
Pump Up the JARM: Studying the Evolution of
Botnets using Active TLS Fingerprinting

Eva Papadogiannaki∗
Foundation for Research and Technology-Hellas

epapado@ics.forth.gr

∗Also with Telecommunication Systems Research Institute

Sotiris Ioannidis†
Technical University of Crete

sotiris@ece.tuc.gr

†Also with Foundation for Research and Technology-Hellas

Abstract—The growing adoption of network encryption pro-
tocols, like TLS, has altered the scene of monitoring network
traffic. With the advent and rapid increase in network encryption
mechanisms, typical deep packet inspection systems that monitor
network packet payload contents are gradually becoming obso-
lete, while in the meantime, adversaries abuse the utilization
of the TLS protocol to bypass them. In this paper, aiming
to understand the botnet ecosystem in the wild, we contact
IP addresses known to participate in malicious activities using
the JARM tool for active probing. Based on packets acquired
from TLS handshakes, server fingerprints are constructed during
a time period of 7 months. The fingerprints express servers’
responses to a sequence of several ‘‘TLS Client Hello’’
messages with different TLS attributes and we investigate if it is
feasible to detect suspicious servers and re-identify other similar
within blocklists with no prior knowledge of their activities.
Based on our study, we can see that fingerprints originating
from suspicious servers are repetitive among similarly configured
servers. We show that it is important to update fingerprints
often or follow a more effective fingerprinting approach, since
the overlapping ratio with legitimate servers rises over time.

I. INTRODUCTION

After the SSL/TLS protocol introduction, the progressive
shift to encrypted network communications was inevitable.
For instance, the 2021 Annual Report of Let’s Encrypt [1]
announced that since 2013, HTTPS page loads have grown
from 25% to 84% globally [2]. In 2019, one year after TLS
1.3 been published as an RFC [3], IETF reported that its
adoption is rapidly growing with a 30% of Chrome’s Internet
connections to negotiate TLS 1.3 [4]. The 2021 TLS Telemetry
Report published that TLS 1.3 has become the preferred
protocol for 63% of the top one million web servers on the
Internet [5].

In the meantime, network encryption continues to be abused
by malicious actors. Again in the 2021 TLS Telemetry Re-
port [5], we can see that the proportion of phishing sites using
HTTPS and valid certificates has risen to 83%. Moreover,
Command and Control (CnC) servers take advantage of DNS
over HTTPS (DoH) for their communications [6], [7]. Even
though network encryption is crucial for the protection of
users privacy, it naturally introduces challenges for tools and
mechanisms that perform packet inspection and rely heavily on
the processing of packet payloads. Such operation is vital for
firewalls or intrusion detection and prevention systems [8]–

[10]. Typical network intrusion detection systems (NIDS),
such as Snort, inspect packet headers and payloads to report
malicious or abnormal traffic behavior. In TCP segments that
are secured using the TLS protocol though, the only infor-
mation that makes sense is (i) TLS handshake messages and
(ii) TCP/IP headers (the data transmitted in packet payloads
is encrypted). So, even popular intrusion detection systems
seem to inadequately inspect encrypted connections. The SSL
Readme page of Snort, for instance, reports that when inspect-
ing port 443, “only the SSL handshake of each connection
will be inspected” [11]. Machine learning techniques are
widely used for traffic classification, network analytics and
malware detection [12]–[16]. Others focus on the implemen-
tation of real-time traffic identification systems for encrypted
networks [17]–[19], based on packet metadata, which when
properly combined, can offer valuable insights [15].

In a TLS handshake, the first packets sent remain un-
encrypted and offer valuable information to traffic analysis
tools, enabling fingerprinting of devices, operating systems and
applications [20]. In this work we generate TLS fingerprints
using JARM [21], an open-source tool for active server prob-
ing. Our goal is to provide a long-term measurement study
of botnets, using CnC server information that is available in
public datasets [22], [23]. The contributions of this work are
the following:

1) We probe malicious servers using JARM and we con-
struct a database of fingerprints based on the TLS
handshake messages, which we wish to share.

2) We present the evolution of IP addresses that participate
in botnets using the TLS fingerprints constructed.

3) This measurement study has the longest duration in time
(daily measurements for 7 months) when compared to
related works.

II. BACKGROUND

Transport Layer Security (TLS) is an encryption protocol
that is widely used to ensure the security and privacy of
user communications online [3]. Specifically, TLS is used to
encrypt and authenticate the communication channel between
two endpoints, and it is widely adopted among others in
browsing, messaging, voice over IP (VoIP) calls, emails. TLS
allows endpoints to securely communicate over the Internet,

hindering any possible malicious actions like eavesdropping,
tampering and forgery.

A communication session between two endpoints starts with
the TLS handshake. The TLS handshake mainly kicks-off
the decision-making procedure between the two endpoints,
about which TLS versions, encryption ciphers and extensions
they will actually use during their communication. After this
handshake, the two endpoints are able to share data, which is
encrypted with the arranged TLS configurations between the
two endpoints. The only part of a TLS communication that is
in plain sight, is the contents of the TLS handshake messages
exchanged. The endpoint that wishes to initiate a communica-
tion session with another endpoint sends a ‘‘TLS Client
Hello’’ message. In the ‘‘TLS Client Hello’’, the
endpoint includes the TLS versions that it supports, the en-
cryption cipher suites, a string of random bytes and a list
of public keys. Then, the other endpoint responds with a
‘‘TLS Server Hello’’ message. The ‘‘TLS Server
Hello’’ message contains the negotiated protocol version,
the encryption cipher suit that the server wishes to use, a string
of random bytes and a public key for key exchange. Then, the
server sends a message with one or more certificates. After the
entity, which acts as client, receives those messages, it verifies
the legitimacy of the server’s certificate with the authority that
issued it. After the verification of the server’s certificate, the
communication between the two endpoints starts1.

III. DATA COLLECTION AND PRELIMINARY ANALYSIS

As already mentioned, we make use of the JARM tool [21],
which is an active TLS server fingerprinting tool. Based on
the handshake properties of TLS, JARM actively sends 10
consequent “TLS Client Hello” message to a server and col-
lects the “TLS Server Hello” message that come as responses.
The 10 consequent “TLS Client Hello” messages that are
sent to the target server are specifically generated to force
TLS servers to response with unique responses. To be precise,
JARM sends “TLS Client Hello” messages with different TLS
versions, ciphers and extensions. The “TLS Server Hello”
messages, then, contain information with the server’s attribute
combination of TLS versions, ciphers and extensions. Hashing
these 10 server’s responses, we receive a JARM fingerprint.

On October 2021, we started collecting publicly available
IP addresses from several blocklists. More specifically, we
retrieve IP addresses from the Feodo Tracker Botnet C2 IP
Blocklist [22] (CC1) and the MalSilo IPv4 feed [23] (CC2)The
blocklists with identifiers CC1 and CC2 contain IP addresses,
port numbers and activity/botnet name. Since the botnet lists
(CC1 and CC2) contain more information, we classify the
botnets based on the produced fingerprints. The fingerprints
are produced using the combination of the 10 “TLS Server
Hello” messages. Figures 1 and 2 show the evolution of the IP
addresses and fingerprints that we collect during this study. In
the following paragraphs, we set the scene with a preliminary

1In this work, we utilize the information exchanged in the TLS handshake.
More information can be found in [24].

analysis based on the data that we collect and calculate. As
occurs, the different command and control servers that exist
in the botnet lists that we download and parse, include the
activity of the following botnets: (i) Dridex, (ii) Qakbot,
(iii) Trickbot, (iv) Emotet and (v) Downloader. How
the number of unique command and control server IP ad-
dresses evolve during our study is illustrated in Figure 1.
Everyday, we download the fresh command and control server
IP addresses from the botnet lists and we calculate the server
fingerprints that are produced by JARM. The number of unique
fingerprints per botnet is shown in Figure 2.

30/10/2021

03/12/2021

16/01/2022

14/02/2022

11/03/2022

05/04/2022

30/04/2022

25/05/2022

Dates

0

100

200

300

400

500

600

IP
ad

dre
ss

es
 pe

r b
otn

et

Dridex
Qakbot
Trickbot
Emotet
Downloader
Total

Fig. 1. The number of the unique IP addresses over time, as contained in the
lists with the botnet command and control servers that we parse (i.e., CC1,
CC2).

30/10/2021

03/12/2021

16/01/2022

14/02/2022

11/03/2022

05/04/2022

30/04/2022

25/05/2022

Dates

0

5

10

15

20

25

30

Fin
ge

rp
rin

ts
pe

r b
otn

et

Dridex
Qakbot
Trickbot
Emotet
Downloader
Total

Fig. 2. The number of unique fingerprints over time, as hashed out of the 10
TLS Server Hello responses, when contacting the IP addresses contained in
the botnet command and control server lists that we parse (i.e., CC1, CC2).

The number of unique Dridex command and control server
IP addresses reach up to 186, while the fingerprints that are
produced by actively probing those servers are maximum
8. This means that the majority of the Dridex command

2

30/10/2021

03/12/2021

16/01/2022

14/02/2022

11/03/2022

05/04/2022

30/04/2022

25/05/2022

Dates

0.0

0.1

0.2

0.3

0.4

0.5
Re

fu
se

d T
LS

 co
nn

ec
tio

ns
 (%

)
Dridex
Qakbot
Trickbot
Emotet
Downloader
Total refused

Fig. 3. The number of refused TLS connections from IP addresses contained
in the botnet command and control server lists (i.e., CC1, CC2).

and control servers mostly have same TLS configurations.
Likewise, the number of unique QakBot command and control
server IP addresses reach up to 421, while the fingerprints that
are produced by actively probing those servers are maximum
9. These number show that the fingerprints produced by the
servers of this botnet are significantly uniform. For TrickBot,
we encounter a maximum of 195 distinct IP addresses in a
single day, resulting to 20 fingerprints. For the Emotet botnet,
we encounter a maximum of 107 unique IP addresses in a
single day, resulting to 4 fingerprints. The highest fingerprint
diversity is introduced by the Downloader botnet, where for
only 15 distinct IP addresses we get 6 fingerprints. Finally, our
findings make us confident that maintaining a database with
these fingerprints can eventually help mitigate cyber attacks
related to the examined botnets.

A. Refused TLS connections

Refused TLS connections from servers are expected. Fig-
ure 3 shows the number of servers that refused all TLS
connections that we started by not responding to the “TLS
Client Hello” messages that we sent. From the figure, we
see that there are times that contacted servers could refuse an
incoming TLS connection. Specifically, in Figure 3 we plot the
number of the refused TLS connections from known command
and control servers (found in CC1, CC2). Servers from the
Qakbot and Trickbot botnets mostly accept our connections
and respond to the “TLS Client Hello” messages. Downloader
servers also respond with a high ratio. Dridex and Emotet are
the botnets that refuse incoming connections more frequently.

B. Fingerprints of benign servers

We actively contacted the top-10K benign servers from the
The Majestic Million list [25] one day in October 2021 and
one day in October 2022. Results presented in Figure 4 show
the daily overlaps of the botnet servers with the benign servers

30/10/2021

03/12/2021

16/01/2022

14/02/2022

11/03/2022

05/04/2022

30/04/2022

25/05/2022

Dates

0.00

0.01

0.02

0.03

0.04

0.05

Ov
er

alp
s (

%)

Botnet fingerprints (2021)
Botnet fingerprints (2022)

Fig. 4. TLS server fingerprints (from servers found in CC1, CC2) that overlap
with servers found in the top 10K domains ([25]) in 2021 and 2022.

of the top-10K from the Majestic list [25]2. The TLS server
fingerprints that are produced using the IP addresses found in
the botnet lists result to less than 1% overlapping fingerprints.
One year later, we observe a rise in the overlaps. The overlaps
of botnet server are less than 5%, but higher when compared
to the overlaps from 2021. The unique fingerprints of the
legitimate servers (top-10K Majestic) are 2915 in 2021, while
in 2022 the unique fingerprints of the legitimate servers (top-
10K Majestic) are 1311. The overlaps of malicious server
fingerprints with legitimate server fingerprints are 371 in 2021
(13%) and 534 in 2022 (40%). Based on our measurements,
we can see that in a year, the variation in TLS configurations
of legitimate servers is reduced (i.e., less unique fingerprints).
Furthermore, based on Figure 4, it is clear that as time passes,
the calculated fingerprints of malicious servers are becoming
less effective, when not updated.

IV. ANALYSIS

In this section, we analyse our findings based on IP ad-
dresses that we have been contacting for 7 months, and share
our insights.

A. Botnet ports

For each established connection, the port number used can
sometimes signify the underlying activity. Aiming to shed
some light in the port selection by known botnets, Table I
contains the top-5 ports that we encounter in the blocklists
together with the IP addresses. It is really interesting to notice
that except for the well known ports (e.g., 443, 8080), the
different botnets operate using a diverse list of port numbers.
Such ports, along with the fingerprints produced, can offer
better accuracy results in the performance of a network mon-
itoring tool.

2The lists of domains were downloaded in October 2021 and 2022, with
their fingerprints calculated in October 2021 and 2022, respectively.

3

TABLE I
MOST POPULAR PORT NUMBERS PER BOTNET (TOP-5 IN CC1, CC2).

Botnet name Popular ports (descending order) Total ports
Dridex 443, 7443, 4664, 10172, 6225 45
QakBot 443, 995, 2222, 993, 1194 26
TrickBot 443, 447, 449 3
Emotet 8080, 443, 80, 7080, 4001 10
Downloader 6602, 1973, 13786, 29795, 46187 11

30/10/2021

03/12/2021

14/01/2022

13/02/2022

10/03/2022

04/04/2022

29/04/2022

24/05/2022

Dates

0.0

0.2

0.4

0.6

0.8

1.0

TL
S s

er
ve

r c
on

fig
ur

at
ion

s p
er

 bo
tn

et

Dridex
Qakbot
Trickbot
Emotet
Downloader

Fig. 5. The number of unique TLS server configurations from IP addresses
contained in the botnet command and control server lists (i.e., CC1, CC2).

B. TLS Server Configurations

Each fingerprint that is calculated by the JARM tool for
a single server is comprised of 62 Bytes in total. The first
30 Bytes present information about the configurations (i.e.,
TLS version and ciphers) of the server contacted and the
remaining 32 Bytes contain information about the extensions.
This means that for two different fingerprints that share the
same first 30 Bytes, they also share the same configuration
of TLS versions and supported ciphers. We believe that it
would be very interesting and insightful to examine if there
are trends between the servers that participate in the same
botnet activity. Then, studying if these trends are distinct
between different botnets, we might be able not only to tell
if a server looks malicious, but to also indicate the botnet
that the server is part of. Figure 5 shows that concerning the
different botnets that we study, the TLS configurations of the
servers are always less than the actual server fingerprints. This
means that the servers that we probed in order to calculate
their fingerprints based on the TLS Server Hello message sent,
share very similar TLS configurations. To explore the unique-
ness of the fingerprints produced, we check for overlapping
fingerprints (length of 30Bytes) between the different servers
that act as part of a certain botnet family. Table II shows
the fingerprints that are common among the different botnets.
Fingerprint 2ad2ad0002ad2ad0002ad2ad2ad2ad is the
most common and is produced by servers that are known
to participate in Dridex, TrickBot and Emotet botnets. The

TABLE II
OVERLAPPING FINGERPRINTS BETWEEN DIFFERENT BOTNETS.

Botnet 1 Botnet 2 Overlapping Fingerprint
Dridex TrickBot 2ad2ad0002ad2ad0002ad2ad2ad2ad
Dridex Emotet 2ad2ad0002ad2ad0002ad2ad2ad2ad
QakBot TrickBot 20d08b20d21d20d20c42d08b20b41d
QakBot TrickBot 2ad2ad16d2ad2ad22c2ad2ad2ad2ad
QakBot Downloader 04d02d00004d04d04c04d02d04d04d
QakBot Downloader 20d08b20d21d20d20c42d08b20b41d
TrickBot Emotet 2ad2ad0002ad2ad0002ad2ad2ad2ad

TABLE III
BOTNET FINGERPRINTS FOUND IN BLOCKLISTS BL1 AND BL2.

Botnet Fingerprints In CI-Badguys In Blocklist.de
Dridex 9 9 8
QakBot 36 22 25
TrickBot 47 14 14
Emotet 7 7 7
Downloader 7 6 7

total number of unique fingerprints that overlap between
different botnets is only 4. Removing the 4 most common
fingerprints that represent the most common TLS configu-
rations among servers, significantly decreases the number of
fingerprint overlaps with benign servers that are included in
the Majestic Million domains (causing a 20% decrease in
numbers of overlaps shown in Fig. 4). This could mean that
the malicious servers with the specific fingerprint imitate a
popular TLS configuration profile used by normal and benign
TLS servers (a technique that censorship circumvention tools
also follow [26]).

Aiming to search for the botnets’ fingerprints that are
calculated, we collect also the IP addresses from two other
blocklists: the CINS Score CI-Badguys list [27] (BL1) and
the blocklists.de list [28] (BL2). Each blocklist is downloaded
everyday and we calculate the fingerprints for each IP address.
Altogether, we can find many fingerprints obtained from
botnets that exist inside the set of fingerprints calculated for
the two blocklists (i.e., BL1, BL2). The aggregated numbers
of those fingerprints are shown in Table III. This makes us
confident that it is possible to distinguish servers of different
botnets in a vast list of IP addresses without any prior knowl-
edge, based only on the fingerprints calculated by JARM.

Indeed, the presence of the fingerprints that are calcu-
lated by the servers that participate in each botnet exists in
the list of fingerprints that are produced by servers in the
two blocklists. Figures 6 and 7 illustrate the proportion of
fingerprints extracted from IP addresses that are contained
in the botnet command and control server lists that were
found between the fingerprints extracted from IP addresses
contained in the blocklists. In Figures 6 and 7, we search the
botnet fingerprints of full length against the fingerprints of the
blocklists. For instance, on the 11th of November 2021 we
extracted 372 fingerprints from servers found in Blocklist.de
and 348 fingerprints from servers found in CI-Badguys list.
Out of the total Blocklist.de fingerprints, 3 of them matched
those of Dridex, 2 of them matched those of QakBot, 7 of them
matched those of TrickBot, 1 of them matched those of Emotet
and 3 of them matched those of Downloader. Out of the total

4

30/10/2021

03/12/2021

16/01/2022

14/02/2022

11/03/2022

05/04/2022

30/04/2022

25/05/2022

Dates

0.00

0.05

0.10

0.15

0.20

0.25
Bo

tn
et

 fin
ge

rp
rin

ts
fou

nd
Dridex
QakBot
TrickBot
Emotet
Downloader
Total

Fig. 6. The proportion of botnet fingerprints found into the list of fingerprints
calculated from IP addresses contained in BL1.

30/10/2021

03/12/2021

16/01/2022

14/02/2022

11/03/2022

05/04/2022

30/04/2022

25/05/2022

Dates

0.00

0.05

0.10

0.15

0.20

0.25

Bo
tn

et
 fin

ge
rp

rin
ts

fou
nd

Dridex
QakBot
TrickBot
Emotet
Downloader
Total

Fig. 7. The proportion of botnet fingerprints found into the list of fingerprints
calculated from IP addresses contained in BL2.

CI-Badguys fingerprints, 4 of them matched those of Dridex,
2 of them matched those of QakBot, 5 of them matched those
of TrickBot, 1 of them matched those of Emotet and 4 of them
matched those of Downloader.

The first 30 bytes of each fingerprint calculated by JARM
provides information about the TLS versions and ciphers that
a server supports. Servers that share the same 30 first bytes in
their fingerprints, also share the same TLS configuration (i.e.,
TLS versions and ciphers). As expected, searching for the 30
first bytes of the initial fingerprints results to higher number of
botnet occurrences into the blocklists. Furthermore, extensions
shared via the TLS Server Hello message could add turbulence
in fingerprints, since the application of popular fingerprinting
circumvention techniques, like extension randomization, are
common from servers with malicious activities (or censorship

circumvention tools [26]). The existence of malicious servers
that are similarly configured is highly expected. Thus, search-
ing for these configurations could assist in identification of
malicious infrastructure. On the 11th of November 2021 we
extracted 372 fingerprints from servers found in Blocklist.de
and 348 fingerprints from servers found in CI-Badguys list.
Out of the total Blocklist.de fingerprints, 14 of them matched
those of Dridex, 3 of them matched those of QakBot, 45 of
them matched those of TrickBot, 1 of them matched those
of Emotet and 4 of them matched those of Downloader. Out
of the total CI-Badguys fingerprints, 17 of them matched
those of Dridex, 6 of them matched those of QakBot, 32 of
them matched those of TrickBot, 1 of them matched those of
Emotet and 9 of them matched those of Downloader. These
numbers show a significant rise when we study the coverage
of the examined botnets into the two blocklists, a trend that
remains during the whole period of our analysis, with a peak
of 30% total coverage on the 13th of December 2021 in both
blocklists.

Diving into more depth, we further analyzed the data col-
lected during the 7-month period. More specifically, for each
IP address that we contact, we process the server responses to
each TLS Client Hello that is sent. Dridex, QakBot, TrickBot
and Emotet botnets select TLS 1.2 and 1.3, while Downloader
also accepts TLS 1.1. Besides the TLS version chosen by the
botnet servers, we also analyzed their preferred cipher suite.

Table IV presents the codes of the cipher suites that
each botnet selects in most cases. In Table V we present
a dictionary for these codes, along with their ranking by
ciphersuite.info [29]. Weak ciphers are considered old and
they should be avoided, while insecure ciphers can be broken
with minimum effort. Dridex and QakBot select cipher suites
marked as weak. In some cases, QakBot selects also an
insecure cipher suite. TrickBot, Emotet and Downloader select
a combination of weak and secure ciphers.

TABLE IV
MOST SELECTED CIPHER SUITES PER BOTNET (CC1, CC2).

Botnet name Cipher suites (codes)
Dridex c013, 00c0, 0016, 0084, c012
QakBot 000a, 0005, c012, 006b
TrickBot c030, c014
Emotet c030, c012, cca8, 009e, 0016, 1302, c02f
Downloader c012, c013, 0035, 1302

V. RELATED WORK

Researchers started proposing techniques to gain insight on
the nature of the underlying network traffic [30]. Machine
learning is widely used to test the feasibility of encrypted traf-
fic analysis, using network packet metadata and not payload
contents [14], [15], [31]–[36]. Other works focus on real-time
traffic inspection based on network metadata patterns [17],
[37]–[39]. Other works that are able to process encrypted
traffic perform searchable encryption, enabling middleboxes
to gain insight from the exchanged traffic nature [40]–[42].

5

TABLE V
CIPHER SUITES DICTIONARY AND CHARACTERIZATION [29].

Code Cipher suite name Marked as
c013 TLS ECDHE RSA WITH AES 128 CBC SHA Weak
00c0 TLS RSA WITH CAMELLIA 256 CBC SHA256 Weak
0016 TLS DHE RSA WITH 3DES EDE CBC SHA Weak
0084 TLS RSA WITH CAMELLIA 256 CBC SHA Weak
c012 TLS ECDHE RSA WITH 3DES EDE CBC SHA Weak
000a TLS RSA WITH 3DES EDE CBC SHA Weak
0005 TLS RSA WITH RC4 128 MD5 Insecure
006b TLS DHE RSA WITH AES 256 CBC SHA256 Weak
c030 TLS ECDHE RSA WITH AES 256 GCM SHA384 Secure
c014 TLS ECDHE RSA WITH AES 256 CBC SHA Weak
cca8 ECDHE RSA WITH CHACHA20 POLY1305 SHA256 Secure
009e TLS DHE RSA WITH AES 128 GCM SHA256 Secure
1302 TLS AES 256 GCM SHA384 Secure
c02f TLS ECDHE RSA WITH AES 128 GCM SHA256 Secure
0035 TLS RSA WITH AES 256 CBC SHA Weak

TLS fingerprinting is a common technique that assists in
the extraction of meaningful observations from TLS hand-
shake messages, since limited content can be revealed from
encrypted data packets. TLS fingerprinting has been used for
studying the TLS deployment [43] and the TLS usage in con-
sumer IoT devices [20] and Android applications [44]. In [45],
authors publish a knowledge database consisting of TLS
fingerprints (passively constructed) from enterprise deploy-
ments and malware traffic, together with an analysis of trends
concerning the utilization of TLS by applications and malware.
Yet, this knowledge database has not been updated since 2019.
TLS fingerprinting has been also used in identifying known
censorship circumvention tools, like Tor [26]. JA3 is a method
that enables TLS client profiling, while JA3S enables server
side TLS fingerprinting [46]. S ince JA3 and JA3S hashes (or
JA3/JA3S fingerprints) can be easily distributed, they promote
the easy cyberthreat intelligence exchange. In fact, support
to JA3S has been added in Suricata [9]. Another library that
enables TLS handshake fingerprinting is fingeprinTLS [47],
[48]. In a nutshell, the produced fingerprints are a combination
of TLS version, accepted ciphers, extensions, elliptic curves
and elliptic curve formats.

Besides these passive techniques for TLS fingerprinting,
there is JARM [21]. JARM enables active TLS server fin-
gerprinting. In our work, we actively contact servers with sus-
picious activity, with IP addresses found in publicly available
lists (the lists get updated on a daily basis and we download
the updated lists everyday), using JARM. In an article posted
online on October 2020 [49], JARM creators explain how it
works and how it can be used to identify malicious servers.
In the article, creators made public 1 fingerprint per botnet.
The botnets that were examined are TrickBot, AsyncRAT,
Metasploit, Cobalt Strike and Merlin C2. As authors state,
they contact IP addresses on port 443. In this work, we
utilize JARM to contact IP addresses of servers with malicious
activity (their malicious activity is known and published in
several popular blocklists). Except for port 443, we also
contact these IP addresses on other ports as well, based on
the botnet lists records that we retrieve (more information for
the lists that we examine can be found in Section III). The

botnets investigated are Dridex, QakBot, TrickBot, Emotet
and Downloader (TrickBot and Emotet are two of the most
frequent malware variants delivering ransomware [5]). We
search for the produced fingerprints against two different
blocklists (BL1 and BL2) and we are able to identify the
five botnets within them (based on the fingerprints produced).
We provide an analysis of the fingerprints produced by these
botnet servers within a time-span of 7 months (October 2021
– May 2022).

Recently, Sosnowski et al. proposed a new TLS finger-
printing technique [50]. Authors use a binary classifier to
investigate if a server is a command and control server, with
better precision and recall results when compared to JARM.
In addition, authors study weekly snapshots in a period of 7
months. In DissecTLS [51], authors follow a more exhaustive
fingerprinting approach to calculate more effective finger-
prints, which outperform five popular TLS scanners (including
JARM). They perform a measurement study using the same
public datasets that we use, and they repeat the measurements
nine times in a period of nine weeks. In our paper, we study
daily snapshots of blocklisted server IP addresses in a period
of 7 months and we present the evolution of their JARM
fingerprints in detail. The goal of our work is to study the
evolution of known command and control servers obtained
by public blocklists. When compared to other measurement
studies that perform TLS fingerprinting, our work produces
a significantly larger dataset, which we aim to share upon
request.

VI. CONCLUSION

In this paper, we explore how the examined botnets evolve
in time and if the fingerprint overlapping with legitimate
servers is low enough for this solution to be viable and prac-
tical. By actively contacting IP addresses of known command
and control servers using JARM, we create a database of TLS
server fingerprints grouped by botnet. We show that keeping
an outdated list of fingerprints can cause false positives when
characterizing malicious servers on the Internet. Investigating
the existence of those fingerprints into blocklists of mali-
ciously acting IP addresses, we are able to (re-)identify the
same TLS server configurations that could indicate specific
botnet activity, based on our knowledge base. Finally, we wish
to share all of our TLS fingerprints database with security
researchers and students upon request (daily data collection
for 7 months).

ACKNOWLEDGEMENTS
This work was supported by the projects SENTINEL and AI4HealthSec funded by

the European Commission under Grant Agreements No. 101021659 and 883273. This
publication reflects the views only of the authors, and the Commission cannot be held
responsible for any use which maybe made of the information contained therein.

REFERENCES

[1] “Let’s Encrypt,” https://letsencrypt.org, 2020, Accessed: 2020-10-29.
[2] “2021 Internet Security Research Group Annual Report,” https:

//www.abetterinternet.org/documents/2021-ISRG-Annual-Report.pdf,
2021, Accessed: 2022-07-15.

[3] “The Transport Layer Security (TLS) Protocol Version 1.3,” https://tools.
ietf.org/html/rfc8446, 2018, Accessed: 2020-10-29.

6

[4] “TLS 1.3: One Year Later,” https://www.ietf.org/blog/tls13-adoption/,
2019, Accessed: 2020-10-29.

[5] “The 2021 TLS Telemetry Report,” https://www.f5.com/labs/articles/
threat-intelligence/the-2021-tls-telemetry-report, 2021, Accessed: 2022-
07-15.

[6] “Spamhaus Botnet Threat Update: Q4-2021,” https://www.spamhaus.
org/news/article/817/spamhaus-botnet-threat-update-q4-2021, 2021,
Accessed: 2022-07-15.

[7] N. P. Hoang, M. Polychronakis, and P. Gill, “Measuring the accessibility
of domain name encryption and its impact on internet filtering,” in
International Conference on Passive and Active Network Measurement.
Springer, 2022, pp. 518–536.

[8] “The Snort IDS/IPS,” Available: https://www.snort.org/, 2020, Accessed
on Oct. 8, 2020.

[9] “Suricata Open Source IDS / IPS / NSM engine ,” Available: https:
//www.suricata-ids.org/, 2020, Accessed on Oct. 8, 2020.

[10] “The Zeek Network Security Monitor,” Available: https://www.zeek.org/,
2020, Accessed on Oct. 8, 2020.

[11] “Snort: README.ssl,” Available: https://www.snort.org/faq/readme-ssl,
2020, Accessed on Oct. 28, 2020.

[12] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid:
automatic reconstruction of android malware behaviors.” in Proceedings
of The Network and Distributed System Security Symposium (NDSS),
2015.

[13] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” Soft Computing, pp. 1–14, 2017.

[14] N. Rosner, I. B. Kadron, L. Bang, and T. Bultan, “Profit: Detecting and
quantifying side channels in networked applications.” in Proceedings of
The Network and Distributed System Security Symposium (NDSS), 2019.

[15] B. Anderson and D. McGrew, “Machine learning for encrypted malware
traffic classification: accounting for noisy labels and non-stationarity,”
in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2017, pp. 1723–1732.

[16] J. Liang, W. Guo, T. Luo, H. Vasant, G. Wang, and X. Xing, “Fare:
Enabling fine-grained attack categorization under low-quality labeled
data,” in Proceedings of The Network and Distributed System Security
Symposium (NDSS), 2021.

[17] E. Papadogiannaki, C. Halevidis, P. Akritidis, and L. Koromilas, “Otter:
A scalable high-resolution encrypted traffic identification engine,” in In-
ternational Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 2018, pp. 315–334.

[18] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing
android encrypted network traffic to identify user actions,” IEEE Trans-
actions on Information Forensics and Security, vol. 11, no. 1, pp. 114–
125, 2016.

[19] J. Bushart and C. Rossow, “Padding ain’t enough: Assessing the privacy
guarantees of encrypted dns,” in 10th USENIX Workshop on Free and
Open Communications on the Internet, 2020.

[20] M. T. Paracha, D. J. Dubois, N. Vallina-Rodriguez, and D. Choffnes,
“Iotls: understanding tls usage in consumer iot devices,” in Proceedings
of the ACM SIGCOMM Conference on Internet Measurement Confer-
ence, 2021, pp. 165–178.

[21] “JARM: An active Transport Layer Security (TLS) server fingerprinting
tool,” https://github.com/salesforce/jarm, 2020, Accessed: 2022-1-23.

[22] “The Feodo Tracker Botnet C2 IP Blocklist,” https://feodotracker.abuse.
ch/downloads/ipblocklist.csv, 2021, Accessed: 2022-1-03.

[23] “The MalSilo IPv4 feed,” https://malsilo.gitlab.io/feeds/dumps/ip list.
txt, 2021, Accessed: 2022-1-03.

[24] “The Illustrated TLS 1.3 Connection,” https://tls13.xargs.org, 2022,
Accessed: 2023-3-30.

[25] “The Majestic Million,” https://downloads.majestic.com/majestic
million.csv, 2021, Accessed: 2022-1-03.

[26] S. Frolov and E. Wustrow, “The use of tls in censorship circumven-
tion.” in Proceedings of The Network and Distributed System Security
Symposium (NDSS), 2019.

[27] “The CINS Score CI-Badguys list ,” https://cinsscore.com/list/
ci-badguys.txt, 2021, Accessed: 2022-1-03.

[28] “blocklist.de,” https://lists.blocklist.de/lists/, 2021, Accessed: 2022-1-03.
[29] “TLS Ciphersuite Search,” https://ciphersuite.info, 2022, Accessed:

2022-10-31.
[30] E. Papadogiannaki and S. Ioannidis, “A survey on encrypted network

traffic analysis applications, techniques, and countermeasures,” ACM
Comput. Surv., vol. 54, no. 6, 2021.

[31] B. Anderson, A. Chi, S. Dunlop, and D. McGrew, “Limitless http in
an https world: Inferring the semantics of the https protocol without
decryption,” in Proceedings of the Ninth ACM Conference on Data and
Application Security and Privacy, 2019, pp. 267–278.

[32] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 2, no. 1, pp. 41–50, 2018.

[33] M. H. Mazhar and Z. Shafiq, “Real-time video quality of experience
monitoring for https and quic,” in INFOCOM. IEEE, 2018, pp. 1331–
1339.

[34] S. Xu, S. Sen, and Z. M. Mao, “Csi: inferring mobile abr video
adaptation behavior under https and quic,” in Proceedings of the 15th
European Conference on Computer Systems, 2020, pp. 1–16.

[35] V. Ghiëtte, H. Griffioen, and C. Doerr, “Fingerprinting tooling used
for ssh compromisation attempts,” in 22nd International Symposium on
Research in Attacks, Intrusions and Defenses, 2019, pp. 61–71.

[36] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an
ensemble of autoencoders for online network intrusion detection,” arXiv
preprint arXiv:1802.09089, 2018.

[37] E. Papadogiannaki, D. Deyannis, and S. Ioannidis, “Head (er) hunter:
Fast intrusion detection using packet metadata signatures,” in 2020 IEEE
25th International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD). IEEE, 2020, pp.
1–6.

[38] E. Papadogiannaki and S. Ioannidis, “Acceleration of intrusion detection
in encrypted network traffic using heterogeneous hardware,” Sensors,
vol. 21, no. 4, p. 1140, 2021.

[39] E. Papadogiannaki, G. Tsirantonakis, and S. Ioannidis, “Network in-
trusion detection in encrypted traffic,” in 2022 IEEE Conference on
Dependable and Secure Computing (DSC). IEEE, 2022, pp. 1–8.

[40] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep
packet inspection over encrypted traffic,” ACM SIGCOMM Computer
communication review, vol. 45, no. 4, pp. 213–226, 2015.

[41] D. Naylor, R. Li, C. Gkantsidis, T. Karagiannis, and P. Steenkiste, “And
then there were more: Secure communication for more than two parties,”
in Proceedings of the International Conference on emerging Networking
EXperiments and Technologies. ACM, 2017, pp. 88–100.

[42] S. Canard, A. Diop, N. Kheir, M. Paindavoine, and M. Sabt, “Blindids:
Market-compliant and privacy-friendly intrusion detection system over
encrypted traffic,” in Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, 2017, pp. 561–574.

[43] P. Kotzias, A. Razaghpanah, J. Amann, K. G. Paterson, N. Vallina-
Rodriguez, and J. Caballero, “Coming of age: A longitudinal study of
tls deployment,” in Proceedings of the ACM SIGCOMM Conference on
Internet Measurement Conference, 2018, pp. 415–428.

[44] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan,
J. Amann, and P. Gill, “Studying tls usage in android apps,” in Pro-
ceedings of the 13th International Conference on emerging Networking
EXperiments and Technologies, 2017, pp. 350–362.

[45] B. Anderson and D. McGrew, “Tls beyond the browser: Combining
end host and network data to understand application behavior,” in Pro-
ceedings of the ACM SIGCOMM Conference on Internet Measurement
Conference, 2019, pp. 379–392.

[46] “JA3: A method for profiling SSL/TLS Clients,” https://github.com/
salesforce/ja3, 2018, Accessed: 2022-1-23.

[47] “FingerPrinTLS,” https://github.com/LeeBrotherston/tls-fingerprinting/
tree/master/fingerprintls, 2016, Accessed: 2022-1-23.

[48] X. Li, B. A. Azad, A. Rahmati, and N. Nikiforakis, “Good bot, bad bot:
Characterizing automated browsing activity,” in 2021 IEEE symposium
on security and privacy (sp), 2021, p. 17.

[49] “Easily Identify Malicious Servers on the Inter-
net with JARM,” https://engineering.salesforce.com/
easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a/,
2020, Accessed: 2022-7-10.

[50] M. Sosnowski, J. Zirngibl, P. Sattler, G. Carle, C. Grohnfeldt, M. Russo,
and D. Sgandurra, “Active tls stack fingerprinting: Characterizing tls
server deployments at scale.”

[51] M. Sosnowski, J. Zirngibl, P. Sattler, and G. Carle, “Dissectls: A
scalable active scanner for tls server configurations, capabilities, and tls
fingerprinting,” in Passive and Active Measurement: 24th International
Conference, Proceedings. Springer, 2023, pp. 110–126.

7

