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Abstract:

In this paper a multi graded organization in which depletion of man powers occur due to its policy decisions taken by the
organization is considered. Four cases are constructed by taking exponential thresholds for the loss of man powers in each grade,
where the loss of man powers (wastages) form an order statistics and inter decision times form i) an ordinary renewal process ii)
an order statistics iii) a geometric process iv) correlated. Mean time to recruitment is obtained using an univariate CUM policy of
recruitment (i.e) “The organization survives iff atleast r, (1 < r < n) out of n-grades survives in the sense that threshold crossing
has not take place in these grades”. The influence of the nodal parameters on the system characteristics is studied and relevant
conclusions are presented.
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Introduction:

Exits of personal which is in other words known as wastage, is an important aspect in the study of manpower planning.
Many models have been discussed using different types of wastages and also different types of distribution for the loss of man
powers, the thresholds and inter decision times. Such models are seen in [1] and [2]. In [3], [4], [5] and [6] the authors have
obtained the mean time to recruitment in a two grade manpower system based on order statistics by assuming different
distribution for thresholds. In [8] for a two grade manpower system with two types of decisions when the wastages form a
geometric process is obtained. The problem of time to recruitment is studied by several authors for the organizations consisting of
single grade/two grade/ three grades .More specifically for a two grade system, in all the earlier work, the threshold for the
organization is minimum or maximum or sum of the thresholds for the loss of manpower in each grades, no attempt has been
made so far to design a comprehensive recruitment policy for a system with two or three grades. In [10], [11] & [12] a hew design
for a comprehensive univariate CUM recruitment policy of manpower system is used with n grades in order to bring results
proved independently for maximum, minimum model as a special case. In all previous work, the problem of time to recruitment is
studied for only an organization consisting of atmost three grades. In [11], [12] author has worked on this comprehensive
univariate policy when wastages form ordinary renewal process and interdecision time form geometric and order statistics. In this
paper an organization with n-grades is considered and the mean time to recruitment are obtained using an appropriate univariate
CUM policy of recruitment (i.e)“The organization survives iff atleast r, (1 < r < n) out of n-grades survives in the sense that
threshold crossing has not take place in these grades”, when wastages form an order statistics.

Model Description and Assumptions:

v" An organization having two grades in which decisions are taken at random epochs in (0, o) and at every decision making
epoch a random number of persons quit the organization. There is an associated loss of man hours to the organization if a
person quits.

It is assumed that the loss of man hours is linear and cumulative.

The loss of manpower at any decision epoch forms a sequence of independent and identically distributed random
variables which form order statistics.

The inter-decision times are independent and identically distributed random variables.

The loss of manpower process and the process of inter-decision times are statistically independent.

The thresholds for the n-grades are independent and identically distributed exponential random variable.

Univariate CUM policy of recruitment: “The organization survives iff atleast r, (1 < r < n) out of n-grades survives in
the sense that threshold crossing has not take place in these grades”

Notations:

X;:the continuous random variable denoting the amount of depletion caused to the organization due to the exit of persons
corresponding to the j™ decision,j=1,2,3... and X;’s form an order statistics.

G (x): Distribution function of x such that (x) = 1 — e~ , g(x): probability density function.

{Xi},i=1 to m be a sample of size m which forms an order statistics.

Ie)( ), 9x@2) () v Gxm) () - Density function of x(1),x(2), ....x(m).

G (.): The distribution function of S, = ¥¥_, X;

gx () its probability density function.

U;:i = 1,2,3 ... The inter decision time between (i — 1)t* and i*"decision.

F()[f()]: Distribution (density) function.
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F.(.), f (.) : The distribution (density) function of ¥¥_, U;. V, (t) : The probability that there are exactly k decision making epoch
in (0, t].
N(t): the number of policy decisions.
V, (t): Probability that there are exactly k decisions taken in (0, t].
¥;: The continuous random variable denoting the thresholds for the jth grade.
Y: The continuous random variable denoting the thresholds for the organization.
H(.): The distribution functions of Y.
T;: Time taken for threshold crossing in the jth grade,j=1,2,3...n.
T : Time to recruitment of the organization
E(T): Mean time to recruitment.
Main Result:
The survival function of the time to recruitment is given by
P(T>t) =Y P(Exactly k decision epoch(0, t]and the threshold
~ “k=0level Y is not crossedby the total loss of manhours in these k decisions in atleast r grades)
i.e P(T >1t) = Yiso Vi(O)P(TE, X, <) €Y
By the law of total probability
PELX <Y) = [PIY> Tl x/Zii i = xlge()dx - = [ gu(¥) [1 - H(O)ldxx.
= [, 9k () T, nC; [1 — HEOL[H )] dx.
=7 91 () By G [e ] [1 — =] ax
=YL, nC [, gi(x)e % [1 - e )" dx 2)
Using binomial expansion
=31, nC fy (@™ [1—(n—)Cie™™ +n—i)Ce D% 4 4 (—1)" e " ]dx.
= 21, nC[gi (i6) — (n — DC, g (G + 1)0) + (n — GG (i +2)0) + .. (=1)" "Gy (nh)] ®3)
From renewal theory Vi (t) = F (t) — F 1 (t) with Fo(t) =1 4
Substituting (3) and (4) in (1) we get,
P(T > t) = Eio[Fi (V) — Fiyn (O] ZiL, nGi [8(10) — (n — DG, 8 (G + 1DO) + (0 — D8 (G +2)8) + ... (-1 (n0)] (5)
P(T>t) =
Yico[Fk(® = Fipr (D] B, nG [[[BGO]F — (n = DC,[8( G+ 1)O)]* + (n — DC, [5(G + 2)0)]* + ... (=)' [g(n6)]"]
The probability function x(1)and x(m) are given by (sheldonRoss 2005)

g =i (7) 6V g1 - GG, j = 1,23 ..m (6)
Therefore the probability density function of x(1)and x(m) are given by
gxy® =m g(x)[1—-GE)™! (7
&x () = m g@[G]™ ®)

We shall now obtain the mean time to recruitment according as g(x) = 8 X)orgx) = 8X ) x)
Suppose g(x) = g, (X)

Then
P(T > £) = B o[Fi(®) = Fieqs (O] B, G, [y (O] = (0 = DC1 [y (G + DO + (0 = DC,[ Gy (G + 20)] +
...~ 1n—i[gx(1)(n0)]k )

L) =1-P(T >1t)
() = 2 (L) = = Bzo e ®) — firs O TG [y (O] = (1 = DE1 [y (G + DO + (1 = DC2[ Gy (G +

20)k+ ...—1n—i[gr(1)(n6)]k (10)
T = : ) T — : k-1 . — . 0 = — . k-1
l(s) = Xi., nC; {[1 — Fxy(0] Zi<o fir ) [Gey(®] = (0 = DCi[1 = Goay (G + DO ico fe ([ Fey (G + DO)]™ +
o 1= g (Dn0 £=0x fsgx(1)nOk—1 (1)
d —_
E(T) =5 (1) =
1-3 (1) (O] 3= (5) 13,y ((+DO)] (7 (s) 181y @O [(7 ()
?:r C. {[ 9 51) ][di 2]s=0 _ (Tl _ i)Cl [1-9 El)( )][df 2]5=0 + . (—1)71—1 [1-g El) ][df 2]s=0} (12)
(1= ) (OF & _, [1=3x 1) ((+DO)f (] _ [1-Gx 1y @OF O] _,
—_yn Nt N — Y qyi Y |47
- i=r NG {[1—§x(1)(19)] (= DG [1-gx ) ((+D)0)] +o (=1 [1—g_x(1)(n9)]} ds (f(s)]s=0 (13)
Since g(x) = ce™*
gx(l)(x) — mce—cx (e—cx)m—l — mce—mcx
o » e—(mc+6)x 0 mc
gX(l)(e) =mc fo e e~dx =mc fo e~ P¥dx = me [ —(mc +0) ]0 = e+ (14)
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We now obtain the analytical result for variance of time to recruitment in closed form for four different cases on inter-
decision times {U;}7
Case (i) {U;};Z1 form an Ordinary Renewal Process:
The inter decision times are assumed to be independent and identically distributed hyper exponential random variable
with probability density function f(t) = pe™nt + qe ™%, p + q = 1.Where X, are high and low attrition rate ,p,q are the
proportion of decisions having high and low attrition.

A A A A
f(S)—” = f()—i—h” u=p+q—1

/11+S
—Ppip qu
(f( )) (Ap+s)? + A+s)?
d(z — _ (PAtraARY Feay —
(E (f(S)))SZO - ( Ay ),f(O) =1 (15)
Substituting (15) in equation (13), we get

phitain v v L qyni
EM = (H ) = 1l {[1—gx(1>(1e)] (=06 [1—§x(1)((i+1)e)]+ 1) [1—§x(1)(ne)]}

Subtitling the (14) in (16), we get
B(n) = (M55) i n {(*55) - - e () - o () )
Case (ii) {U;};=1 form an Order Statistics:

Consider the population {U;};2; of independent and identically distributed interdecision times with hyper exponential
cumulative distribution F(t) = 1 — pe™*t — qe™* and the corresponding density function f(t).Assume that {Ui}{“:l1 be a sample
of size m selected from this population .Let Uy, Uy, ..., U, be the order statistics corresponding to this sample with respective
probability density function fy fy,, .....fUml_. U, is the first order statistics and U,,; is the m;"™ order statistics such that
U; < U, < --....< Uy, and hence not independent.

The probability density function of jth order statistics is given by[Sheldon M.R0ss2005]

o, © = () PO O~ FOI = 123 my
Therefore the probability density function of U; and Uy,, are given by

fy,(© = my fF(O[1 - F@O]™?
fyp, (© = my FO[FOI™

(16)

Sub Case (i)

If £ () =fy, (®©

f() =Ty, () = [ e mi f(O[1 — FOI™ 1 dt = ["e™* [ [d(1 — F(©)]™]
fs) = f; e [ (d(pe™" + qe™)™1]

By using binomial expansion

Fs) = fy e [=d(Zho (71) prigm e Ganhrssimany]

_Zrl L )prlqm1 rlj‘ e st O‘hrl )Llrl +lel)e_(}‘hrl_}‘lrlﬁ“ml)tdt

(
- 1
=Xt (ml) prtqm T (hyry — M1y + 4y ) [(s+xhr1

—Mri+hmi)

L(F)) =2y (M) prigm T Oy = g+ 2ymy) [ ————]

(s+7\hr1—7\1r1+klm1)2
1

[;—S(f(S))L -0 _Zrl 0( )prlqml—r1 [(lhrl—hrlﬂlml) (18)
Substituting (18) in (13) we get
E(T) = Zrl 0( )pr1qm1 o [(khrl—k111+}»lm1)
Substituting (14) in (19) we get
mq r{,mi—rq mc +i6 _ _ mc+(i+1)6 n—i (mc+nf
E(T) _Zrl 0( )p q [(khrl—}qr1+xlm1)] Z {( ; ) (n l) ( (:E:)'G) ) ( 1) ( Tl‘; )} (20)
Sub case (ii)
f® = fu,, © =m fOIF O]
f$) = fu, () = [ e myf(OIF (O™ "dt
— fooe—st d(F(t))ml — fooe—st [d(l _ pe—kht _ qe—klt)]mml
_f e—st d(zrl 0(m1)( 1)m1—r11r1(pe—xht +qe—7»|t)m1 et

— mi-—rir 4 ymq-—ri+1 my! rp A,M1—ri—ry (Ayr2=Mra—Nry+hmyp)

f(S) Zn OZFZ =0 (-1 r1!r2!(m1—r1—rz)!p ! (s+Apr2—Nrz—Mri+imq)

mq-r —ri+1 myq! —rq—

[ (F®)] = = EnL Eni (- ymrt e pragmn
Substltutlng (21) in (13) the mean time to recruitment is

]xz {_;,—(n—i C ++---(—1)n—f[_;}(19)

[1-gx(1)(0)] )G [1=gx 1) ((+1)0)] 1=gyx(1)(n)]

1
(Mpr2—Mrz—Ari+imgq)

1)
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— mi—rg ml! rp nmq1—r1—r) 1 n { 1
E(T) r1 OZrZ =0 rl!rz!(ml—rl—rz)!p q (khrz—klrz—klr1+klm1) X L=r nC [1 gx(l)(le)] (n ) [—gx(l)((i+1)9)]

e Drn—111-gx(1)n6
22
gub)stituting (14) in (22), we get

E(T) =

mi—ri,_ qymq-rq+1 mq! ry 4Mq—T1—T2 1 mc+if\ i mc+(i+1)6
Zrl OZrZ =0 ( 1) rl!rz!(ml—rl—rz)!p q (lhrz—llrz—}»lr1+}»lm1) XZ nC {( i6 ) (n l)Cl( (i+1)6 )+
v~ In—imc+nbnbd (23)

Case (iii) {U;};=; form an geometric process
Assume that the inter decision times U;,i = 1,2,3 ... form a geometric process with rate b, (b>0).It is assumed that the probability
density function ofU; is hyper exponential density function f(t) = pA,e ™" + qAe ™, p+q = 1.

f(S) - Aph)l-li—ls /Iqlils
JF(O)=ﬂ q—ll—p+q—1
() = e | @
() -5

s=0

fels) =TI, £ (5)
f—s(ﬁ<s>)=i( () = £ (o <7 () fs(bi)X---xf(bi—-l))

(f(s))x a7 () 1 (790) Ty () 2 76) it f () + - + g (F9)

i#2
N7 ()
Using (24), we get

(E(©))_ =(EmarGm) | = () sigs (25)
Comsdergi_o[ £ (1] _, - [£ (en®)]_] = Ttco (22222 [£hes 55 - Bt 3]

pAi+qin 0 1
_( ApAl )Zk:ob_k (26)

From equation (11), we have

I(s) =

— Yk=0 [fk (s) ~fis1 (S)] X

i=rnnCiga(1)ibk—n—-iClga(1) i+10k+n—iC244(1)(i+20)k ...—1n—igx(1) (n6)k

d -
BT = =[50
S [ (A®)]_ = [£ (A ®)] _ ] xZiene [[g:0, 0] = (0 = D [geny( G+ DO + (0 = DC[Gecry (G +
20k ...—1n—igx1nbk (27)

Substituting (26) in (27)
(M/{:—Aqlh) k= =0k X i nG [[gx(l)(le)] —(n—-1)G [gx(l)( G+ 1)9)] + (- I)Cz[gx(1)((1 + 2)9)] +
...~ In—iga(1)(nO)k

= (PA8) X 32, nC, B [[“’_—"“)(“’)]k — (0= 0, [ZOSO e, [BOUROT (qyoni [Bo00)f]

AnAy b
pAitadn gx(l)(le) , Gxy((+1)0)] 7 , Gey((+2)0)] 71 -
( Anh ) [[1 ] - -1G [1 - T] + (n—1)C, [1 I — + ..(-1) [1 -
gx(1)(n6)b—-1
pA+qip b _ s b i b o (—_1\n—i b
( Andy ) i=rnGi [ —gx(1)(i9)] (n =D& [b—gx(1)((i+1)9)] +(n=DC [b—g_x(l)((i+2)9)] o= [b—gxu)((ne)] (28)

Using (14) in (28)

_ (pAtqA, n ] b(mc +if) _ . b(mc+(i+1)6)
E(T) _( Anly ) i=r G mc (b—1)+bi6 (-G me (b—1)+b(i+1)8
Case (iv) When U;s are Correlated:

National Conference on Emerging Trends in Mathematics - 2017
On 28th July 2017 - Organized by PG and Research Department of Mathematics,
A. V. V. M. Sri Pushpam College (Autonomous), Poondi, Thanjavur (Dt.), Tamilnadu

b(mc+(i+2)0)

_; b(mc+nd)
me (b—1)+b(i42)0 (DS ] (29)
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The inter decision times are assumed to be exchangeable and constantly correlated exponential random variables with mean

%(u > 0).Let R be the constant correlation between U; and U;, i # j.

By taking Laplace Stieljes transform both side using (9)

L(s) =

= Zii=1[Fi(s) = Fea ()] x T nG[[[EMO)]* — (n = DC1[E( G + DO)I* + (n = DC[B(G + 2O)]* + ... (="' [g(n6)]*]
EM) = - [£C®)] _ =S [[£FE®)] _ - [5Ea®)] _ | 2t [ (@] - (=Dl (G + DO +
n—iC2gx(1)i+20k ...—1n—igx(1)nbk (30)

The cumulative distribution function of the partial sum U; + U, + --- + U}, is given by Gurland (1955) as
R\ etk+D)

F () = (1 R+kR)ZJ =0 (1 R+kR) Gkj -1

whereu—; and<p(k+j, ) = “e_E gkti-1 g e.

|l — J t st

Fy (s) = (1 R+kR) (1 R+kR) (k+] 1)'f ok +]'u)e dt

= i ® =st L[ (v ,—€ gk+j-1
_(1 R+kR) (1 R+kR) (etj— 1)|f e’ o (f e = €T de)
__ 1 [ kRus ]—1

T (+us)k (1-R)(1+us)

= [(1 + us)k [1 4R ]]

(1-R)(1+us)

= _ _ (a-Rmk
Fi(s) = 1—R+kR—kRm where m = 1+usk .
d .= _ _ (1-R+kR—kRm)km"™*+m"kR i
—[Fk ®]=q R)[ (1-R+kR—kRm)? ds( )
d
S =~ and (fGm) = —wand (), =1
5=
_ _ _ (1-R)(—=ku)—kRu] _ —ku

[E [Fk(S)]]s - (1 R)[ (1-R)2 ] - (1-R)

d (= —ku (k+Du _  u
[E [Fk(S)]L [— Fk+1(5)]] ~a-n + (1-R) ~ (1-R) Gy

Substituting (31) in (30), the mean tlme to recruitment is
E(T) =

Tico[777] *
i=rnnCiga(1)ibk—n—-iClgx(1) i+16k+n—-iC242(1)i+26k+ ...—1n—iga(1)nbk

=h%h?rm2§dwmﬁmr—m—oqwmﬂﬁ+nmr+m—0&@mﬂ0+a@ﬁ+ (D" [y 0)]]

1 . 1 n—i

[ ]Z [1 ~Gx 0 (n =G o@D T (n =D om0 DT gxm(ne)] (32)
Substituting (14) in (32) '

B0 = ] B (25) - 06, (25228) - oty (522 @
Suppose g(x) = Zx(m)(X)

Then

P(T > t) = Yp_o[F(®) — Fiy1 (O] XiL, G [[gx(m)(le)] — (0 — DG ey (G + 1)9)] + (0 — D) Cy[Zymy (G + 2)9)] +

...~ In—-i[gx(m)(n6)]k (34)

L) =1-P(T >0t
d
1®) = - L©)

— f_olf ()
fk+1ti=rnnCigx(m)ibk—n—-iClgx(m) i+10k+n—-iC2gx(m)(i+20)k+ ...—1n—i[gx(m)(nO)]k  (35)

() = = 5o [fc®) = Fsn (O] X Zey 1€ [[Brmy GO = (0 = DC1 [Erany ( G+ DO + (0 = DCo By (G + 20)] +
...—1n—i[gx(m)(nB)]k (36)

() = %y nC, {[1 = By (0] Bizo fie () [Bumy (O] = (0 = DC1[1 = Buany (G + O] Eg fic () [Bry (G + DO +
... I-gx(m)n0 £=0w f#sgx(m)nOk—1
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[1-8x(m) (O]F () g - gx(m)((n+1)e)]f © . n—i [1=Bx@) O] (s)}
l(s) = Li=rn; {1 =f () Bx(m) (0 — (=06 1~f (s) gx(m)((l+1)9) =D 1=£ (5) Bx(m)™8) (37)
Since g(x) = ce™*
gX(m)(X) =m g(x)[G(X)]m_l
Geomy () = mee ™ (1 — e~y
Exy (@ = me ["e o (1 — e~y le~dx = —m [°(1 — )" 1 )dz = m [ (1 — )" zedz
_ 0 _ r(§+1)r(m)
=mp (: +1, m) =m r (@)
Simplifying the right side, we get
B (®) =35 (38)
Where 6§(c,0) = (c + 8)(2c + 6)(3¢c + 0) ...(mc + 9) (39)
d -
E(T) = = 2= (I())s=0
— . d = _ ! d -
I [1—gxfm)(ne)][§(f(s2)]szo e ll—gxfm)((m)e)][g(f(s;]szo b o1y [1-Ex () O] [ 2 (s)]
[1_gx(m)(ie)f (5)15:0 [1_gx(m)((i+1)e)f (S)]S [1 gx(m)(ne)f (S)]S:O

—_yn N1 oD — it

- = nCl {[1_gx(m)(ie)] (n l)Cl [1_gx(m)((i+1)e)] + ( 1) [1 8x (m)(ne) } [ds (f( )] (40)
We now obtain the analytical result for mean time to recruitment in closed form for four dlﬁerent cases on inter-decision

times {U; };2;
Case (i) {U;};~, form an Ordinary Renewal Process:

The inter decision times are assumed to be independent and identically distributed hyper exponential random variable
with probability density function f(t) = pe™nt+ qe ™% p + q = 1.Where A,,); are high and low attrition rate p,q are the
proportion of decisions having high and low attrition

pAn qlz plh qlz _ 2 —q4
f&) =t fO =+ =p+a=11 (f(s)) Gnts? T Gresr?

A A
(F(®))  =- (e .70 =1
Ss=

Substituting the above equation in (40), we get

pAitain ' M=t i
E(T) = ( Y )Zi {[1 mer 1) R G Ferp o) IR Y [1—gx(m)(ne)]} (41)
Substituting (38) in (41)
P+ wn ‘ 5(c,if) o 5(c,(i+1)8) L (_aNn—i 5(cmb)
E(T) - ( ApAg ) i=r nCl {(S(C,ie)—m!cm) (Tl l)Cl (6(C,(i+1)9)—m!cm) + ( 1) (6(6,‘/10 )—m!cm)} (42)

Where §(c, 8)is given by the equation (39)
Case (ii) {U;}i=; form an order statistics

Consider the population {U;};2; of independent and identically distributed interdecision times with hyper exponential
cumulative distribution F(t) = 1 — pe™" — qe™" and the corresponding density function f(t).Assume that {U;};2} be a sample
of size m, selected from this population .Let Uy, U,, ..., U, be the order statistics corresponding to this sample with respective
probability density function fy, fy,, .....fUml‘. U; is the first order statistics and U,,, is the m;th order statistics such that

U; < U; < --....< Uy, and hence not independent.

Sub case (i)
Substituting (18) in (40) the mean time to recruitment is
1 1

= my)grigmiri [ 1 Jym ) - -iNNC —— 4 (= —
E() =%t 0( )p d [(xhrl—xlrmlml)]Zlﬂ"q{[1—g‘x(m)(ie)] (= DG g @ DT gx(m)(ne)]} (43)
Substituting (38) in (43)

_ ri{ mi—r oy ] 6(c,if) _ s §(c,(i+1)6)
E(T) = ZH 0( )plq ' 1[(lhr1—klr1+klm1)] Z nClZi:rnCL{(6(c,i9)—mlcm) (n l)Cl (5(c,(i+1)0)—m!cm)+
o= In—id(cnb)dcnbd—micm

44 L .
\(Nh)ere 6(c, 8)is given by the equation (39)
Sub case (ii)
Substituting (21) in (40) the mean time to recruitment is
_ mjp—Tg my! ry y,Mq—rq{—r 1 n ; 1 _ i 1
E(T) - Zr1 OZFZ =0 rilrpl(mq—ri-rp)! p zq e (Ayr2=Mrz—Mri+imq) X i=r nCl {[1_§x(m)(i9)] (n l)Cl [1_§x(m)((i+1)9)] +

. (1) 7= A1-ga(772)nb
gﬁ))stituting (38) in (45)
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B(D) = i, o (-t prgmn L w g {(5 D) - (-

r1=0 r2=0 rllrz!(ml—rl—rz)! (khrz—Xlrz—Xlr1+k1m1) 8(c,i0)—m!cm
IC18(c,(1+1)8)Jc, (i+1)6—mlcm+...— In—id(cnb)dc,nb—m!cm

46
\(Nh)ere 6(c, 8)is given by the equation (39)

Case (iii) {U;};z; form a Geometric Process:
Assume that the inter decision times U;,i = 1,2,3 ... form a geometric process with rate b, (b>0).1t is assumed that the
probability density function ofU; is hyper exponential density function f(t) = pA,e™ + qhe™,p+q = 1.
From equation (10), we have
I(s) = = Ti—o[fi(s) — s (s)] X T, nC [[gx(m)(ie)]k — (= DCy [Bxmy (G + 1)9)]k + (n — DCy[ gy (G + 2)9)]k +
...~ In—igx(m)(n6)k

E(T) =~ [5)]

d , = d , = — 1K . — . k . — .
= Siso [ el _ =[5 Feran] _ | * TG [[Beomy @] = (0 = DC1 By (G + DO + (0 = Do By (G +
20)k+...—1n—igx(m)(nd)k (47)
Substituting (26) in (47)

pll"’qlh) 0 1
LTy
( Al Zk—obk

i=rnnCigx(m)ibk—n—iClgx(m) i+16k+n—-iC2gx(m)(i+26)k+ ...—1n—igx(m)(n6)k

_ (pzlmh) " nCYE, [[gx(m)(ie)]k — (-1, [gx<m>((i+1)e)]k (-G, [Ex(m)((i+2)9)]k +oo (=) [gx(mxne)]k]
- - b b b

Ani .
= (PA92n) yn _ B B (G+DO] ! . B ((+2)0)] 7 Cavni[4
= (partemn) i=TnCi[[1 D] - (-6 [1 - B g (n -y [1 - By (i

gx(m)(n6)b—1

— (PAtadnY g b | _—i b — b L qynif—t
_( vy ) i=r i [b—gx(m)(ie)] (=D [b—gx<m)((i+1)e)]+(n De, [b—gx(m)«i+2)e)]+ 1) [b—gx(m((ne)] (48)
Substituting (38) in (48)

_ (pAtqAy n ‘ b6 (c,if) _ N b6 (c,(i+1)0) (i bS (c,nb)
- ( ApAy ) i=r nCl {(bé‘ (C,ie)—m!cm) (Tl l)Cl (b5(c,(i+1)0)—m!cm) + ( 1) (b6 (c,n6 )—m!cm)} (49)

Where §(c, 8)is given by the equation (39)
Case (iv) When U;s are correlated:

The inter decision times are assumed to be exchangeable and constantly correlated exponential random variables with
mean i(,u > 0).Let R be the constant correlation between U; and Uj, i # j.
By taking Laplace Stieljes transform both side using (9)
L(s) =
— Di-alFi(s) = Fera ()] x T, nG[[8G0)]* — (n = )C1[5( G + DO)]* + (n = DC2[8(G + 2)0)]* + ... (=1 [g(m6)]*]

d

B = - |- C)]

s=0

Sico [[5 (Fe)] = [ Fern®)] _ | % G [ [Beam (O] = (0 = DC4 By (G + DO]* + (0 = DC By (G +
20k ...—1n—igx(m)nbk (50)

E(T) =

57z [ 2] B G {[Bxmy (O] — (0 = D [Bx gy (G + DO + (0 = DC By (G + 2)0)] . (— 1) [y 0] ]
Substituting (31) in (50)
E(T) =

[ ] 3 5 [[Bxm GO = (= DC1 [Exmy (G + DO + (0 = DCa By (G + 2O)] . ()™ [Er oy (00)] ]

u ]yn ' - NC O Y 1)
- [ﬁ] i nG [1—gx(m)(ie) (n—=1DC 1= (m) ((+1)0) e, om0 T =D
Substituting (31) in (51)

BT =[] S nC (o) = (= 06 Ggsaranan) + - O (i) (52

5(c,if)—m!c™ §(c,(i+1)8)—m!c™ §(cnb)—m!ic™m
Conclusion:

From the present work we can study about two grade and three grade manpower system. This work also can be extended
in two sources of depletion. The influence of the hypothetical parameter on the performance measure can be studied numerically
with the help of MATLAB by fixing the value fornand r.
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S
1_gx(m)(ne)
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