label": "1',2'-Dihydro-gamma-carotene", "class": "carotene" }, { "id": "Q27149280", "pubchem_id": "10007317", "type": "chemical", "label": "1',2'-Dihydrochlorobactene", "class": "carotene" }, { "id": "Q76852575", "pubchem_id": "4149208", "type": "chemical", "label": "laurate", "class": "laurate" } ], "organisms": [ { "id": "Q16957887", "label": "Chlorobium tepidum" } ], "relations": [ [ "Q16957887", "Q5520255" ], [ "Q16957887", "Q27149279" ], [ "Q16957887", "Q27149277" ], [ "Q16957887", "Q27149280" ], [ "Q16957887", "9297463CHEM1" ], [ "Q16957887", "9297463CHEM3" ], [ "Q16957887", "Q76852575" ], [ "Q16957887", "9297463CHEM2" ] ] }, "10501023": { "PMID": "10501023", "ArticleTitle": "Biosynthesis of Erythrina alkaloids in Erythrina crista-galli.", "AbstractText": "A precursor application system was developed to allow the study of Erythrina alkaloid formation in Erythrina crista-galli. Fruit wall tissue of this species was recognized as the major site of alkaloid biosynthesis. The application of radioactively and 13C-labelled potential precursors showed that the hitherto assumed precursor (S)-norprotosinomenine was not incorporated into the Erythrina alkaloids. In contrast, (S)-coclaurine as well as (S)-norreticuline were metabolized to erythraline and erythrinine, respectively, suggesting that a coclaurine-norreticuline pathway is operative in Erythrina alkaloid formation. Feeding of [1-13C]-labelled (S)-norreticuline with subsequent NMR spectroscopy demonstrated that the resulting erythraline was exclusively labelled at position C-10. Therefore, the participation of a symmetrical intermediate of the diphenoquinone type in Erythrina alkaloid biosynthesis can be excluded.", "id": "Q33875340", "doi": "10.1016/S0031-9422(99)00230-7", "chemicals": [ { "id": "Q83054364", "pubchem_id": "3084503", "type": "chemical", "label": "Erythrinine", "class": "Erythrina alkaloid" }, { "id": "Q27281318", "pubchem_id": "5317205", "type": "chemical", "label": "Erythraline", "class": "Erythrina alkaloid" } ], "organisms": [ { "id": "Q162849", "label": "Erythrina crista-galli" } ], "relations": [ [ "Q162849", "Q27281318" ], [ "Q162849", "Q83054364" ] ] }, "29715599": { "PMID": "29715599", "ArticleTitle": "Lanostane-type C31 triterpenoid derivatives from the fruiting bodies of cultivated Fomitopsis palustris.", "AbstractText": "Fifteen undescribed and five known lanostane-type C31 triterpenoid derivatives were isolated from the aqueous EtOH extract of the fruiting bodies of cultivated Fomitopsis palustris. Their structures were identified from the spectroscopic data and chemical degradation studies. The structures of palustrisoic acids A and H were confirmed by X-ray crystallography. Polyporenic acid B showed strong cytotoxicity against the HCT116, A549, and HepG2 cell lines with IC50 values of 8.4, 12.1, and 12.2\u202f\u03bcM, respectively. Palustrisolides A, C, and G displayed weak cytotoxicity.", "id": "Q78287464", "doi": "10.1016/J.PHYTOCHEM.2018.04.012", "chemicals": [ { "id": "Q105254876", "pubchem_id": "139590970", "type": "chemical", "label": "Palustrisolide A", "class": "lanostane triterpenoid" }, { "id": "29715599CHEM1", "type": "chemical", "label": "Polyporenic acid B", "class": "lanostane triterpenoid" }, { "id": "Q105212680", "pubchem_id": "139590972", "type": "chemical", "label": "Palustrisolide C", "class": "lanostane triterpenoid" }, { "id": "Q105214452", "pubchem_id": "139590977", "type": "chemical", "label": "Palustrisolide G", "class": "lanostane triterpenoid" }, { "id": "Q105297661", "pubchem_id": "139590975", "type": "chemical", "label": "Palustrisoic acid A", "class": "lanostane triterpenoid" }, { "id": "Q105218691", "pubchem_id": "139590969", "type": "chemical", "label": "Palustrisoic acid H", "class": "lanostane triterpenoid" } ], "organisms": [ { "id": "Q5229666", "label": "Fomitopsis palustris" } ], "relations": [ [ "Q5229666", "Q105297661" ], [ "Q5229666", "Q105218691" ], [ "Q5229666", "29715599CHEM1" ], [ "Q5229666", "Q105254876" ], [ "Q5229666", "Q105212680" ], [ "Q5229666", "Q105214452" ] ] }, "18944489": { "PMID": "18944489", "ArticleTitle": "Nematicidal activity of essential oils and their components against the root-knot nematode.", "AbstractText": "ABSTRACT Nematicidal activity of essential oils extracted from 27 spices and aromatic plants were evaluated in vitro and in pot experiments. Twelve of the twenty-seven essential oils immobilized more than 80% of juveniles of the root-knot nematode Meloidogyne javanica at a concentration of 1,000 mul/liter. At this concentration, most of these oils also inhibited nematode hatching. Essential oils of Carum carvi, Foeniculum vulgare, Mentha rotundifolia, and Mentha spicata showed the highest nematicidal activity among the in vitro tested oils. These oils and those from Origanum vulgare, O. syriacum, and Coridothymus capitatus mixed in sandy soil at concentrations of 100 and 200 mg/kg reduced the root galling of cucumber seedlings in pot experiments. The main components of these essential oils were tested for their nematicidal activity. Carvacrol, t-anethole, thymol, and (+)-carvone immobilized the juveniles and inhibited hatching at >125 mul/liter in vitro. Most of these components mixed in sandy soil at concentrations of 75 and 150 mg/kg reduced root galling of cucumber seedlings. In 3-liter pot experiments, nematicidal activity of the essential oils and their components was confirmed at 200 and 150 mg/kg, respectively. The results suggest that the essential oils and their main components may serve as nematicides.", "id": "Q34863026", "doi": "10.1094/PHYTO.2000.90.7.710", "chemicals": [ { "id": "Q170885", "type": "class", "label": "essential oil" }, { "id": "Q225543", "pubchem_id": "10364", "type": "chemical", "label": "Carvacrol", "class": "essential oil" }, { "id": "Q27089417", "pubchem_id": "439570", "type": "chemical", "label": "(+)-Carvone", "class": "essential oil" }, { "id": "Q255564", "pubchem_id": "637563", "type": "chemical", "label": "t-anethole", "class": "essential oil" }, { "id": "Q408883", "pubchem_id": "6989", "type": "chemical", "label": "Thymol", "class": "essential oil" } ], "organisms": [ { "id": "Q26811", "label": "Carum carvi" }, { "id": "Q43511", "label": "Foeniculum vulgare" }, { "id": "Q2494758", "label": "Mentha rotundifolia" }, { "id": "Q160114", "label": "Mentha spicata" }, { "id": "Q134283", "label": "Origanum vulgare" }, { "id": "Q13399102", "label": "Coridothymus capitatus" }, { "id": "Q13714507", "label": "Origanum syriacum" } ], "relations": [ [ "Q26811", "Q170885" ], [ "Q43511", "Q170885" ], [ "Q2494758", "Q170885" ], [ "Q160114", "Q170885" ], [ "Q134283", "Q170885" ], [ "Q134283", "Q225543" ], [ "Q134283", "Q255564" ], [ "Q134283", "Q408883" ], [ "Q134283", "Q27089417" ], [ "Q13714507", "Q170885" ], [ "Q13714507", "Q225543" ], [ "Q13714507", "Q255564" ], [ "Q13714507", "Q408883" ], [ "Q13714507", "Q27089417" ], [ "Q13399102", "Q170885" ], [ "Q13399102", "Q225543" ], [ "Q13399102", "Q255564" ], [ "Q13399102", "Q408883" ], [ "Q13399102", "Q27089417" ] ] }, "17473465": { "PMID": "17473465", "ArticleTitle": "New cytotoxic cembranolides from the soft coral Lobophytum michaelae.", "AbstractText": "Eleven new cytotoxic cembranolides, michaolides A-K (1-11), and crassolide (12) were isolated from the CH(2)Cl(2) extract of the Formosan soft coral Lobophytum michaelae. Their structures were established by extensive spectral analysis. The cytotoxicity of the isolates against selected cancer cells was measured in vitro.", "id": "Q80250080", "doi": "10.1248/CPB.55.766", "chemicals": [ { "id": "Q27134927", "pubchem_id": "16723450", "type": "chemical", "label": "Michaolide B", "class": "cembranolides" }, { "id": "Q27134937", "pubchem_id": "16723678", "type": "chemical", "label": "Michaolide J", "class": "cembranolides" }, { "id": "Q27134926", "pubchem_id": "16723449", "type": "chemical", "label": "Michaolide A", "class": "cembranolides" }, { "id": "Q27134935", "pubchem_id": "16723570", "type": "chemical", "label": "Michaolide H", "class": "cembranolides" }, { "id": "Q27134928", "pubchem_id": "16723565", "type": "chemical", "label": "Michaolide C", "class": "cembranolides" }, { "id": "Q27134932", "pubchem_id": "16723568", "type": "chemical", "label": "Michaolide F", "class": "cembranolides" }, { "id": "Q27134930", "pubchem_id": "16723567", "type": "chemical", "label": "Michaolide E", "class": "cembranolides" }, { "id": "Q27134940", "pubchem_id": "16723679", "type": "chemical", "label": "Michaolide K", "class": "cembranolides" }, { "id": "Q27134151", "pubchem_id": "70697810", "type": "chemical", "label": "Crassolide", "class": "cembranolides" }, { "id": "Q27134933", "pubchem_id": "16723569", "type": "chemical", "label": "Michaolide G", "class": "cembranolides" }, { "id": "Q27134936", "pubchem_id": "16723677", "type": "chemical", "label": "Michaolide I", "class": "cembranolides" }, { "id": "Q27134929", "pubchem_id": "16723566", "type": "chemical", "label": "Michaolide D", "class": "cembranolides" } ], "organisms": [ { "id": "Q2370397", "label": "Lobophytum michaelae" } ], "relations": [ [ "Q2370397", "Q27134926" ], [ "Q2370397", "Q27134927" ], [ "Q2370397", "Q27134928" ], [ "Q2370397", "Q27134929" ], [ "Q2370397", "Q27134930" ], [ "Q2370397", "Q27134932" ], [ "Q2370397", "Q27134933" ], [ "Q2370397", "Q27134935" ], [ "Q2370397", "Q27134936" ], [ "Q2370397", "Q27134937" ], [ "Q2370397", "Q27134940" ], [ "Q2370397", "Q27134151" ] ] }, "25120055": { "PMID": "25120055", "ArticleTitle": "New limonoids from Hortia oreadica and unexpected coumarin from H. superba using chromatography over cleaning Sephadex with sodium hypochlorite.", "AbstractText": "Previous investigations of H. oreadica reported the presence of a wide spectrum of complex limonoids and dihydrocinnamic acids. Our interest in the Rutaceae motivated a reinvestigation of H. oreadica, H. brasiliana and H. superba searching for other secondary metabolites present in substantial amounts for taxonomic analysis. In a continuation of the investigation of the H. oreadica, three new limonoids have now been isolated 9\u03b1-hydroxyhortiolide A, 11\u03b2-hydroxyhortiolide C and 1(S*)-acetoxy-7(R*)-hydroxy-7-deoxoinchangin. All the isolated compounds from the Hortia species reinforce its position in the Rutaceae. With regard to limonoids the genus produces highly specialized compounds, whose structural variations do not occur in any other member of the Rutaceae, thus, it is evident from limonoid data that Hortia takes an isolated position within the family. In addition, H. superba afforded the unexpected coumarin 5-chloro-8-methoxy-psoralen, which may not be a genuine natural product. Solid-state cross-polarisation/magic-angle-spinning 13C nuclear magnetic resonance, X-Ray fluorescence and Field-emission gun scanning electron microscopy experiments show that the Sephadex LH-20 was modified after treatment with NaOCl, suggesting that when xanthotoxin (8-methoxy-psoralen) was extracted from cleaning of the gel column, chlorination of the aromatic system occurred.", "id": "Q45352606", "doi": "10.3390/MOLECULES190812031", "chemicals": [ { "id": "Q669514", "type": "class", "label": "limonoid" }, { "id": "25120055CHEM1", "type": "chemical", "label": "9\u03b1-hydroxyhortiolide A", "class": "limonoid" }, { "id": "25120055CHEM2", "type": "chemical", "label": "11\u03b2-hydroxyhortiolide C", "class": "limonoid" }, { "id": "25120055CHEM3", "type": "chemical", "label": "1(S*)-acetoxy-7(R*)-hydroxy-7-deoxoinchangin", "class": "limonoid" }, { "id": "25120055CHEM4", "type": "chemical", "label": "5-chloro-8-methoxy-psoralen", "class": "coumarin" } ], "organisms": [ { "id": "Q18072910", "label": "Hortia oreadica" }, { "id": "Q15392766", "label": "Hortia brasiliana" }, { "id": "Q15393372", "label": "Hortia superba" } ], "relations": [ [ "Q18072910", "Q669514" ], [ "Q18072910", "25120055CHEM1" ], [ "Q18072910", "25120055CHEM2" ], [ "Q18072910", "25120055CHEM3" ], [ "Q15392766", "Q669514" ], [ "Q15393372", "Q669514" ], [ "Q15393372", "25120055CHEM4" ] ] }, "19743809": { "PMID": "19743809", "ArticleTitle": "Bioactive guanidine alkaloids from two Caribbean marine sponges.", "AbstractText": "Seven new guanidine alkaloids (1-7) together with the known batzelladines A, F, H, and L, ptilomycalin A, and fromiamycalin were isolated from the Caribbean marine sponges Monanchora arbuscula and Clathria calla. Molecular structures were assigned on the basis of detailed analysis of 1D and 2D NMR spectra and mass spectrometry data, and bioactivities of the alkaloids were evaluated against human cancer cell lines and malaria protozoa.", "id": "Q41937658", "doi": "10.1021/NP900244G", "chemicals": [ { "id": "Q112052339", "type": "class", "label": "guanidine alkaloids" }, { "id": "Q15424788", "pubchem_id": "46882529", "type": "chemical", "label": "ptilomycalin A", "class": "guanidine alkaloids" }, { "id": "Q104400981", "pubchem_id": "3011701", "type": "chemical", "label": "Fromiamycalin", "class": "guanidine alkaloids" }, { "id": "Q27133908", "pubchem_id": "12148763", "type": "chemical", "label": "Batzelladine A", "class": "guanidine alkaloids" }, { "id": "Q82916903", "pubchem_id": "490397", "type": "chemical", "label": "Batzelladine F", "class": "guanidine alkaloids" }, { "id": "Q110185540", "pubchem_id": "24180669", "type": "chemical", "label": "batzelladine L", "class": "guanidine alkaloids" }, { "id": "Q82916906", "pubchem_id": "490399", "type": "chemical", "label": "Batzelladine H", "class": "guanidine alkaloids" } ], "organisms": [ { "id": "Q3464424", "label": "Clathria calla" }, { "id": "Q3016830", "label": "Monanchora arbuscula" } ], "relations": [ [ "Q3016830", "Q112052339" ], [ "Q3016830", "Q27133908" ], [ "Q3016830", "Q82916903" ], [ "Q3016830", "Q82916906" ], [ "Q3016830", "Q110185540" ], [ "Q3016830", "Q15424788" ], [ "Q3016830", "Q104400981" ], [ "Q3464424", "Q112052339" ], [ "Q3464424", "Q27133908" ], [ "Q3464424", "Q82916903" ], [ "Q3464424", "Q82916906" ], [ "Q3464424", "Q110185540" ], [ "Q3464424", "Q15424788" ], [ "Q3464424", "Q104400981" ] ] }, "8641998": { "PMID": "8641998", "ArticleTitle": "New anthracycline metabolites produced by the aklavinone 11-hydroxylase gene in Streptomyces galilaeus ATCC 31133.", "AbstractText": "Transformation of Streptomyces galilaeus ATCC 31133 with the aklavinone 11-hydroxylase gene (dnrF) resulted in the production of many red pigments. The new metabolites were purified and their structures were determined as 11-hydroxylated aclacinomycin A, B and T by spectral analysis. This result indicated that the dnrF was stably expressed in the strain S. galilaeus ATCC 31133 to give rise to hybrid aclacinomycins. In addition, a new aclacinomycin analog named 11-hydroxyaclacinomycin X was isolated from the same culture. Its structure was elucidated as 2\"'-amino-11-hydroxyaclacinomycin Y. It showed strong cytotoxicity against several human tumor cell lines, especially leukemia and melanoma cell lines.", "id": "Q58803010", "doi": "10.7164/ANTIBIOTICS.49.355", "chemicals": [ { "id": "Q109603820", "type": "class", "label": "anthracycline" }, { "id": "Q104978505", "pubchem_id": "139588833", "type": "chemical", "label": "11-Hydroxy-aclacinomycin A", "class": "anthracycline" }, { "id": "Q75062707", "pubchem_id": "139583450", "type": "chemical", "label": "11-Hydroxy-aclacinomycin B", "class": "anthracycline" }, { "id": "Q105180639", "pubchem_id": "101990411", "type": "chemical", "label": "11-Hydroxyaclacinomycin B", "class": "anthracycline" }, { "id": "Q105155155", "pubchem_id": "101990410", "type": "chemical", "label": "11-Hydroxyaclacinomycin X", "class": "anthracycline" }, { "id": "Q104970603", "pubchem_id": "139588834", "type": "chemical", "label": "11-Hydroxy-aclacinomycin T", "class": "anthracycline" }, { "id": "Q77386608", "pubchem_id": "139585241", "type": "chemical", "label": "11-Hydroxy-aclacinomycin X", "class": "anthracycline" } ], "organisms": [ { "id": "Q22285451", "label": "Streptomyces galilaeus" } ], "relations": [ [ "Q22285451", "Q109603820" ], [ "Q22285451", "Q104978505" ], [ "Q22285451", "Q75062707" ], [ "Q22285451", "Q105180639" ], [ "Q22285451", "Q104970603" ], [ "Q22285451", "Q105155155" ], [ "Q22285451", "Q77386608" ] ] }, "28112509": { "PMID": "28112509", "ArticleTitle": "Flavonoids from Erythrina schliebenii.", "AbstractText": "Prenylated and O-methylflavonoids including one new pterocarpan (1), three new isoflavones (2-4), and nineteen known natural products (5-23) were isolated and identified from the root, stem bark, and leaf extracts of Erythrina schliebenii. The crude extracts and their constituents were evaluated for antitubercular activity against Mycobacterium tuberculosis (H37Rv strain), showing MICs of 32-64 \u03bcg mL-1 and 36.9-101.8 \u03bcM, respectively. Evaluation of their toxicity against the aggressive human breast cancer cell line MDA-MB-231 indicated EC50 values of 13.0-290.6 \u03bcM (pure compounds) and 38.3 to >100 \u03bcg mL-1 (crude extracts).", "id": "Q38719987", "doi": "10.1021/ACS.JNATPROD.6B00839", "chemicals": [ { "id": "Q3561192", "type": "class", "label": "Flavonoids" }, { "id": "Q7256727", "type": "class", "label": "pterocarpan" }, { "id": "Q412519", "type": "class", "label": "isoflavones" } ], "organisms": [ { "id": "Q2712003", "label": "Erythrina schliebenii" } ], "relations": [ [ "Q2712003", "Q3561192" ], [ "Q2712003", "Q7256727" ], [ "Q2712003", "Q412519" ] ] }, "10843588": { "PMID": "10843588", "ArticleTitle": "Hachijodines A-G: seven new cytotoxic 3-alkylpyridine alkaloids from two marine sponges of the genera Xestospongia and amphimedon.", "AbstractText": "Seven cytotoxic 3-alkylpyridine alkaloids, hachijodines A-G, have been isolated from two marine sponges of the genera Xestospongia and Amphimedon. Their structures were determined on the basis of spectral data. These alkaloids are moderately cytotoxic against P388 murine leukemia cells with IC(50) values of 1.0-2.3 microg/mL.", "id": "Q59710814", "doi": "10.1021/NP9905766", "chemicals": [ { "id": "Q105273163", "pubchem_id": "10062944", "type": "chemical", "label": "Hachijodine A", "class": "3-alkylpiperidine alkaloid" }, { "id": "Q104922668", "pubchem_id": "9995340", "type": "chemical", "label": "Hachijodine C", "class": "3-alkylpiperidine alkaloid" }, { "id": "Q105187171", "pubchem_id": "10040837", "type": "chemical", "label": "Hachijodine D", "class": "3-alkylpiperidine alkaloid" }, { "id": "Q104936855", "pubchem_id": "10244668", "type": "chemical", "label": "Hachijodine E", "class": "3-alkylpiperidine alkaloid" }, { "id": "Q105021773", "pubchem_id": "10063777", "type": "chemical", "label": "Hachijodine B", "class": "3-alkylpiperidine alkaloid" }, { "id": "Q105278254", "pubchem_id": "10448484", "type": "chemical", "label": "Hachijodine F", "class": "3-alkylpiperidine alkaloid" }, { "id": "Q110187864", "pubchem_id": "10472576", "type": "chemical", "label": "Hachijodine G", "class": "3-alkylpiperidine alkaloid" } ], "organisms": [ { "id": "Q4115435", "label": "Amphimedon" }, { "id": "Q4116287", "label": "Xestospongia" } ], "relations": [ [ "Q4116287", "Q105273163" ], [ "Q4116287", "Q105021773" ], [ "Q4116287", "Q104922668" ], [ "Q4116287", "Q105187171" ], [ "Q4116287", "Q104936855" ], [ "Q4116287", "Q105278254" ], [ "Q4116287", "Q110187864" ], [ "Q4115435", "Q105273163" ], [ "Q4115435", "Q105021773" ], [ "Q4115435", "Q104922668" ], [ "Q4115435", "Q105187171" ], [ "Q4115435", "Q104936855" ], [ "Q4115435", "Q105278254" ], [ "Q4115435", "Q110187864" ] ] }, "17845001": { "PMID": "17845001", "ArticleTitle": "Bioactive constituents of the roots of Polyalthia cerasoides.", "AbstractText": "A new dimeric aporphine alkaloid, bidebiline E (1), and a new natural product, octadeca-9,11,13-triynoic acid (2), along with three known sesquiterpenes, alpha-humulene (3), caryophyllene oxide (4), and (-)-alpha-cadinol (5), and four known isoquinoline alkaloids, laudanosine (6), codamine (7), laudanidine (8), and reticuline (9), were isolated from the roots of Polyalthia cerasoides. The structures of compounds 1 and 2 were established on the basis of their 1D and 2D NMR spectroscopic data. Among these isolates, 1, 2, 4, 7, and 8 exhibited antimalarial activity against Plasmodium falciparum, while 1- 3 showed antimycobacterial activity against Mycobacterium tuberculosis using in vitro assays.", "id": "Q34685297", "doi": "10.1021/NP070293A", "chemicals": [ { "id": "Q105198119", "pubchem_id": "23642920", "type": "chemical", "label": "bidebiline E", "class": "aporphine alkaloid" }, { "id": "Q104952882", "pubchem_id": "11778027", "type": "chemical", "label": "octadeca-9,11,13-triynoic acid", "class": "natural product" }, { "id": "Q27121615", "pubchem_id": "23204", "type": "chemical", "label": "alpha-humulene", "class": "sesquiterpenes" }, { "id": "Q67879947", "pubchem_id": "1742211", "type": "chemical", "label": "caryophyllene oxide", "class": "sesquiterpenes" }, { "id": "Q4734900", "pubchem_id": "10398656", "type": "chemical", "label": "(-)-alpha-cadinol", "class": "sesquiterpenes" }, { "id": "Q408074", "pubchem_id": "73397", "type": "chemical", "label": "laudanosine", "class": "isoquinoline alkaloids" }, { "id": "Q27256850", "pubchem_id": "20056510", "type": "chemical", "label": "codamine", "class": "isoquinoline alkaloids" }, { "id": "Q27145755", "pubchem_id": "442304", "type": "chemical", "label": "laudanidine", "class": "isoquinoline alkaloids" }, { "id": "Q6122828", "pubchem_id": "439653", "type": "chemical", "label": "reticuline", "class": "isoquinoline alkaloids" } ], "organisms": [ { "id": "Q15224955", "label": "Polyalthia cerasoides" } ], "relations": [ [ "Q15224955", "Q105198119" ], [ "Q15224955", "Q104952882" ], [ "Q15224955", "Q27121615" ], [ "Q15224955", "Q67879947" ], [ "Q15224955", "Q4734900" ], [ "Q15224955", "Q408074" ], [ "Q15224955", "Q27256850" ], [ "Q15224955", "Q27145755" ], [ "Q15224955", "Q6122828" ] ] }, "25333659": { "PMID": "25333659", "ArticleTitle": "Sulfide oxidations for LC-MS analysis of methionine-containing microcystins in Dolichospermum flos-aquae NIVA-CYA 656.", "AbstractText": "Microcystins are cyclic heptapeptides produced by a range of cyanobacteria. More than 150 microcystin analogues have been reported from cultures, algal blooms, or other contaminated samples. Relatively few analytical standards are available, making identification and quantitation of these toxins a challenge, even with LC-MS technology. We developed a two-step oxidative procedure that allows LC-MS identification of microcystins containing methionine and methionine sulfoxide, and reveals the oxidation state of the methionyl sulfur atom. The procedure was used in parallel with mercaptoethanol derivatization and LC-MS(2) analysis to demonstrate the presence of [Asp(3)]MC-MR (12) and MC-MR (17) in a culture of Dolichospermum flos-aquae, together with low levels of [Asp(3)]MC-M(O)R (5) and MC-M(O)R (7), as well as 20 other microcystins. Fresh culture contained only traces of sulfoxides 5 and 7, but these increased during storage or sample extraction and preparation. This suggests that microcystins containing methionine sulfoxide are primarily postextraction oxidation artifacts, rather than being produced by biosynthesis in cyanobacteria. A simple, rapid extraction under inert gas followed promptly by LC-MS analysis minimized oxidation artifacts for D. flos-aquae.", "id": "Q85836985", "doi": "10.1021/ES5029102", "chemicals": [ { "id": "Q424720", "type": "class", "label": "microcystins" }, { "id": "Q105249001", "pubchem_id": "146684780", "type": "chemical", "label": "[Asp(3)]MC-MR", "class": "microcystins" }, { "id": "Q105123593", "pubchem_id": "146684782", "type": "chemical", "label": "MC-MR", "class": "microcystins" }, { "id": "25333659CHEM1", "pubchem_id": "146684780", "type": "chemical", "label": "[Asp(3)]MC-M(O)R", "class": "microcystins" }, { "id": "Q105193236", "pubchem_id": "146684783", "type": "chemical", "label": "MC-M(O)R", "class": "microcystins" } ], "organisms": [ { "id": "Q104911614", "label": "Dolichospermum flos-aquae" } ], "relations": [ [ "Q104911614", "Q424720" ], [ "Q104911614", "Q105249001" ], [ "Q104911614", "Q105123593" ], [ "Q104911614", "25333659CHEM1" ], [ "Q104911614", "Q105193236" ] ] }, "8164258": { "PMID": "8164258", "ArticleTitle": "Antineoplastic agents. 278. Isolation and structure of axinastatins 2 and 3 from a western Caroline Island marine sponge.", "AbstractText": "The Republic of Palau marine sponge Axinella sp. was found to be an exceptionally productive source of cell growth inhibitory substances. The strongly antineoplastic polyether macrocyclic lactones halichondrin B (1) and homohalichondrin B (2) were isolated in 1.2 x 10(-6)% and 5.4 x 10(-7)% yields, respectively. In addition to axinastatin 1 (3), two new and cytostatic (GI50 values of 0.35 to 0.0072 microgram/mL against six human cancer cell lines) cycloheptapeptides designated axinastatins 2 (4) and 3 (5) were discovered in 1.4 x 10(-6)% and 1.25 x 10(-6)% yields. Structures were elucidated by high-resolution FABMS and tandem MS/MS techniques augmented by high-field (400 and 500 MHz) 2D-NMR spectral analyses. The absolute configurations were established by a combination of hydrolysis, derivatization, and chiral gas chromatographic methods.", "id": "Q72378119", "doi": "10.1021/JM00034A014", "chemicals": [ { "id": "Q82910756", "pubchem_id": "160383", "type": "chemical", "label": "Axinastatin 2", "class": "cycloheptapeptides" }, { "id": "Q104915259", "pubchem_id": "6914804", "type": "chemical", "label": "Axinastatin 3", "class": "cycloheptapeptides" }, { "id": "Q110185611", "pubchem_id": "5488895", "type": "chemical", "label": "Halichondrin B", "class": "macrocyclic lactones" }, { "id": "8164258CHEM1", "pubchem_id": "163705", "type": "chemical", "label": "homohalichondrin B", "class": "macrocyclic lactones" }, { "id": "Q82905001", "pubchem_id": "160026", "type": "chemical", "label": "Axinastatin 1", "class": "cycloheptapeptides" } ], "organisms": [ { "id": "Q2104200", "label": "Axinella" } ], "relations": [ [ "Q2104200", "Q82910756" ], [ "Q2104200", "Q104915259" ], [ "Q2104200", "Q110185611" ], [ "Q2104200", "8164258CHEM1" ], [ "Q2104200", "Q82905001" ] ] }, "8599176": { "PMID": "8599176", "ArticleTitle": "Toxic effects of some conifer resin acids and tea tree oil on human epithelial and fibroblast cells.", "AbstractText": "The present study was undertaken to assess and compare the in vitro cytotoxic effects of three resin acid analogues: dehydrobietic acid, podocarpic acid, O-methylpodocarpic acid; an essential oil from Australia (tea tree oil); and tapped oleoresin from Thailand, on human epithelial and fibroblast cells, using a quantitative neutral red spectrophotometric assay. All of the investigated compounds except for tea tree oil exhibited a cytotoxic activity which was proportional to their concentrations and time of exposure up to 24 h, i.e. higher concentrations and longer time of exposure caused increased cell death. Dehydroabietic acid and the oleoresin were the most toxic compounds followed by O-methylpodocarpic acid, whereas podocarpic acid and tea tree oil showed a lower level of toxicity. On the basis on these findings it is concluded that an isopropyl group on the aromatic C-ring is of great importance for the cytotoxicity of the tested abietane resin acids, thus indicating that the cytotoxic activity of oleoresins most probably is caused by synergistic or additive effects of resin acids. The results from this work support the view that antibacterial activity parallels cytotoxic activity which suggests a similar mode of action, most probably exerted by membrane-associated reactions.", "id": "Q70995929", "doi": "10.1016/0300-483X(95)03242-8", "chemicals": [ ], "organisms": [ ], "relations": [ ] }, "12715867": { "PMID": "12715867", "ArticleTitle": "Ustilipids, acylated beta-D-mannopyranosyl D-erythritols from Ustilago maydis and Geotrichum candidum.", "AbstractText": "Ustilago species produce an extracellular oil that shows activity in various pharmaceutical assays. We isolated several complexes of this heterogeneous glycolipid from cultures of Ustilago maydis DSM 11494 and Geotrichum candidum ST 002515, and determined the chemical structures of these new compounds, termed ustilipids, on the basis of NMR experiments, mass spectra, and fatty acid analyses. They all possess a 4-O-beta-D-mannopyranosyl D-erythritol basic framework, the configuration of which was confirmed, after initial solvolysis, by a single-crystal X-ray structure analysis. All the investigated ustilipids and related compounds are similarly constructed: the three hydroxy groups of the erythritol side chain are free in all cases, whereas the hydroxy groups of the mannose residue are for the most part acylated. Medium-chain fatty acids have for the first time been detected as components of glycolipids produced by Ustilaginales. While the 2-hydroxy group of the mannose residue is esterified with a C2-C8 carboxylate side chain, the 3-hydroxy group is in all cases esterified by a longer, C12-C20 fatty acid residue. The oxygen functionalities at the 4 and 6 positions are either acetylated or present as free hydroxy groups. Ustilipids antagonize dopamine D3 receptors in micromolar quantities; other members of this class of compounds have been found to possess an inhibitory action on the neurotensin receptor. The hemolytic activity of ustilipids is low.", "id": "Q44418061", "doi": "10.7164/ANTIBIOTICS.56.91", "chemicals": [ { "id": "Q422882", "type": "class", "label": "glycolipid" } ], "organisms": [ { "id": "Q5548626", "label": "Geotrichum candidum" }, { "id": "Q1430040", "label": "Ustilago maydis" } ], "relations": [ [ "Q1430040", "Q422882" ], [ "Q5548626", "Q422882" ] ] }, "6874589": { "PMID": "6874589", "ArticleTitle": "Antibiotics from basidiomycetes. XVIII. Strobilurin C and oudemansin B, two new antifungal metabolites from Xerula species (Agaricales).", "AbstractText": "Two new antifungal (E)-beta-methoxyacrylates, strobilurin C and oudemansin B, were isolated from cultures of Xerula longipes and Xerula melanotricha. Their structures were elucidated by spectroscopic methods. Both antibiotics inhibit the growth of a wide variety of saprophytic and phytopathogenic fungi at very low concentrations. Like strobilurins A, B, and oudemansin A the new metabolites are potent inhibitors of respiration.", "id": "Q71796261", "doi": "10.7164/ANTIBIOTICS.36.661", "chemicals": [ { "id": "Q27157334", "pubchem_id": "6441102", "type": "chemical", "label": "Strobilurin B", "class": "" }, { "id": "6874589CHEM1", "pubchem_id": "", "type": "chemical", "label": "oudemansin B", "class": "" }, { "id": "Q27287743", "pubchem_id": "76968370", "type": "chemical", "label": "Strobilurin C", "class": "" }, { "id": "Q16979497", "pubchem_id": "6438712", "type": "chemical", "label": "Oudemansin A", "class": "" }, { "id": "Q27147658", "pubchem_id": "6437379", "type": "chemical", "label": "strobilurin A", "class": "" } ], "organisms": [ { "id": "Q54357778", "label": "Xerula longipes" }, { "id": "Q59549590", "label": "Xerula melanotricha" } ], "relations": [ [ "Q54357778", "Q27287743" ], [ "Q54357778", "6874589CHEM1" ], [ "Q54357778", "Q27147658" ], [ "Q54357778", "Q27157334" ], [ "Q54357778", "Q16979497" ], [ "Q59549590", "Q27287743" ], [ "Q59549590", "6874589CHEM1" ], [ "Q59549590", "Q27147658" ], [ "Q59549590", "Q27157334" ], [ "Q59549590", "Q16979497" ] ] }, "17311456": { "PMID": "17311456", "ArticleTitle": "Polybrominated diphenyl ethers from the Indonesian sponge Lamellodysidea herbacea.", "AbstractText": "Four new (1-4) and 10 known polybrominated diphenyl ethers (5-14) have been isolated from the title sponge. The structures of the new entities were elucidated by interpretation of spectroscopic data and chemical transformations. These metabolites showed potent antimicrobial activity against Bacillus subtilis and moderate/weak cytotoxicity against NBT-T2 rat bladder epithelial cells. The major constituent 14 was treated under debromination conditions to give eight derivatives, which were subjected to a structure-activity relationship study. The results indicated that the presence of two phenolic hydroxyl groups and bromines at C-2 and/or C-5, as in 2, is important for the exhibition of antibacterial activity.", "id": "Q33274733", "doi": "10.1021/NP0605081", "chemicals": [ { "id": "Q205944", "type": "class", "label": "polybrominated diphenyl ethers" } ], "organisms": [ { "id": "Q3230314", "label": "Lamellodysidea herbacea" } ], "relations": [ [ "Q3230314", "Q205944" ] ] }, "8835463": { "PMID": "8835463", "ArticleTitle": "Saponins from the root of Bupleurum falcatum.", "AbstractText": "Three new saponins and nine known saponins were isolated from the dried roots of Bupleurum falcatum. On the basis of chemical and spectral analyses, the structures of new compounds, named 4''-O-acetylsaikosaponin d and hydroxysaikosaponins a and c, were established. In aqueous acidic conditions, saikosaponins a and d were converted into not only known compounds, saikosaponins b1 and b2, but also hydroxysaikosaponins a and d, respectively. Furthermore, quantitative analysis of the decoction of Bupleuri Radix itself by HPLC exhibited that it contained saikosaponins a, c and d, and hydroxysaikosaponins a, c and d.", "id": "Q71602873", "doi": "10.1016/0031-9422(95)00720-2", "chemicals": [ { "id": "Q207653", "type": "class", "label": "saponins" }, { "id": "Q105204473", "pubchem_id": "101690816", "type": "chemical", "label": "4''-O-Acetylsaikosaponin d", "class": "saponins" }, { "id": "Q105301252", "pubchem_id": "101690817", "type": "chemical", "label": "Hydroxysaikosaponin a", "class": "saponins" }, { "id": "8835463CHEM1", "pubchem_id": "163321596", "type": "chemical", "label": "Hydroxysaikosaponin c", "class": "saponins" }, { "id": "Q7499688", "pubchem_id": "167928", "type": "chemical", "label": "saikosaponin a", "class": "saponins" }, { "id": "Q27291219", "pubchem_id": "107793", "type": "chemical", "label": "saikosaponin d", "class": "saponins" }, { "id": "Q105311635", "pubchem_id": "9875547", "type": "chemical", "label": "saikosaponin b1", "class": "saponins" }, { "id": "Q63395661", "pubchem_id": "21637642", "type": "chemical", "label": "saikosaponin b2", "class": "saponins" }, { "id": "8835463CHEM2", "pubchem_id": "", "type": "chemical", "label": "Hydroxysaikosaponin d", "class": "saponins" }, { "id": "Q72506919", "pubchem_id": "", "type": "chemical", "label": "saikosaponin c", "class": "saponins" } ], "organisms": [ { "id": "Q1152744", "label": "Bupleurum falcatum" }, { "id": "Q11341994", "label": "Bupleuri Radix" } ], "relations": [ [ "Q1152744", "Q207653" ], [ "Q1152744", "Q105204473" ], [ "Q1152744", "Q105301252" ], [ "Q1152744", "8835463CHEM1" ], [ "Q1152744", "Q7499688" ], [ "Q1152744", "Q27291219" ], [ "Q1152744", "Q105311635" ], [ "Q1152744", "Q63395661" ], [ "Q1152744", "8835463CHEM2" ], [ "Q11341994", "Q7499688" ], [ "Q11341994", "Q72506919" ], [ "Q11341994", "Q27291219" ], [ "Q11341994", "Q105301252" ], [ "Q11341994", "8835463CHEM1" ], [ "Q11341994", "8835463CHEM2" ] ] }, "17696440": { "PMID": "17696440", "ArticleTitle": "Echinacea species and alkamides inhibit prostaglandin E(2) production in RAW264.7 mouse macrophage cells.", "AbstractText": "Inhibition of prostaglandin E(2) (PGE(2)) production in lipopolysaccharide-stimulated RAW264.7 mouse macrophage cells was assessed with an enzyme immunoassay following treatments with Echinacea extracts or synthesized alkamides. Results indicated that ethanol extracts diluted in media to a concentration of 15 microg/mL from E. angustifolia, E. pallida, E. simulata, and E. sanguinea significantly inhibited PGE2 production. In further studies, PGE2 production was significantly reduced by all synthesized alkamides assayed at 50 microM, by Bauer alkamides 8, 12A analogue, and 14, Chen alkamide 2, and Chen alkamide 2 analogue at 25 microM and by Bauer alkamide 14 at 10 microM. Cytotoxicity did not play a role in the noted reduction of PGE2 production in either the Echinacea extracts or synthesized alkamides. High-performance liquid chromatography analysis identified individual alkamides present at concentrations below 2.8 microM in the extracts from the six Echinacea species (15 microg/mL crude extract). Because active extracts contained <2.8 microM of specific alkamide and the results showed that synthetic alkamides must have a minimum concentration of 10 microM to inhibit PGE2, it is likely that alkamides may contribute toward the anti-inflammatory activity of Echinacea in a synergistic or additive manner.", "id": "Q36627223", "doi": "10.1021/JF063711A", "chemicals": [ { "id": "Q153", "pubchem_id": "702", "type": "chemical", "label": "ethanol", "class": "" }, { "id": "Q5438003", "type": "class", "label": "alkamides" } ], "organisms": [ { "id": "Q1642983", "label": "Echinacea" }, { "id": "Q1062627", "label": "Echinacea angustifolia" }, { "id": "Q1813728", "label": "Echinacea pallida" }, { "id": "Q5332436", "label": "Echinacea simulata" }, { "id": "Q5332434", "label": "Echinacea sanguinea" } ], "relations": [ [ "Q1642983", "Q153" ], [ "Q1642983", "Q5438003" ], [ "Q1062627", "Q153" ], [ "Q1062627", "Q5438003" ], [ "Q1813728", "Q153" ], [ "Q1813728", "Q5438003" ], [ "Q5332436", "Q153" ], [ "Q5332436", "Q5438003" ], [ "Q5332434", "Q153" ], [ "Q5332434", "Q5438003" ] ] }, "27399232": { "PMID": "27399232", "ArticleTitle": "Alkaloids from the Fungus Penicillium spathulatum as \u03b1-Glucosidase Inhibitors.", "AbstractText": "Benzomalvin A (1), quinolactacins A1 (2), A2 (3) and B (4), quinolonimide (5), asperphenamate (6), and a new halogenated polyhydroxyanthraquinone, namely 2-chloro-6-[2'(S)-hydroxypropyl]-1,3,8-trihydroxy-anthraquinone (7), were isolated from an organic extract obtained from the solid culture of Penicillium spathulatum B35. Compounds 2 and 3 were isolated as an epimeric mixture, and compound 4 as a racemate. The structure of 7 was elucidated using 1D and 2D NMR, combined with computational methods (density functional theory). Compound 1, the mixture of 2 and 3, racemate 4, and compound 6 inhibited the yeast \u03b1-glucosidase in a concentration-dependent fashion with IC50 values of 383.2, 273.3, 57.3, and 8.3\u2009\u00b5M, respectively. The \u03b1-glucosidase inhibitory properties of 1 were confirmed in vivo with an oral sucrose tolerance test in normal and hyperglycemic mice (p\u2009<\u20090.05). Furthermore, docking studies predicted that the most stable conformers of 1 bind to yeast and mammalian \u03b1-glucosidases with a higher affinity than acarbose. Finally, 1 also showed antihyperalgesic activity when tested in the formalin assay in hyperglycemic mice (p\u2009<\u20090.05).", "id": "Q59138307", "doi": "10.1055/S-0042-111393", "chemicals": [ { "id": "Q77280044", "pubchem_id": "10068406", "type": "chemical", "label": "Benzomalvin A", "class": "Alkaloids" }, { "id": "Q104997108", "pubchem_id": "26202199", "type": "chemical", "label": "Quinolactacin A1", "class": "Alkaloids" }, { "id": "Q77484552", "pubchem_id": "10061684", "type": "chemical", "label": "Quinolactacin A2", "class": "Alkaloids" }, { "id": "Q77489379", "pubchem_id": "10220728", "type": "chemical", "label": "Quinolactacin B", "class": "Alkaloids" }, { "id": "Q103813490", "pubchem_id": "11492325", "type": "chemical", "label": "Quinolonimide", "class": "Alkaloids" }, { "id": "Q103815806", "pubchem_id": "173952", "type": "chemical", "label": "Asperphenamate", "class": "Alkaloids" }, { "id": "27399232CHEM1", "pubchem_id": "", "type": "chemical", "label": "2-chloro-6-[2'(S)-hydroxypropyl]-1,3,8-trihydroxy-anthraquinone", "class": "Alkaloids" } ], "organisms": [ { "id": "Q20897864", "label": "Penicillium spathulatum" } ], "relations": [ [ "Q20897864", "Q77280044" ], [ "Q20897864", "Q104997108" ], [ "Q20897864", "Q77484552" ], [ "Q20897864", "Q77489379" ], [ "Q20897864", "Q103813490" ], [ "Q20897864", "Q103815806" ], [ "Q20897864", "27399232CHEM1" ] ] }, "7641309": { "PMID": "7641309", "ArticleTitle": "Fungal metabolites. XIX. Structural elucidation of channel-forming peptides, trichorovins-I-XIV, from the fungus Trichoderma viride.", "AbstractText": "Trichorovins (TV)-I-XIV are new antibiotic peptides obtained from conidia of the fungus Trichoderma viride. The peptide mixture of TVs was repeatedly fractionated by preparative HPLC until individual TVs showed a single peak on their analytical HPLC chromatograms. Nevertheless, FAB-MS or NMR indicated that each of TVs-I-XIV was composed of at least two components. We attempted to elucidate their structures within the fractions by electrospray ionization (ESI)-MS, FAB-MS, FAB-MS/MS and NMR. TVs generally have molecular weights of approximately 1100-1200 Da, and are characterized by an acetylated N-terminus, the presence of an aminoalcohol, e.g. leucinol, isoleucinol or valinol, at the C-terminus, and eleven residues including three alpha-aminoisobutyric acids in the molecule. Thus, it was determined that TVs belong to the class of peptaibols.", "id": "Q71974349", "doi": "10.1248/CPB.43.910", "chemicals": [ { "id": "Q104170452", "pubchem_id": "139588343", "type": "chemical", "label": "Trichorovin-Ia", "class": "antibiotic peptides" }, { "id": "Q104196471", "pubchem_id": "139588063", "type": "chemical", "label": "Trichorovin-IIa", "class": "antibiotic peptides" }, { "id": "Q77386223", "pubchem_id": "139585220", "type": "chemical", "label": "Trichorovin-IIb", "class": "antibiotic peptides" }, { "id": "Q77385896", "pubchem_id": "85150735", "type": "chemical", "label": "Trichorovin-IVa", "class": "antibiotic peptides" }, { "id": "Q104196993", "pubchem_id": "139588456", "type": "chemical", "label": "Trichorovin-IVb", "class": "antibiotic peptides" }, { "id": "Q75067864", "pubchem_id": "139583820", "type": "chemical", "label": "Trichorovin-Va", "class": "antibiotic peptides" }, { "id": "Q75064086", "pubchem_id": "139583578", "type": "chemical", "label": "Trichorovin-Vb", "class": "antibiotic peptides" }, { "id": "Q77421799", "pubchem_id": "139585414", "type": "chemical", "label": "Trichorovin-VIIa", "class": "antibiotic peptides" }, { "id": "Q75066758", "pubchem_id": "139583729", "type": "chemical", "label": "Trichorovin-IXa", "class": "antibiotic peptides" }, { "id": "Q77310168", "pubchem_id": "139584301", "type": "chemical", "label": "Trichorovin-IXb", "class": "antibiotic peptides" }, { "id": "Q77387518", "pubchem_id": "139585285", "type": "chemical", "label": "Trichorovin-Xa", "class": "antibiotic peptides" }, { "id": "Q77375336", "pubchem_id": "139584759", "type": "chemical", "label": "Trichorovin-XI", "class": "antibiotic peptides" }, { "id": "Q77281006", "pubchem_id": "139584210", "type": "chemical", "label": "Trichorovin-XIIa", "class": "antibiotic peptides" }, { "id": "Q77519443", "pubchem_id": "139587012", "type": "chemical", "label": "Trichorovin-XIV", "class": "antibiotic peptides" } ], "organisms": [ { "id": "Q3915697", "label": "Trichoderma viride" } ], "relations": [ [ "Q3915697", "Q104170452" ], [ "Q3915697", "Q104196471" ], [ "Q3915697", "Q77386223" ], [ "Q3915697", "Q77385896" ], [ "Q3915697", "Q104196993" ], [ "Q3915697", "Q75067864" ], [ "Q3915697", "Q75064086" ], [ "Q3915697", "Q77421799" ], [ "Q3915697", "Q75066758" ], [ "Q3915697", "Q77310168" ], [ "Q3915697", "Q77387518" ], [ "Q3915697", "Q77375336" ], [ "Q3915697", "Q77281006" ], [ "Q3915697", "Q77519443" ] ] }, "4024136": { "PMID": "4024136", "ArticleTitle": "Tetrodotoxin derivatives in puffer fish.", "AbstractText": "Analysis of puffer fish tissue extracts by a fluorometric tetrodotoxin analyzer revealed the presence of three tetrodotoxin derivatives besides tetrodotoxin. The derivatives were isolated and identified as tetrodonic acid, 4-epitetrodotoxin and anhydrotetrodotoxin on the basis of mass spectral and 1H NMR measurements. The lethal potencies of 4-epitetrodotoxin and anhydrotetrodotoxin to mice by i.p. injection were 710 and 92 mouse units/mg, respectively.", "id": "Q49165834", "doi": "10.1016/0041-0101(85)90149-7", "chemicals": [ { "id": "Q104375947", "pubchem_id": "107878", "type": "chemical", "label": "Anhydrotetrodotoxin", "class": "" }, { "id": "Q105173715", "pubchem_id": "90472149", "type": "chemical", "label": "Tetrodonic acid", "class": "" }, { "id": "Q27275246", "pubchem_id": "5311477", "type": "chemical", "label": "4-epitetrodotoxin", "class": "" }, { "id": "Q379842", "pubchem_id": "6324668", "type": "chemical", "label": "tetrodotoxin", "class": "" } ], "organisms": [ { "id": "Q16869951", "label": "Fish" } ], "relations": [ [ "Q16869951", "Q379842" ], [ "Q16869951", "Q105173715" ], [ "Q16869951", "Q27275246" ], [ "Q16869951", "Q104375947" ] ] }, "8778240": { "PMID": "8778240", "ArticleTitle": "Tonkinecin, a novel bioactive annonaceous acetogenin from Uvaria tonkinesis.", "AbstractText": "A novel bioactive monotetrahydrofuran acetogenin named tonkinecin (1) and two known compounds, uvariamicins I and II, have been isolated from the roots of Uvaria tonkinesis. The structure of 1 was elucidated using spectral methods and its absolute stereochemistry established by 1H-NMR experiments utilizing Mosher ester methodology.", "id": "Q71458994", "doi": "10.1021/NP960321H", "chemicals": [ { "id": "Q104401392", "pubchem_id": "101392148", "type": "chemical", "label": "Uvariamicin I", "class": "" }, { "id": "Q104401393", "pubchem_id": "101392149", "type": "chemical", "label": "Uvariamicin II", "class": "" }, { "id": "Q83039705", "pubchem_id": "177289", "type": "chemical", "label": "Tonkinecin", "class": "acetogenin" } ], "organisms": [ { "id": "Q11076096", "label": "Uvaria tonkinensis" } ], "relations": [ [ "Q11076096", "Q83039705" ], [ "Q11076096", "Q104401392" ], [ "Q11076096", "Q104401393" ] ] }, "25072108": { "PMID": "25072108", "ArticleTitle": "Cyclic Hexapeptides from the Deep South China Sea-Derived Streptomyces scopuliridis SCSIO ZJ46 Active Against Pathogenic Gram-Positive Bacteria.", "AbstractText": "Three new cyclohexapeptides, desotamides B-D (2-4), and the known desotamide (1) were isolated from marine microbe Streptomyces scopuliridis SCSIO ZJ46. The sequences and absolute configurations of 2-4 were elucidated on the basis of high-resolution spectroscopic data, Marfey's method, and chiral-phase HPLC data. Desotamide C (3) contains a unique N-formyl-kynurenine residue, whereas 4 lacks formylation at the same site. Compounds 1 and 2 displayed notable antibacterial activities against strains of Streptococcus pnuemoniae, Staphylococcus aureus, and methicillin-resistant Staphylococcus epidermidis (MRSE), and structure activity relationship studies revealed the indispensability of the Trp component for antibacterial activity within this new scaffold.", "id": "Q34431328", "doi": "10.1021/NP500399V", "chemicals": [ { "id": "Q77624990", "pubchem_id": "118712037", "type": "chemical", "label": "Desotamide C", "class": "Hexapeptides" }, { "id": "Q104959436", "pubchem_id": "102584784", "type": "chemical", "label": "Desotamide B", "class": "Hexapeptides" }, { "id": "Q77483249", "pubchem_id": "181446", "type": "chemical", "label": "Desotamide", "class": "Hexapeptides" }, { "id": "Q105160216", "pubchem_id": "118712038", "type": "chemical", "label": "Desotamide D", "class": "Hexapeptides" } ], "organisms": [ { "id": "Q26292521", "label": "Streptomyces scopuliridis" } ], "relations": [ [ "Q26292521", "Q104959436" ], [ "Q26292521", "Q77624990" ], [ "Q26292521", "Q105160216" ], [ "Q26292521", "Q77483249" ] ] }, "18217716": { "PMID": "18217716", "ArticleTitle": "Secondary metabolites from three Florida sponges with antidepressant activity.", "AbstractText": "Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety-depression continuum model. Among the isolated compounds, 5,6-dibromo- N,N-dimethyltryptamine ( 1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo- N,N-dimethyltryptamine ( 2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs.", "id": "Q27334777", "doi": "10.1021/NP070371U", "chemicals": [ { "id": "Q408452", "type": "class", "label": "indole alkaloids" }, { "id": "Q412382", "type": "class", "label": "quinones" }, { "id": "Q74651133", "type": "class", "label": "hydroquinones" }, { "id": "Q27287486", "pubchem_id": "360251", "type": "chemical", "label": "5,6-Dibromo-N,N-dimethyltryptamine", "class": "indole alkaloids" }, { "id": "Q10859493", "pubchem_id": "360252", "type": "chemical", "label": "5-Bromo-N,N-dimethyltryptamine", "class": "indole alkaloids" } ], "organisms": [ { "id": "Q2247061", "label": "Verongula rigida" }, { "id": "Q3516463", "label": "Smenospongia aurea" }, { "id": "Q2540649", "label": "Smenospongia cerebriformis" } ], "relations": [ [ "Q2247061", "Q408452" ], [ "Q2247061", "Q412382" ], [ "Q2247061", "Q74651133" ], [ "Q2247061", "Q27287486" ], [ "Q2247061", "Q10859493" ], [ "Q3516463", "Q408452" ], [ "Q3516463", "Q412382" ], [ "Q3516463", "Q74651133" ], [ "Q3516463", "Q27287486" ], [ "Q3516463", "Q10859493" ] ] }, "17253857": { "PMID": "17253857", "ArticleTitle": "Iridoids from Crescentia alata.", "AbstractText": "Four new 11-nor-iridoids, 6beta,7beta,8alpha,10-tetrahydroxy-cis-2-oxabicyclo[4.3.0]nonan-3-one (1), 6beta,7beta,8alpha,10-tetra-p-hydroxybenzoyl-cis-2-oxabicyclo[4.3.0]nonan-3-one (2), 1beta,6beta,7alpha,8alpha,10-pentahydroxy-cis-2-oxabicyclo[4.3.0]nonane (3), and 6beta-hydroxy-2-oxabicyclo[4.3.0]Delta8-9-nonen-1-one (4), were isolated from the pulp of the fruits of Crescentia alata. Although a limited number of Crescentia species have been studied chemically, iridoids lacking C-11 have been isolated from the fruits of these species, and the isolation of compounds 1-4 from C. alata is in accordance with the constituents of the species previously analyzed. The structures of these compounds were established on the basis of IR, UV, 1H and 13C NMR, DEPT, COSY, HSQC, HMBC, MS, and X-ray data.", "id": "Q79662677", "doi": "10.1021/NP060499W", "chemicals": [ { "id": "Q416840", "type": "class", "label": "Iridoids" }, { "id": "17253857CHEM1", "pubchem_id": "", "type": "chemical", "label": "6beta,7beta,8alpha,10-tetrahydroxy-cis-2-oxabicyclo[4.3.0]nonan-3-one", "class": "Iridoids" }, { "id": "17253857CHEM2", "pubchem_id": "", "type": "chemical", "label": "6beta,7beta,8alpha,10-tetra-p-hydroxybenzoyl-cis-2-oxabicyclo[4.3.0]nonan-3-one", "class": "Iridoids" }, { "id": "17253857CHEM3", "pubchem_id": "", "type": "chemical", "label": "1beta,6beta,7alpha,8alpha,10-pentahydroxy-cis-2-oxabicyclo[4.3.0]nonane", "class": "Iridoids" }, { "id": "17253857CHEM4", "pubchem_id": "", "type": "chemical", "label": "6beta-hydroxy-2-oxabicyclo[4.3.0]Delta8-9-nonen-1-one", "class": "Iridoids" } ], "organisms": [ { "id": "Q5184448", "label": "Crescentia alata" } ], "relations": [ [ "Q5184448", "Q416840" ], [ "Q5184448", "17253857CHEM1" ], [ "Q5184448", "17253857CHEM2" ], [ "Q5184448", "17253857CHEM3" ], [ "Q5184448", "17253857CHEM4" ] ] }, "27072394": { "PMID": "27072394", "ArticleTitle": "Streptomyces malaysiense sp. nov.: A novel Malaysian mangrove soil actinobacterium with antioxidative activity and cytotoxic potential against human cancer cell lines.", "AbstractText": "Actinobacteria from the unique intertidal ecosystem of the mangroves are known to produce novel, bioactive secondary metabolites. A novel strain known as MUSC 136(T) (=DSM 100712(T)\u2009= MCCC 1K01246(T)) which was isolated from Malaysian mangrove forest soil has proven to be no exception. Assessed by a polyphasic approach, its taxonomy showed a range of phylogenetic and chemotaxonomic properties consistent with the genus of Streptomyces. Phylogenetically, highest similarity was to Streptomyces misionensis NBRC 13063(T) (99.6%) along with two other strains (>98.9% sequence similarities). The DNA-DNA relatedness between MUSC 136(T) and these type strains ranged from 22.7 \u00b1 0.5% to 46.5 \u00b1 0.2%. Overall, polyphasic approach studies indicated this strain represents a novel species, for which the name Streptomyces malaysiense sp. nov. is proposed. The potential bioactivities of this strain were explored by means of antioxidant and cytotoxic assays. Intriguingly, MUSC 136(T) exhibited strong antioxidative activities as evaluated by a panel of antioxidant assays. It was also found to possess high cytotoxic effect against HCT-116 cells, which probably mediated through altering p53 protein and intracellular glutathione levels. Chemical analysis of the extract using GC-MS further affirms that the strain produces chemopreventive related metabolites.", "id": "Q31075543", "doi": "10.1038/SREP24247", "chemicals": [ ], "organisms": [ { "id": "Q104095570", "label": "Streptomyces malaysiense" } ], "relations": [ ] }, "15104481": { "PMID": "15104481", "ArticleTitle": "New prostanoids with cytotoxic activity from Taiwanese octocoral Clavularia viridis.", "AbstractText": "Bioassay-directed fractionation of the CH(2)Cl(2)-MeOH extract of Clavularia viridis collected in Taiwan has afforded seven new prostanoids, designated as 4-deacetoxyl-12-O-deacetylclavulone I (1), 4-deacetoxyl-12-O-deacetylclavulone II (2), bromovulone II (4), iodovulone II (5), 4-deacetoxyl-12-O-deacetylclavulone III (6), bromovulone III (7), and iodovulone III (8), in addition to seven known prostanoids (clavulones I, II, III, 7-acetoxy-7,8-dihydroiodovulone, chlorovulones II, III, and 4-deacetoxylclavulone II (3, claviridenone E)). The structures of compounds 1-8 were determined on the basis of 1D and 2D NMR techniques including COSY, HSQC, and HMBC experiments. Pharmacological study revealed that bromovulone III (7) and chlorovulone II exhibited the most promising cytotoxicity against human prostate (PC-3) and colon (HT29) cancer cells.", "id": "Q79975424", "doi": "10.1021/NP030435A", "chemicals": [ { "id": "Q962217", "type": "class", "label": "prostanoids" }, { "id": "Q110188483", "pubchem_id": "101730749", "type": "chemical", "label": "4-Deacetoxyl-12-O-deacetylclavulone I", "class": "prostanoids" }, { "id": "Q104920390", "pubchem_id": "21777490", "type": "chemical", "label": "4-Deacetoxyl-12-O-deacetylclavulone II", "class": "prostanoids" }, { "id": "Q105251513", "pubchem_id": "101730750", "type": "chemical", "label": "bromovulone II", "class": "prostanoids" }, { "id": "Q105301095", "pubchem_id": "10390051", "type": "chemical", "label": "Iodovulone II", "class": "prostanoids" }, { "id": "Q104920392", "pubchem_id": "21777489", "type": "chemical", "label": "4-Deacetoxyl-12-O-deacetylclavulone III", "class": "prostanoids" }, { "id": "Q105251515", "pubchem_id": "11247303", "type": "chemical", "label": "Bromovulone III", "class": "prostanoids" }, { "id": "Q105301088", "pubchem_id": "11225221", "type": "chemical", "label": "Iodovulone III", "class": "prostanoids" }, { "id": "Q27116194", "pubchem_id": "5282264", "type": "chemical", "label": "Clavulone I", "class": "prostanoids" }, { "id": "Q27116195", "pubchem_id": "5283218", "type": "chemical", "label": "Clavulone II", "class": "prostanoids" }, { "id": "Q27116197", "pubchem_id": "5282266", "type": "chemical", "label": "Clavulone III", "class": "prostanoids" }, { "id": "Q76415344", "pubchem_id": "10256517", "type": "chemical", "label": "7-acetoxy-7,8-dihydroiodovulone", "class": "prostanoids" }, { "id": "Q104969828", "pubchem_id": "5283223", "type": "chemical", "label": "chlorovulone II", "class": "prostanoids" }, { "id": "Q104969824", "pubchem_id": "5283224", "type": "chemical", "label": "chlorovulone III", "class": "prostanoids" }, { "id": "Q105183409", "pubchem_id": "11349752", "type": "chemical", "label": "4-deacetoxylclavulone II", "class": "prostanoids" }, { "id": "Q105183409", "pubchem_id": "11349752", "type": "chemical", "label": "Claviridenone E", "class": "prostanoids" } ], "organisms": [ { "id": "Q1871293", "label": "Clavularia viridis" } ], "relations": [ [ "Q1871293", "Q962217" ], [ "Q1871293", "Q110188483" ], [ "Q1871293", "Q104920390" ], [ "Q1871293", "Q105251513" ], [ "Q1871293", "Q105301095" ], [ "Q1871293", "Q104920392" ], [ "Q1871293", "Q105251515" ], [ "Q1871293", "Q105301088" ], [ "Q1871293", "Q27116194" ], [ "Q1871293", "Q27116195" ], [ "Q1871293", "Q27116197" ], [ "Q1871293", "Q76415344" ], [ "Q1871293", "Q104969828" ], [ "Q1871293", "Q104969824" ], [ "Q1871293", "Q105183409" ], [ "Q1871293", "Q105183409" ] ] }, "12350158": { "PMID": "12350158", "ArticleTitle": "New meroterpenoids from the Ascidian Aplidium conicum.", "AbstractText": "The ascidian Aplidium conicum from Tarifa Island contains the four new meroterpenoids conidione (1), conicol (2), 2-[(1'E)-3'-methoxy-3',7'-dimethylocta-1',6'-dienyl]benzene-1,4-diol (3), and conitriol (4) together with five related known compounds (5-9). It is proposed that the nonaromatic compound conidione (1) was derived by cyclization of an intermediate conitriol quinone 11. The structures of the new compounds were elucidated by interpretation of spectral data.", "id": "Q44154531", "doi": "10.1021/NP020176+", "chemicals": [ { "id": "Q6819990", "type": "class", "label": "meroterpenoids" }, { "id": "Q105024704", "pubchem_id": "22297512", "type": "chemical", "label": "Conidione", "class": "meroterpenoids" }, { "id": "Q105189033", "pubchem_id": "642450", "type": "chemical", "label": "conicol", "class": "meroterpenoids" }, { "id": "12350158CHEM1", "pubchem_id": "11108616", "type": "chemical", "label": "2-[(1'E)-3'-methoxy-3',7'-dimethylocta-1',6'-dienyl]benzene-1,4-diol", "class": "meroterpenoids" }, { "id": "Q105035183", "pubchem_id": "11097363", "type": "chemical", "label": "Conitriol", "class": "meroterpenoids" } ], "organisms": [ { "id": "Q4915338", "label": "Aplidium conicum" } ], "relations": [ [ "Q4915338", "Q6819990" ], [ "Q4915338", "Q105024704" ], [ "Q4915338", "Q105189033" ], [ "Q4915338", "12350158CHEM1" ], [ "Q4915338", "Q105035183" ] ] }, "6355836": { "PMID": "6355836", "ArticleTitle": "Mutagenicity of natural naphthoquinones and benzoquinones in the Salmonella/microsome test.", "AbstractText": "The mutagenicities of naturally occurring naphthoquinones and benzoquinones were tested by the pre-incubation method with Salmonella typhimurium strains TA98, TA100 and TA2637, which all contain plasmid pKM101. 6 of the 16 naphthoquinones tested, i.e., plumbagin, naphthazarin, 2-hydroxy-naphthoquinone, vitamin K3 (menadione), juglone and 7-methyljuglone, were mutagenic to strain TA2637 with metabolic activation. Except for juglone and 7-methyl-juglone, these compounds also had slight mutagenic effects on strain TA98 with S9 mix. All the mutagenic naphthoquinones contain one or two hydroxyl and/or methyl substituents. The naphthoquinone mompain, which has four hydroxyl groups, was not mutagenic. Unsubstituted beta-naphthoquinone, naphthoquinones with a prenyl side chain and all bi-naphthoquinone derivatives tested were non-mutagenic. None of the 13 benzoquinones examined was mutagenic to any of the strains used with or without metabolic activation. These results show that natural naphthoquinones are mutagenic when they have only one or two hydroxyl and/or methyl substituents.", "id": "Q50210626", "doi": "10.1016/0165-1218(83)90182-9", "chemicals": [ ], "organisms": [ ], "relations": [ ] }, "28029795": { "PMID": "28029795", "ArticleTitle": "Spoxazomicin D and Oxachelin C, Potent Neuroprotective Carboxamides from the Appalachian Coal Fire-Associated Isolate Streptomyces sp. RM-14-6.", "AbstractText": "The isolation and structure elucidation of six new bacterial metabolites [spoxazomicin D (2), oxachelins B and C (4, 5), and carboxamides 6-8] and 11 previously reported bacterial metabolites (1, 3, 9-12a, and 14-18) from Streptomyces sp. RM-14-6 is reported. Structures were elucidated on the basis of comprehensive 1D and 2D NMR and mass spectrometry data analysis, along with direct comparison to synthetic standards for 2, 11, and 12a,b. Complete 2D NMR assignments for the known metabolites lenoremycin (9) and lenoremycin sodium salt (10) were also provided for the first time. Comparative analysis also provided the basis for structural revision of several previously reported putative aziridine-containing compounds [exemplified by madurastatins A1, B1, C1 (also known as MBJ-0034), and MBJ-0035] as phenol-dihydrooxazoles. Bioactivity analysis [including antibacterial, antifungal, cancer cell line cytotoxicity, unfolded protein response (UPR) modulation, and EtOH damage neuroprotection] revealed 2 and 5 as potent neuroprotectives and lenoremycin (9) and its sodium salt (10) as potent UPR modulators, highlighting new functions for phenol-oxazolines/salicylates and polyether pharmacophores.", "id": "Q34548166", "doi": "10.1021/ACS.JNATPROD.6B00948", "chemicals": [ { "id": "Q104195295", "pubchem_id": "137032779", "type": "chemical", "label": "Spoxazomicin D", "class": "carboxamides" }, { "id": "Q75052806", "pubchem_id": "135502566", "type": "chemical", "label": "Oxachelin", "class": "carboxamides" }, { "id": "28029795CHEM1", "pubchem_id": "", "type": "chemical", "label": "Oxachelin C", "class": "carboxamides" }, { "id": "28029795CHEM2", "pubchem_id": "", "type": "chemical", "label": "Oxachelin B", "class": "carboxamides" }, { "id": "Q355679", "type": "class", "label": "carboxamides" }, { "id": "Q105155501", "pubchem_id": "6441669", "type": "chemical", "label": "Lenoremycin", "class": "" }, { "id": "28029795CHEM3", "pubchem_id": "", "type": "chemical", "label": "lenoremycin sodium salt", "class": "" }, { "id": "Q75068726", "pubchem_id": "139583873", "type": "chemical", "label": "madurastatin A1", "class": "" }, { "id": "Q77561445", "pubchem_id": "11298709", "type": "chemical", "label": "madurastatin B1", "class": "" }, { "id": "Q105236321", "pubchem_id": "139589717", "type": "chemical", "label": "madurastatin C1", "class": "" }, { "id": "28029795CHEM4", "pubchem_id": "", "type": "chemical", "label": "MBJ-0035", "class": "" } ], "organisms": [ { "id": "Q1144013", "label": "Streptomyces" } ], "relations": [ [ "Q1144013", "Q104195295" ], [ "Q1144013", "Q75052806" ], [ "Q1144013", "28029795CHEM1" ], [ "Q1144013", "28029795CHEM2" ], [ "Q1144013", "Q355679" ], [ "Q1144013", "Q105155501" ], [ "Q1144013", "28029795CHEM3" ], [ "Q1144013", "Q75068726" ], [ "Q1144013", "Q77561445" ], [ "Q1144013", "Q105236321" ], [ "Q1144013", "28029795CHEM4" ] ] }, "2112049": { "PMID": "2112049", "ArticleTitle": "An autolytic substance in a freshwater cyanobacterium Phormidium tenue.", "AbstractText": "An autolytic substance in an axenic cyanobacterium, Phormidium tenue, was identified as a mixture of fatty acids, by use of cultured cells in the laboratory. Among them, linoleic acid and linolenic acid were potent growth inhibitors.", "id": "Q67294246", "doi": "10.1248/CPB.38.812", "chemicals": [ { "id": "Q61476", "type": "class", "label": "fatty acids" }, { "id": "Q407426", "pubchem_id": "5280450", "type": "chemical", "label": "linoleic acid", "class": "fatty acids" }, { "id": "Q256502", "pubchem_id": "5280934", "type": "chemical", "label": "linolenic acid", "class": "fatty acids" } ], "organisms": [ { "id": "Q104247955", "label": "Phormidium tenue" } ], "relations": [ [ "Q104247955", "Q61476" ], [ "Q104247955", "Q407426" ], [ "Q104247955", "Q256502" ] ] }, "23270364": { "PMID": "23270364", "ArticleTitle": "Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria.", "AbstractText": "Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine \u03b1-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multimodule skipping and iteration. Preliminary biochemical analysis of the N-terminal nonribosomal peptide synthetase module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N terminus.", "id": "Q42123673", "doi": "10.1021/JA3119674", "chemicals": [ { "id": "Q2903964", "type": "class", "label": "lipopeptides" }, { "id": "Q75064825", "pubchem_id": "139583633", "type": "chemical", "label": "Thalassospiramide A", "class": "lipopeptides" }, { "id": "Q77385070", "pubchem_id": "139585167", "type": "chemical", "label": "Thalassospiramide B", "class": "lipopeptides" }, { "id": "Q105286055", "pubchem_id": "139588199", "type": "chemical", "label": "Thalassospiramide D", "class": "lipopeptides" }, { "id": "Q105214180", "pubchem_id": "139588323", "type": "chemical", "label": "Thalassospiramide C1", "class": "lipopeptides" }, { "id": "Q110170184", "pubchem_id": "138857865", "type": "chemical", "label": "Thalassospiramide C2", "class": "lipopeptides" }, { "id": "Q77380624", "pubchem_id": "139585009", "type": "chemical", "label": "Thalassospiramide E", "class": "lipopeptides" }, { "id": "Q77573558", "pubchem_id": "139587767", "type": "chemical", "label": "Thalassospiramide F", "class": "lipopeptides" } ], "organisms": [ { "id": "Q21224510", "label": "Thalassospira" } ], "relations": [ [ "Q21224510", "Q2903964" ], [ "Q21224510", "Q75064825" ], [ "Q21224510", "Q77385070" ], [ "Q21224510", "Q105214180" ], [ "Q21224510", "Q110170184" ], [ "Q21224510", "Q105286055" ], [ "Q21224510", "Q77380624" ], [ "Q21224510", "Q77573558" ] ] }, "22161763": { "PMID": "22161763", "ArticleTitle": "Isolation and bioactivity evaluation of terpenoids from the medicinal fungus Ganoderma sinense.", "AbstractText": "A new pentanorlanostane, ganosineniol A (1), eight new lanostane triterpenoids, ganosinoside A (2), ganoderic acid Jc (3), ganoderic acid Jd (4), ganodermatetraol (5), ganolucidic acid \u03b3a (6), ganolucidate F (7), ganoderiol J ( 8), and methyl lucidenate Ha ( 9), and a new sesquiterpenoid, ganosinensine (10), together with eleven known triterpenoids (11- 21), were isolated from the fruiting bodies of the fungus Ganoderma sinense. Chemical structures were determined based on spectroscopic evidence, including 1D, 2D NMR, and mass spectral data. Furthermore, all isolates were tested for cytotoxic activity and induction ability of hPXR-mediated CYP3A4 expression. Among them, ganoderic acid Jc (3) displayed selective inhibitory activity against HL-60 cells (IC\u2085\u2080 = 8.30 \u00b5M), and ganoderiol E (11) exhibited selective cytotoxic activity against MCF-7 cells (IC\u2085\u2080 = 6.35 \u00b5M). Meanwhile, compounds 5, 7, and ganolucidic acids B and C (19, 20) showed induction ability of hPXR-mediated CYP3A4 expression.", "id": "Q39429493", "doi": "10.1055/S-0031-1280441", "chemicals": [ { "id": "Q77424737", "pubchem_id": "139585536", "type": "chemical", "label": "Ganosineniol A", "class": "pentanorlanostane" }, { "id": "Q75067048", "pubchem_id": "139583750", "type": "chemical", "label": "Ganosinoside A", "class": "lanostane triterpenoid" }, { "id": "Q77494223", "pubchem_id": "139585892", "type": "chemical", "label": "Ganoderic acid Jc", "class": "lanostane triterpenoid" }, { "id": "Q77504653", "pubchem_id": "139586346", "type": "chemical", "label": "Ganoderic acid Jd", "class": "lanostane triterpenoid" }, { "id": "Q77377881", "pubchem_id": "139584908", "type": "chemical", "label": "Ganodermatetraol", "class": "lanostane triterpenoid" }, { "id": "Q77501024", "pubchem_id": "139586190", "type": "chemical", "label": "Ganolucidic acid \u03b3a", "class": "lanostane triterpenoid" }, { "id": "Q77422643", "pubchem_id": "139585446", "type": "chemical", "label": "Ganolucidate F", "class": "lanostane triterpenoid" }, { "id": "22161763CHEM1", "pubchem_id": "", "type": "chemical", "label": "ganoderiol J", "class": "lanostane triterpenoid" }, { "id": "Q77511858", "pubchem_id": "139586676", "type": "chemical", "label": "methyl Lucidenate Ha", "class": "lanostane triterpenoid" }, { "id": "Q77496595", "pubchem_id": "139585996", "type": "chemical", "label": "Ganosinensine", "class": "sesquiterpenoid" }, { "id": "Q7844276", "type": "class", "label": "triterpenoids" }, { "id": "Q104197246", "pubchem_id": "15602280", "type": "chemical", "label": "ganoderiol E", "class": "triterpenoids" }, { "id": "Q27896785", "pubchem_id": "20055994", "type": "chemical", "label": "Ganolucidic acid B", "class": "triterpenoids" }, { "id": "Q110172700", "pubchem_id": "14109400", "type": "chemical", "label": "Ganolucidic acid C", "class": "triterpenoids" } ], "organisms": [ { "id": "Q10502789", "label": "Ganoderma sinense" } ], "relations": [ [ "Q10502789", "Q77424737" ], [ "Q10502789", "Q75067048" ], [ "Q10502789", "Q77494223" ], [ "Q10502789", "Q77504653" ], [ "Q10502789", "Q77377881" ], [ "Q10502789", "Q77501024" ], [ "Q10502789", "Q77422643" ], [ "Q10502789", "22161763CHEM1" ], [ "Q10502789", "Q77511858" ], [ "Q10502789", "Q77496595" ], [ "Q10502789", "Q7844276" ], [ "Q10502789", "Q104197246" ], [ "Q10502789", "Q27896785" ], [ "Q10502789", "Q110172700" ] ] }, "12713403": { "PMID": "12713403", "ArticleTitle": "A new phytotoxic nonenolide from Phoma herbarum.", "AbstractText": "Reinvestigation of the fermentation broth and mycelium of the fungus Phoma herbarum led to the isolation of a new phytotoxic nonenolide, namely, (7R,9R)-7-hydroxy-9-propyl-5-nonen-9-olide, which was designated with the trivial name herbarumin III (3). The known compounds herbarumins I (1) and II (2) were also obtained. The structure of 3 was elucidated by spectroscopic methods and molecular modeling. Compounds 1-3 interacted with bovine-brain calmodulin and inhibited the activation of the calmodulin-dependent enzyme cAMP phosphodiesterase.", "id": "Q44416175", "doi": "10.1021/NP020501T", "chemicals": [ { "id": "Q103813474", "pubchem_id": "643678", "type": "chemical", "label": "Herbarumin III", "class": "" }, { "id": "Q77570804", "pubchem_id": "101048042", "type": "chemical", "label": "Herbarumin I", "class": "" }, { "id": "Q77490305", "pubchem_id": "101048043", "type": "chemical", "label": "Herbarumin II", "class": "" } ], "organisms": [ { "id": "Q7187120", "label": "Phoma herbarum" } ], "relations": [ [ "Q7187120", "Q103813474" ], [ "Q7187120", "Q77570804" ], [ "Q7187120", "Q77490305" ] ] }, "30971246": { "PMID": "30971246", "ArticleTitle": "High-yield production of multiple O-methylated phenylpropanoids by the engineered Escherichia coli-Streptomyces cocultivation system.", "AbstractText": "O-Methylated phenylpropanoids, which are generally present in small amounts in plants, have improved or distinct biological activities and pharmacological properties as opposed to their unmethylated counterparts. Although microbial production could be a useful tool for the efficient and environment-friendly production of methylated phenylpropanoids, a high-yield microbial production of neither tri-methylated stilbenes nor di-/tri-methylated flavonoids has been achieved to date. A methyltransferase from Streptomyces avermitilis (SaOMT2), which has been known to possess 7-O-methylation activity toward several flavonoids, exhibited more diverse regiospecificity and catalyzed mono-, di-, and tri-methylation of stilbene, flavanone, and flavone when it was expressed in Streptomyces venezuelae. For the efficient production of multi-methylated phenylpropanoids, a cocultivation system was developed by employing engineered Escherichia coli strains producing pterostilbene, naringenin, and apigenin, respectively, along with SaOMT2-expressing S. venezuelae mutant. Consequently, high-yield microbial production of tri-methylated stilbenes and di-/tri-methylated flavonoids (including 3,5,4'-trimethoxystilbene, 5-hydroxy-7,4'-dimethoxyflavanone, 4'-hydroxy-5,7-dimethoxyflavanone, 5,7,4'-trimethoxyflavanone, 5-hydroxy-7,4'-dimethoxyflavone, and 5,7,4'-trimethoxyflavone) has been demonstrated for the first time. This cocultivation system based on the phenylpropanoid-producing E. coli and SaOMT2-expressing S. venezuelae provides an efficient tool for producing scarce and potentially valuable multi-methylated phenylpropanoids and will enable further development of these compounds as pharmaceuticals and nutraceuticals.", "id": "Q64060356", "doi": "10.1186/S12934-019-1118-9", "chemicals": [ { "id": "Q417181", "type": "class", "label": "phenylpropanoids" }, { "id": "Q2908011", "pubchem_id": "5281727", "type": "chemical", "label": "pterostilbene", "class": "" }, { "id": "Q418374", "pubchem_id": "439246", "type": "chemical", "label": "Naringenin", "class": "" }, { "id": "Q424567", "pubchem_id": "5280443", "type": "chemical", "label": "Apigenin", "class": "" }, { "id": "Q526360", "type": "class", "label": "stilbenes" }, { "id": "Q7072038", "type": "class", "label": "methylated flavonoids" }, { "id": "Q76306144", "pubchem_id": "5388063", "type": "chemical", "label": "3,5,4'-trimethoxystilbene", "class": "stilbenes" }, { "id": "Q72483785", "pubchem_id": "14057196", "type": "chemical", "label": "5-hydroxy-7,4'-dimethoxyflavanone", "class": "flavonoids" }, { "id": "Q82224006", "pubchem_id": "5271551", "type": "chemical", "label": "4'-hydroxy-5,7-dimethoxyflavanone", "class": "flavonoids" }, { "id": "Q105169969", "pubchem_id": "57404369", "type": "chemical", "label": "5,7,4'-trimethoxyflavanone", "class": "flavonoids" }, { "id": "Q23050245", "pubchem_id": "5281601", "type": "chemical", "label": "5-hydroxy-7,4'-dimethoxyflavone", "class": "flavonoids" }, { "id": "Q27277645", "pubchem_id": "79730", "type": "chemical", "label": "5,7,4'-trimethoxyflavone", "class": "flavonoids" } ], "organisms": [ { "id": "Q7623398", "label": "Streptomyces venezuelae" }, { "id": "Q25419", "label": "Escherichia coli" } ], "relations": [ [ "Q25419", "Q417181" ], [ "Q25419", "Q2908011" ], [ "Q25419", "Q418374" ], [ "Q25419", "Q424567" ], [ "Q7623398", "Q417181" ], [ "Q7623398", "Q526360" ], [ "Q7623398", "Q7072038" ], [ "Q7623398", "Q76306144" ], [ "Q7623398", "Q72483785" ], [ "Q7623398", "Q82224006" ], [ "Q7623398", "Q105169969" ], [ "Q7623398", "Q23050245" ], [ "Q7623398", "Q27277645" ] ] }, "31199601": { "PMID": "31199601", "ArticleTitle": "Streptomyces sp. MUM273b: A mangrove-derived potential source for antioxidant and UVB radiation protectants.", "AbstractText": "Microbial natural products serve as a good source for antioxidants. The mangrove-derived Streptomyces bacteria have been evidenced to produce antioxidative compounds. This study reports the isolation of Streptomyces sp. MUM273b from mangrove soil that may serve as a promising source of antioxidants and UV-protective agents. Identification and characterization methods determine that strain MUM273b belongs to the genus Streptomyces. The MUM273b extract exhibits antioxidant activities, including DPPH, ABTS, and superoxide radical scavenging activities and also metal-chelating activity. The MUM273b extract was also shown to inhibit the production of malondialdehyde in metal-induced lipid peroxidation. Strong correlation between the antioxidant activities and the total phenolic content of MUM273b extract was shown. In addition, MUM273b extract exhibited cytoprotective effect on the UVB-induced cell death in HaCaT keratinocytes. Gas chromatography-mass spectrometry analysis detected phenolics, pyrrole, pyrazine, ester, and cyclic dipeptides in MUM273b extract. In summary, Streptomyces MUM273b extract portrays an exciting avenue for future antioxidative drugs and cosmeceuticals development.", "id": "Q92749984", "doi": "10.1002/MBO3.859", "chemicals": [ { "id": "Q133948", "type": "class", "label": "antioxidant" }, { "id": "Q407142", "type": "class", "label": "phenolics" }, { "id": "Q109378676", "type": "class", "label": "pyrrole" }, { "id": "Q109367198", "type": "class", "label": "pyrazine" }, { "id": "Q101487", "type": "class", "label": "ester" }, { "id": "Q418602", "type": "class", "label": "dipeptides" } ], "organisms": [ { "id": "Q1144013", "label": "Streptomyces" } ], "relations": [ [ "Q1144013", "Q133948" ], [ "Q1144013", "Q407142" ], [ "Q1144013", "Q109378676" ], [ "Q1144013", "Q109367198" ], [ "Q1144013", "Q101487" ], [ "Q1144013", "Q418602" ] ] }, "18851985": { "PMID": "18851985", "ArticleTitle": "5alpha,8alpha-Epidioxysterols from the gorgonian Eunicella cavolini and the ascidian Trididemnum inarmatum: isolation and evaluation of their antiproliferative activity.", "AbstractText": "Three new (1, 4, 9) and nine previously reported (2, 3, 5-8, 10-12) 5alpha,8alpha-epidioxysterols were isolated from the organic extracts of the gorgonian Eunicella cavolini and the ascidian Trididemnum inarmatum. The structures and relative configurations of 1-12 were established on the basis of detailed NMR spectroscopic analyses and comparison with the literature. The growth inhibitory effects of 1-12 were evaluated against MCF-7 human breast cancer cells. Compound 1, bearing a cyclopropyl moiety in the side chain, exhibited the highest antiproliferative activity.", "id": "Q39929881", "doi": "10.1016/J.STEROIDS.2008.09.007", "chemicals": [ { "id": "Q27134347", "pubchem_id": "10789345", "type": "chemical", "label": "5alpha,8alpha-epidioxysterol", "class": "" } ], "organisms": [ { "id": "Q4922023", "label": "Trididemnum inarmatum" }, { "id": "Q942903", "label": "Eunicella cavolini" } ], "relations": [ [ "Q4922023", "Q27134347" ], [ "Q942903", "Q27134347" ] ] }, "15497933": { "PMID": "15497933", "ArticleTitle": "Cadinane sesquiterpenes from the brown alga Dictyopteris divaricata.", "AbstractText": "Seven new cadinane sesquiterpenes, (-)-(1R,6S,7S,10R)-1-hydroxycadinan-3-en-5-one (1), (+)-(1R,5S,6R,7S, 10R)-cadinan-3-ene-1,5-diol (2), (+)-(1R,5R,6R,7S,10R)-cadinan-3-ene-1,5-diol (3), (+)-(1R,5S,6R,7S,10R)-cadinan-4(11)-ene-1,5-diol (4), (+)-(1R,5R,6R,7R,10R)-cadinan-4(11)-ene-1,5,12-triol (5), (-)-(1R,4R,5S,6R,7S, 10R)-cadinan-1,4,5-triol (6), and (-)-(1R,6R,7S,10R)-11-oxocadinan-4-en-1-ol (7), together with nine known compounds were isolated from the brown alga Dictyopteris divaricata. The structures of the new natural products, as well as their absolute configuration, were established by means of spectroscopic data including IR, HRMS, 1D and 2D NMR, single-crystal X-ray diffraction, and CD. All compounds were inactive against several human cancer cell lines including lung adenocarcinoma (A549), stomach cancer (BGC-823), breast cancer (MCF-7), hepatoma (Bel7402), and colon cancer (HCT-8) cell lines.", "id": "Q45118201", "doi": "10.1021/NP040099D", "chemicals": [ { "id": "Q80218", "type": "class", "label": "sesquiterpenes" }, { "id": "Q108273052", "type": "class", "label": "cadinane" }, { "id": "Q104988847", "pubchem_id": "11207108", "type": "chemical", "label": "(-)-(1R,6S,7S,10R)-1-hydroxycadinan-3-en-5-one", "class": "cadinane sesquiterpenes" }, { "id": "Q104981158", "pubchem_id": "11172467", "type": "chemical", "label": "(+)-(1R,5S,6R,7S, 10R)-cadinan-3-ene-1,5-diol", "class": "cadinane sesquiterpenes" }, { "id": "Q75067187", "pubchem_id": "11160763", "type": "chemical", "label": "(+)-(1R,5R,6R,7S,10R)-cadinan-3-ene-1,5-diol", "class": "cadinane sesquiterpenes" }, { "id": "Q77574178", "pubchem_id": "21589752", "type": "chemical", "label": "(+)-(1R,5S,6R,7S,10R)-cadinan-4(11)-ene-1,5-diol", "class": "cadinane sesquiterpenes" }, { "id": "Q77494314", "pubchem_id": "21589753", "type": "chemical", "label": "(+)-(1R,5R,6R,7R,10R)-cadinan-4(11)-ene-1,5,12-triol", "class": "cadinane sesquiterpenes" }, { "id": "Q77281003", "pubchem_id": "21589754", "type": "chemical", "label": "(-)-(1R,4R,5S,6R,7S, 10R)-cadinan-1,4,5-triol", "class": "cadinane sesquiterpenes" }, { "id": "Q77375441", "pubchem_id": "11390729", "type": "chemical", "label": "(-)-(1R,6R,7S,10R)-11-oxocadinan-4-en-1-ol", "class": "cadinane sesquiterpenes" } ], "organisms": [ { "id": "Q29890001", "label": "Dictyopteris divaricata" } ], "relations": [ [ "Q29890001", "Q80218" ], [ "Q29890001", "Q108273052" ], [ "Q29890001", "Q104988847" ], [ "Q29890001", "Q104981158" ], [ "Q29890001", "Q75067187" ], [ "Q29890001", "Q77574178" ], [ "Q29890001", "Q77494314" ], [ "Q29890001", "Q77281003" ], [ "Q29890001", "Q77375441" ] ] }, "10956462": { "PMID": "10956462", "ArticleTitle": "Mangicols: structures and biosynthesis of A new class of sesterterpene polyols from a marine fungus of the genus Fusarium.", "AbstractText": "A marine fungal isolate, tentatively identified as Fusarium heterosporum, has been found to produce a series of structurally novel sesterterpene polyols, the mangicols A-G (4-10). The structures of the new compounds, including the stereochemistry of mangicol A, were assigned by interpretation of spectral data derived from both natural products and synthetic derivatives. The mangicols, which possess unprecedented spirotricyclic skeletal components, show only weak to modest cytotoxicities toward a variety of cancer cell lines in in vitro testing. Mangicols A and B, however, showed significant antiinflammatory activity in the PMA (phorbol myristate acetate)-induced mouse ear edema model. A biosynthetic pathway for the neomangicol and mangicol carbon skeletons is proposed on the basis of the incorporation of appropriate radiolabeled precursors.", "id": "Q41757519", "doi": "10.1021/JO000081H", "chemicals": [ { "id": "Q77491888", "pubchem_id": "15459567", "type": "chemical", "label": "Mangicol C", "class": "sesterterpene polyols" }, { "id": "Q104909163", "pubchem_id": "10810329", "type": "chemical", "label": "Mangicol G", "class": "sesterterpene polyols" }, { "id": "Q77279432", "pubchem_id": "10501526", "type": "chemical", "label": "Mangicol D", "class": "sesterterpene polyols" }, { "id": "Q77624741", "pubchem_id": "10502358", "type": "chemical", "label": "Mangicol A", "class": "sesterterpene polyols" }, { "id": "Q105301894", "pubchem_id": "10787423", "type": "chemical", "label": "Mangicol E", "class": "sesterterpene polyols" }, { "id": "Q105202243", "pubchem_id": "15459569", "type": "chemical", "label": "Mangicol F", "class": "sesterterpene polyols" }, { "id": "Q105367483", "pubchem_id": "10669942", "type": "chemical", "label": "Mangicol B", "class": "sesterterpene polyols" } ], "organisms": [ { "id": "Q103806210", "label": "Fusarium heterosporum" } ], "relations": [ [ "Q103806210", "Q77624741" ], [ "Q103806210", "Q105367483" ], [ "Q103806210", "Q77491888" ], [ "Q103806210", "Q77279432" ], [ "Q103806210", "Q105301894" ], [ "Q103806210", "Q105202243" ], [ "Q103806210", "Q104909163" ] ] }, "26299672": { "PMID": "26299672", "ArticleTitle": "Previously Uncultured Marine Bacteria Linked to Novel Alkaloid Production.", "AbstractText": "Low-nutrient media and long incubation times facilitated the cultivation of 20 taxonomically diverse Gram-negative marine bacteria within the phyla Bacteroidetes and Proteobacteria. These strains comprise as many as three new families and include members of clades that had only been observed using culture-independent techniques. Chemical studies of the type strains representing two new families within the order Cytophagales led to the isolation of nine new alkaloid secondary metabolites that can be grouped into four distinct structure classes, including azepinones, aziridines, quinolones, and pyrazinones. Several of these compounds possess antibacterial properties and appear, on structural grounds, to be produced by amino acid-based biosynthetic pathways. Our results demonstrate that relatively simple cultivation techniques can lead to the isolation of new bacterial taxa that are capable of the production of alkaloid secondary metabolites with antibacterial activities. These findings support continued investment in cultivation techniques as a method for natural product discovery.", "id": "Q40615363", "doi": "10.1016/J.CHEMBIOL.2015.07.014", "chemicals": [ { "id": "Q70702", "type": "class", "label": "alkaloid" }, { "id": "26299672CLASS1", "type": "class", "label": "azepinones" }, { "id": "Q56670455", "type": "class", "label": "aziridines" }, { "id": "Q426549", "type": "class", "label": "quinolones" }, { "id": "26299672CLASS2", "type": "class", "label": "pyrazinones" } ], "organisms": [ { "id": "Q15804153", "label": "Cytophagales" } ], "relations": [ [ "Q15804153", "Q70702" ], [ "Q15804153", "26299672CLASS1" ], [ "Q15804153", "Q56670455" ], [ "Q15804153", "Q426549" ], [ "Q15804153", "26299672CLASS2" ] ] }, "23601305": { "PMID": "23601305", "ArticleTitle": "Convergent evolution of [D-Leucine(1)] microcystin-LR in taxonomically disparate cyanobacteria.", "AbstractText": "Many important toxins and antibiotics are produced by non-ribosomal biosynthetic pathways. Microcystins are a chemically diverse family of potent peptide toxins and the end-products of a hybrid NRPS and PKS secondary metabolic pathway. They are produced by a variety of cyanobacteria and are responsible for the poisoning of humans as well as the deaths of wild and domestic animals around the world. The chemical diversity of the microcystin family is attributed to a number of genetic events that have resulted in the diversification of the pathway for microcystin assembly. Here, we show that independent evolutionary events affecting the substrate specificity of the microcystin biosynthetic pathway have resulted in convergence on a rare [D-Leu(1)] microcystin-LR chemical variant. We detected this rare microcystin variant from strains of the distantly related genera Microcystis, Nostoc, and Phormidium. Phylogenetic analysis performed using sequences of the catalytic domains within the mcy gene cluster demonstrated a clear recombination pattern in the adenylation domain phylogenetic tree. We found evidence for conversion of the gene encoding the McyA(2) adenylation domain in strains of the genera Nostoc and Phormidium. However, point mutations affecting the substrate-binding sequence motifs of the McyA(2) adenylation domain were associated with the change in substrate specificity in two strains of Microcystis. In addition to the main [D-Leu(1)] microcystin-LR variant, these two strains produced a new microcystin that was identified as [Met(1)] microcystin-LR. Phylogenetic analysis demonstrated that both point mutations and gene conversion result in functional mcy gene clusters that produce the same rare [D-Leu(1)] variant of microcystin in strains of the genera Microcystis, Nostoc, and Phormidium. Engineering pathways to produce recombinant non-ribosomal peptides could provide new natural products or increase the activity of known compounds. Our results suggest that the replacement of entire adenylation domains could be a more successful strategy to obtain higher specificity in the modification of the non-ribosomal peptides than point mutations.", "id": "Q34677915", "doi": "10.1186/1471-2148-13-86", "chemicals": [ { "id": "Q424720", "type": "class", "label": "Microcystin" }, { "id": "Q77422382", "pubchem_id": "636790", "type": "chemical", "label": "[D-Leu(1)] microcystin-LR", "class": "Microcystin" }, { "id": "Q104246694", "pubchem_id": "146684769", "type": "chemical", "label": "[Met(1)] microcystin-LR", "class": "Microcystin" } ], "organisms": [ { "id": "Q2793866", "label": "Phormidium" }, { "id": "Q309928", "label": "Microcystis" }, { "id": "Q311257", "label": "Nostoc" } ], "relations": [ [ "Q309928", "Q424720" ], [ "Q309928", "Q77422382" ], [ "Q311257", "Q424720" ], [ "Q311257", "Q77422382" ], [ "Q311257", "Q104246694" ], [ "Q2793866", "Q424720" ], [ "Q2793866", "Q77422382" ], [ "Q2793866", "Q104246694" ] ] }, "16595963": { "PMID": "16595963", "ArticleTitle": "Nine constituents including six xanthone-related compounds isolated from two ascomycetes, Gelasinospora santi-florii and Emericella quadrilineata, found in a screening study focused on immunomodulatory activity.", "AbstractText": "Five metabolites tentatively called GS-1 (1)-5 (5) from Gelasinospora santi-florii, and four tentatively called EQ-4 (6), EQ-6 (7)-8 (9) together with 1-4 from Emericella quadrilineata have been isolated in a screening study on immunomodulatory fungal constituents. Among these nine metabolites, EQ-7 and 8 have been unknown. This time, the structures of GS-4 which has previously been isolated, EQ-7, and -8 have been determined to be (4R,4aS,9aR)-1,9a-dihydronidulalin A (4), (4S,4aR,9aR)-4a-carbomethoxy-1,4,4a,9a-tetrahydro-4,8-dihydroxy-6-methylxanthone (8), and 9-hydroxymicroperfuranone (9), respectively, and the six other metabolites have been identified. On bioassay, a dihydroxanthone, nidulalin A (1), a hexaketide, sordarial (5), and a xanthone, pinselin (7) have displayed significant immunosuppressive activities. The structure-activity relationships of these constituents have also been discussed.", "id": "Q78435883", "doi": "10.1248/CPB.54.550", "chemicals": [ { "id": "Q105341458", "pubchem_id": "12070887", "type": "chemical", "label": "GS-1", "class": "" }, { "id": "Q105298691", "pubchem_id": "12070888", "type": "chemical", "label": "GS-2", "class": "" }, { "id": "Q105278540", "pubchem_id": "101751032", "type": "chemical", "label": "GS-3", "class": "" }, { "id": "16595963CHEM1", "pubchem_id": "", "type": "chemical", "label": "GS-4", "class": "" }, { "id": "16595963CHEM2", "pubchem_id": "", "type": "chemical", "label": "GS-5", "class": "" }, { "id": "Q27133554", "pubchem_id": "10563682", "type": "chemical", "label": "EQ-4", "class": "" }, { "id": "16595963CHEM3", "pubchem_id": "", "type": "chemical", "label": "EQ-6", "class": "" }, { "id": "Q77573762", "pubchem_id": "11507450", "type": "chemical", "label": "EQ-7", "class": "" }, { "id": "16595963CHEM4", "pubchem_id": "", "type": "chemical", "label": "EQ-8", "class": "" }, { "id": "16595963CHEM1", "pubchem_id": "", "type": "chemical", "label": "(4R,4aS,9aR)-1,9a-dihydronidulalin A", "class": "" }, { "id": "Q77514435", "pubchem_id": "11695180", "type": "chemical", "label": "(4S,4aR,9aR)-4a-carbomethoxy-1,4,4a,9a-tetrahydro-4,8-dihydroxy-6-methylxanthone", "class": "" }, { "id": "Q77573762", "pubchem_id": "11507450", "type": "chemical", "label": "9-Hydroxymicroperfuranone", "class": "" } ], "organisms": [ { "id": "Q10503630", "label": "Gelasinospora santi-florii" }, { "id": "Q6838593", "label": "Emericella quadrilineata" } ], "relations": [ [ "Q10503630", "Q105341458" ], [ "Q10503630", "Q105298691" ], [ "Q10503630", "Q105278540" ], [ "Q10503630", "16595963CHEM1" ], [ "Q10503630", "16595963CHEM2" ], [ "Q10503630", "Q27133554" ], [ "Q10503630", "16595963CHEM3" ], [ "Q10503630", "Q77573762" ], [ "Q10503630", "16595963CHEM4" ], [ "Q10503630", "Q77514435" ], [ "Q10503630", "Q77573762" ], [ "Q6838593", "Q105341458" ], [ "Q6838593", "Q105298691" ], [ "Q6838593", "Q105278540" ], [ "Q6838593", "16595963CHEM1" ] ] }, "11738039": { "PMID": "11738039", "ArticleTitle": "Structure of histone deacetylases: insights into substrate recognition and catalysis.", "AbstractText": "Histone deacetylases catalyze the removal of the acetyl moiety from acetyl-lysine within histones to promote gene repression and silencing. These enzymes fall into distinct families based on primary sequence homology and functional properties in vivo. Recent structural studies of histone deacetylases and their homologs from bacteria have provided important insights into the mode of substrate recognition and catalysis by these enzymes.", "id": "Q34459769", "doi": "10.1016/S0969-2126(01)00690-6", "chemicals": [ { "id": "Q174378", "type": "class", "label": "histone deacetylases" } ], "organisms": [ ], "relations": [ ] }, "8887739": { "PMID": "8887739", "ArticleTitle": "Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant Staphylococcus aureus.", "AbstractText": "Extracts of Garcinia mangostana (Guttiferae) showing inhibitory effects against the growth of S. aureus NIHJ 209p were fractionated according to guidance obtained from bioassay and some of the components with activity against methicillin-resistant Staphylococcus aureus (MRSA) were characterized. One active isolate, alpha-mangostin, a xanthone derivative, had a minimum inhibitory concentration (MIC) of 1.57-12.5 micrograms mL-1. Other related xanthones were also examined to determine their anti-MRSA activity. Rubraxanthone, which was isolated from Garcinia dioica and has a structure similar to that of alpha-mangostin, had the highest activity against staphylococcal strains (MIC = 0.31-1.25 micrograms mL-1), an activity which was greater than that of the antibiotic vancomycin (3.13-6.25 micrograms mL-1). The inhibitory effect against strains of MRSA of two of the compounds when used in conjunction with other antibiotics was also studied. The anti-MRSA activity of alpha-mangostin was clearly increased by the presence of vancomycin; this behaviour was not observed for rubraxanthone. The strong in-vitro antibacterial activity of xanthone derivatives against both methicillin-resistant and methicillin-sensitive Staphylococcus aureus suggests the compounds might find wide pharmaceutical use.", "id": "Q36828961", "doi": "10.1111/J.2042-7158.1996.TB03988.X", "chemicals": [ { "id": "Q16007012", "type": "class", "label": "xanthones" }, { "id": "Q909638", "pubchem_id": "5281650", "type": "chemical", "label": "alpha-Mangostin", "class": "xanthones" }, { "id": "Q27134863", "pubchem_id": "9953366", "type": "chemical", "label": "Rubraxanthone", "class": "xanthones" } ], "organisms": [ { "id": "Q15390395", "label": "Garcinia dioica" }, { "id": "Q170662", "label": "Garcinia mangostana" } ], "relations": [ [ "Q170662", "Q16007012" ], [ "Q170662", "Q909638" ], [ "Q15390395", "Q16007012" ], [ "Q15390395", "Q27134863" ] ] }, "24609358": { "PMID": "24609358", "ArticleTitle": "Expanding ester biosynthesis in Escherichia coli.", "AbstractText": "To expand the capabilities of whole-cell biocatalysis, we have engineered Escherichia coli to produce various esters. The alcohol O-acyltransferase (ATF) class of enzyme uses acyl-CoA units for ester formation. The release of free CoA upon esterification with an alcohol provides the free energy to facilitate ester formation. The diversity of CoA molecules found in nature in combination with various alcohol biosynthetic pathways allows for the biosynthesis of a multitude of esters. Small to medium volatile esters have extensive applications in the flavor, fragrance, cosmetic, solvent, paint and coating industries. The present work enables the production of these compounds by designing several ester pathways in E. coli. The engineered pathways generated acetate esters of ethyl, propyl, isobutyl, 2-methyl-1-butyl, 3-methyl-1-butyl and 2-phenylethyl alcohols. In particular, we achieved high-level production of isobutyl acetate from glucose (17.2 g l(-1)). This strategy was expanded to realize pathways for tetradecyl acetate and several isobutyrate esters.", "id": "Q35545271", "doi": "10.1038/NCHEMBIO.1476", "chemicals": [ { "id": "Q28417815", "type": "class", "label": "acetate ester" }, { "id": "Q407153", "pubchem_id": "8857", "type": "chemical", "label": "ethyl acetate", "class": "acetate ester" }, { "id": "Q415750", "pubchem_id": "7997", "type": "chemical", "label": "propyl acetate", "class": "acetate ester" }, { "id": "Q420657", "pubchem_id": "8038", "type": "chemical", "label": "isobutyl acetate", "class": "acetate ester" }, { "id": "Q72488968", "pubchem_id": "12209", "type": "chemical", "label": "2-methyl-1-butyl acetate", "class": "acetate ester" }, { "id": "Q221307", "pubchem_id": "31276", "type": "chemical", "label": "3-methyl-1-butyl acetate", "class": "acetate ester" }, { "id": "Q6856299", "pubchem_id": "7654", "type": "chemical", "label": "2-phenylethyl acetate", "class": "acetate ester" }, { "id": "Q27278976", "pubchem_id": "12531", "type": "chemical", "label": "Tetradecyl acetate", "class": "acetate ester" }, { "id": "Q107075893", "type": "class", "label": "isobutyrate esters" } ], "organisms": [ { "id": "Q25419", "label": "Escherichia coli" } ], "relations": [ [ "Q25419", "Q28417815" ], [ "Q25419", "Q407153" ], [ "Q25419", "Q415750" ], [ "Q25419", "Q420657" ], [ "Q25419", "Q72488968" ], [ "Q25419", "Q221307" ], [ "Q25419", "Q6856299" ], [ "Q25419", "Q27278976" ], [ "Q25419", "Q107075893" ] ] }, "11030999": { "PMID": "11030999", "ArticleTitle": "Honulactones: new bishomoscalarane sesterterpenes from the Indonesian sponge Strepsichordaia aliena.", "AbstractText": "From the dichloromethane/2-propanol (1:1) extract of the Indonesian marine sponge Strepsichordaia aliena, twelve new 20, 24-bishomoscalarane sesterterpenes, honulactones A-L (1-12) were isolated. Molecular structures were secured by spectroscopic methods, accurate mass measurements, and X-ray analysis. Honulactones A (1), B (2), C (3), and D (4) exhibit cytotoxycity against P-388, A-549, HT-29, and MEL-28 (IC(50) 1 microg/mL).", "id": "Q73076144", "doi": "10.1021/JO991924B", "chemicals": [ { "id": "Q104994981", "pubchem_id": "10816930", "type": "chemical", "label": "Honulactone L", "class": "sesterterpenes" }, { "id": "Q105012065", "pubchem_id": "10697156", "type": "chemical", "label": "Honulactone H", "class": "sesterterpenes" }, { "id": "Q104953808", "pubchem_id": "10698075", "type": "chemical", "label": "Honulactone C", "class": "sesterterpenes" }, { "id": "Q105293038", "pubchem_id": "11799934", "type": "chemical", "label": "Honulactone E", "class": "sesterterpenes" }, { "id": "Q104994982", "pubchem_id": "10769427", "type": "chemical", "label": "Honulactone K", "class": "sesterterpenes" }, { "id": "Q105249234", "pubchem_id": "10601409", "type": "chemical", "label": "Honulactone B", "class": "sesterterpenes" }, { "id": "Q105293039", "pubchem_id": "10625592", "type": "chemical", "label": "Honulactone F", "class": "sesterterpenes" }, { "id": "Q105006081", "pubchem_id": "10650755", "type": "chemical", "label": "Honulactone J", "class": "sesterterpenes" }, { "id": "Q105249233", "pubchem_id": "10649011", "type": "chemical", "label": "Honulactone A", "class": "sesterterpenes" }, { "id": "Q104953806", "pubchem_id": "10530873", "type": "chemical", "label": "Honulactone D", "class": "sesterterpenes" }, { "id": "Q105012064", "pubchem_id": "10649494", "type": "chemical", "label": "Honulactone G", "class": "sesterterpenes" }, { "id": "Q105006080", "pubchem_id": "10626920", "type": "chemical", "label": "Honulactone I", "class": "sesterterpenes" } ], "organisms": [ { "id": "Q2391921", "label": "Strepsichordaia aliena" } ], "relations": [ [ "Q2391921", "Q105249233" ], [ "Q2391921", "Q105249234" ], [ "Q2391921", "Q104953808" ], [ "Q2391921", "Q104953806" ], [ "Q2391921", "Q105293038" ], [ "Q2391921", "Q105293039" ], [ "Q2391921", "Q105012064" ], [ "Q2391921", "Q105012065" ], [ "Q2391921", "Q105006080" ], [ "Q2391921", "Q105006081" ], [ "Q2391921", "Q104994982" ], [ "Q2391921", "Q104994981" ] ] }, "20356735": { "PMID": "20356735", "ArticleTitle": "New diterpenoids from Caesalpinia species and their cytotoxic activity.", "AbstractText": "Chemical investigation on Caesalpinia crista afforded two new diterpenoids, 6beta-cinnamoyloxy-7beta-acetoxyvouacapen-5alpha-ol and 6beta,7beta-dibenzoyloxyvouacapen-5alpha-ol and on Caesalpiniapulcherrima another new diterpenoid, 12-demethyl neocaesalpin F along with several known constituents. The structures of the new compounds were settled from their 1D and 2D NMR spectral data. The cytotoxicity of these compounds was measured on two different cancer cell lines.", "id": "Q43438926", "doi": "10.1016/J.BMCL.2010.03.048", "chemicals": [ { "id": "Q47006367", "type": "class", "label": "diterpenoids" }, { "id": "20356735CHEM1", "pubchem_id": "", "type": "chemical", "label": "6beta-cinnamoyloxy-7beta-acetoxyvouacapen-5alpha-ol", "class": "diterpenoids" }, { "id": "20356735CHEM2", "pubchem_id": "", "type": "chemical", "label": "6beta,7beta-dibenzoyloxyvouacapen-5alpha-ol", "class": "diterpenoids" }, { "id": "Q110180536", "pubchem_id": "46861646", "type": "chemical", "label": "12-demethyl neocaesalpin F", "class": "diterpenoids" } ], "organisms": [ { "id": "Q1428973", "label": "Caesalpiniapulcherrima" }, { "id": "Q2932877", "label": "Caesalpinia crista" } ], "relations": [ [ "Q2932877", "Q47006367" ], [ "Q2932877", "20356735CHEM1" ], [ "Q2932877", "20356735CHEM2" ], [ "Q1428973", "Q47006367" ], [ "Q1428973", "Q110180536" ] ] }, "12828476": { "PMID": "12828476", "ArticleTitle": "Callyspongamide A, a new cytotoxic polyacetylenic amide from the Red Sea sponge Callyspongia fistularis.", "AbstractText": "Callyspongamide A (1), a new cytotoxic polyacetylenic amide, has been isolated from the marine sponge Callyspongia fistularis collected in the Red Sea. Callyspongamide A is an amide derivative of a C(17)-polyacetylenic acid and phenethylamine. It represents a new class of secondary metabolites within the family Callyspongiidae. Its structure was determined on the basis of 1D and 2D (COSY, HOHAHA, HMQC, and HMBC) NMR studies and high-resolution mass spectral measurement.", "id": "Q44492649", "doi": "10.1021/NP0205809", "chemicals": [ { "id": "Q105253327", "pubchem_id": "10981352", "type": "chemical", "label": "Callyspongamide A", "class": "" } ], "organisms": [ { "id": "Q2276494", "label": "Callyspongia fistularis" }, { "id": "Q3463331", "label": "Callyspongiidae" } ], "relations": [ [ "Q2276494", "Q105253327" ], [ "Q3463331", "Q105253327" ] ] }, "26096276": { "PMID": "26096276", "ArticleTitle": "Structural Characterization of New Peptide Variants Produced by Cyanobacteria from the Brazilian Atlantic Coastal Forest Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Tandem Mass Spectrometry.", "AbstractText": "Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.).", "id": "Q39430614", "doi": "10.3390/MD13063892", "chemicals": [ { "id": "Q172847", "type": "class", "label": "peptide" } ], "organisms": [ { "id": "Q21442543", "label": "Cyanobacteria" }, { "id": "Q311257", "label": "Nostoc" }, { "id": "Q27438678", "label": "Desmonostoc" }, { "id": "Q27438688", "label": "Brasilonema" } ], "relations": [ [ "Q21442543", "Q172847" ], [ "Q311257", "Q172847" ], [ "Q27438678", "Q172847" ], [ "Q27438688", "Q172847" ] ] }, "15863941": { "PMID": "15863941", "ArticleTitle": "New bisindole alkaloids isolated from Myxomycetes Arcyria cinerea and Lycogala epidendrum.", "AbstractText": "Two new bisindole alkaloids, named cinereapyrrole A (1) and B (2), were isolated from wild fruit bodies of Arcyria cinerea and three new bisindole alkaloids (3-5) were isolated from wild fruit bodies of Lycogala epidendrum. Seven known bisindoles (6-12) were concomitantly obtained from them. The structures of the new compounds were elucidated by spectral data. Among these bisindole alkaloids, compound 12 showed cytotoxicity against cultured tumor cell lines.", "id": "Q46466231", "doi": "10.1248/CPB.53.594", "chemicals": [ { "id": "Q70702", "type": "class", "label": "alkaloids" }, { "id": "Q77502334", "pubchem_id": "11257704", "type": "chemical", "label": "Cinereapyrrole A", "class": "alkaloids" }, { "id": "Q77520429", "pubchem_id": "11280180", "type": "chemical", "label": "Cinereapyrrole B", "class": "alkaloids" } ], "organisms": [ { "id": "Q1543767", "label": "Arcyria cinerea" }, { "id": "Q520210", "label": "Lycogala epidendrum" } ], "relations": [ [ "Q1543767", "Q70702" ], [ "Q1543767", "Q77502334" ], [ "Q1543767", "Q77520429" ], [ "Q520210", "Q70702" ] ] }, "17335244": { "PMID": "17335244", "ArticleTitle": "Bioactive macrolides and polyketides from marine dinoflagellates of the genus Amphidinium.", "AbstractText": "Marine microorganisms such as bacteria, cyanobacteria, dinoflagellates, and others have attracted many natural product chemists as the real producers of marine toxins such as fish and algal poisons as well as bioactive substances isolated from marine invertebrates such as sponges and tunicates. Among marine microorganisms, dinoflagellates have proved to be important sources of marine toxins and have been investigated worldwide by natural product chemists. We have continued investigations on chemically interesting and biologically significant secondary metabolites from Amphidinium spp., of a genus of symbiotic marine dinoflagellates separated from inside cells of Okinawan marine flatworms. This review covers the results described in our recent publications on a series of cytotoxic macrolides, designated amphidinolides, and long-chain polyketides isolated from Amphidinium spp. In this review, topics include the isolation, structure elucidation, synthesis, biosynthesis, and bioactivity of amphidinolides and long-chain polyketides.", "id": "Q36750071", "doi": "10.1021/NP0605844", "chemicals": [ { "id": "Q75034475", "type": "class", "label": "marine toxins" }, { "id": "Q422687", "type": "class", "label": "macrolides" }, { "id": "17335244CLASS1", "type": "class", "label": "amphidinolides" }, { "id": "Q516751", "type": "class", "label": "polyketides" } ], "organisms": [ { "id": "Q4748248", "label": "Amphidinium" } ], "relations": [ [ "Q4748248", "Q75034475" ], [ "Q4748248", "Q422687" ], [ "Q4748248", "17335244CLASS1" ], [ "Q4748248", "Q516751" ] ] } }