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Abstract

This thesis proposes specific signal processing and machine learning meth-
ods for automatically aligning the lyrics of a song to its corresponding audio
recording. The research carried out falls in the broader field of music informa-
tion retrieval (MIR) and in this respect, we aim at improving some existing
state-of-the-art methods, by introducing domain-specific knowledge.

The goal of this work is to devise models capable of tracking in the music
audio signal the sequential aspect of one particular element of lyrics – the
phonemes. Music can be understood as comprising different facets, one of
which is lyrics. The models we build take into account the complementary
context that exists around lyrics, which is any musical facet complementary
to lyrics. The facets used in this thesis include the structure of the music
composition, temporal structure of a lyrics line, the structure of the metri-
cal cycle. From this perspective, we analyse not only the low-level acoustic
characteristics, representing the timbre of the phonemes, but also higher-level
characteristics, in which the complementary context manifests. We propose
specific probabilistic models to represent how the transitions between con-
secutive sung phonemes are conditioned by different facets of complementary
context.

The complementary context, which we address, unfolds in time according to
principles that are particular of a music tradition. To capture these, we created
corpora and datasets for two music traditions, which have a rich set of such
principles: Ottoman Turkish makam and Beijing opera. The datasets and
the corpora comprise different data types: audio recordings, music scores, and
metadata. From this perspective, the proposed models can take advantage
both of the data and the music-domain knowledge of particular musical styles
to improve existing baseline approaches.

As a baseline, we choose a phonetic recognizer based on hidden Markov mod-
els (HMM): a widely-used method for tracking phonemes both in singing and
speech processing problems. We present refinements in the typical steps of
existing phonetic recognizer approaches, tailored towards the characteristics
of the studied music traditions. On top of the refined baseline, we devise
probabilistic models, based on dynamic Bayesian networks (DBN) that repre-
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sent the relation of phoneme transitions to its complementary context. Two
separate models are built for two granularities of complementary context: the
temporal structure of a lyrics line (higher-level) and the structure of the met-
rical cycle (finer-level). In one model we exploit the fact the syllable durations
depend on their position within a lyrics line. Information about the expected
durations is obtained from the score, as well as from music-specific knowl-
edge. Then in another model, we analyse how vocal note onsets, estimated
from audio recordings, influence the transitions between consecutive vowels
and consonants. We also propose how to detect the time positions of sung
note onsets by tracking simultaneously the positions in the metrical cycle (i.e.
metrical accents).

In order to evaluate the potential of the proposed models, we use lyrics-to-
audio alignment as a concrete task. Each model improves the alignment ac-
curacy, compared to the baseline, which is based solely on the acoustics of
the phonetic timbre. This validates our hypothesis that knowledge of comple-
mentary context is an important stepping stone for computationally tracking
lyrics, especially in the challenging case of singing with instrumental accom-
paniment.

The outcomes of this study are not only theoretic methods and data, but also
specific software tools that have been integrated into Dunya — a suite of tools,
built in the context of CompMusic, a project for advancing the computational
analysis of the world’s music. With this application, we have also shown that
the developed methods are useful not only for tracking lyrics, but also for
other use cases, such as enriched music listening and appreciation, and for
educational purposes.



Resum

La tesi aquí presentada proposa metodologies d’aprenentatge automàtic i pro-
cessament de senyal per alinear automàticament el text d’una cançó amb el seu
corresponent enregistrament d’àudio. La recerca duta a terme s’engloba en
l’ampli camp de l’extracció d’informació musical (Music Information Retrieval
o MIR). Dins aquest context la tesi pretén millorar algunes de les metodologies
d’última generació del camp introduint coneixement específic de l’àmbit.

L’objectiu d’aquest treball és dissenyar models que siguin capaços de detectar
en la senyal d’àudio l’aspecte seqüencial d’un element particular dels textos
musicals; els fonemes.

Podem entendre la música com la composició de diversos elements entre els
quals podem trobar el text. Els models que construïm tenen en compte el
context complementari del text. El context són tots aquells aspectes musicals
que complementen el text, dels quals hem utilitzat en aquest tesi: la estructura
de la composició musical, la estructura de les frases melòdiques i els accents
rítmics. Des d’aquesta prespectiva analitzem no només les característiques
acústiques de baix nivell, que representen el timbre musical dels fonemes,
sinó també les característiques d’alt nivell en les quals es fa patent el context
complementari. En aquest treball proposem models probabilístics específics
que representen com les transicions entre fonemes consecutius de veu cantanda
es veuen afectats per diversos aspectes del context complementari.

El context complementari que tractem aquí es desenvolupa en el temps en
funció de les característiques particulars de cada tradició musical. Per tal
de modelar aquestes característiques hem creat corpus i conjunts de dades de
dues tradicions musicals que presenten una gran riquesa en aquest aspectes; la
música de l’opera de Beijing i la música makam turc-otomana. Les dades són
de diversos tipus; enregistraments d’àudio, partitures musicals i metadades.
Des d’aquesta prespectiva els models proposats poden aprofitar-se tant de les
dades en si mateixes com del coneixement específic de la tradició musical per
a millorar els resultats de referència actuals.

Com a resultat de referència prenem un reconeixedor de fonemes basat en
models ocults de Markov (Hidden Markov Models o HMM), una metodolo-
gia abastament emprada per a detectar fonemes tant en la veu cantada com
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en la parlada. Presentem millores en els processos comuns dels reconeixe-
dors de fonemes actuals, ajustant-los a les característiques de les tradicions
musicals estudiades. A més de millorar els resultats de referència també dis-
senyem models probabilistics basats en xarxes dinàmiques de Bayes (Dynamic
Bayesian Networks o DBN) que respresenten la relació entre la transició dels
fonemes i el context complementari. Hem creat dos models diferents per dos
aspectes del context complementari; la estructura de la frase melòdica (alt
nivell) i la estructura mètrica (nivell subtil). En un dels models explotem
el fet que la duració de les síl·labes depén de la seva posició en la frase
melòdica. Obtenim aquesta informació sobre les frases musical de la partitura
i del coneixement específic de la tradició musical. En l’altre model analitzem
com els atacs de les notes vocals, estimats directament dels enregistraments
d’àudio, influencien les transicions entre vocals i consonants consecutives. A
més també proposem com detectar les posicions temporals dels atacs de les
notes en les frases melòdiques a base de localitzar simultàniament els accents
en un cicle mètric musical.

Per tal d’evaluar el potencial dels mètodes proposats utlitzem la tasca especí-
fica d’alineament de text amb àudio. Cada model proposat millora la precisió
de l’alineament en comparació als resultats de referència, que es basen exclusi-
vament en les característiques acústiques tímbriques dels fonemes. D’aquesta
manera validem la nostra hipòtesi de que el coneixement del context comple-
mentari ajuda a la detecció automàtica de text musical, especialment en el
cas de veu cantada amb acompanyament instrumental.

Els resultats d’aquest treball no consisteixen només en metodologies teòriques
i dades, sinó també en eines programàtiques específiques que han sigut in-
tegrades a Dunya, un paquet d’eines creat en el context del projecte de re-
cerca CompMusic, l’objectiu del qual és promoure l’anàlisi computacional de
les músiques del món. Gràcies a aquestes eines demostrem també que les
metodologies desenvolupades es poden fer servir per a altres aplicacions en el
context de la educació musical o la escolta musical enriquida.

(Translated from English by Oriol Romaní Picas)



Resumen

Esta tesis propone metodologías específicas de procesamiento de señales y
aprendizaje automático para alinear de manera automática la letra de una
canción a su correspondiente grabación de audio. La investigación llevada a
cabo recae en el campo más amplio de la recuperación de información mu-
sical (MIR), y por lo tanto, pretendemos con ella mejorar algunas de las
metodologías más avanzadas de la actualidad, introduciendo conocimiento
específico del dominio.

El objetivo de este trabajo es diseñar modelos capaces de rastrear en la señal
de audio musical el aspecto secuencial de un elemento particular de la letra,
los fonemas. Se puede entender que la música comprende diferentes facetas,
una de las cuales es la letra. Los modelos que construimos tienen en cuenta
el contexto complementario que existe alrededor de la letra, que es cualquier
faceta musical complementaria a las letras. Las facetas utilizadas en esta
tesis incluyen la estructura de la composición musical, la estructura temporal
de un enunciado de la letra, la estructura métrica. Desde esta perspectiva,
analizamos no sólo las características acústicas de bajo nivel, que represen-
tan el timbre de los fonemas, sino también las características de alto nivel,
en las que se manifiesta el contexto complementario. Proponemos modelos
probabilísticos específicos para representar cómo las transiciones entre fone-
mas cantados consecutivamente están condicionadas por diferentes facetas del
contexto complementario.

El contexto complementario, al cual abordamos, se despliega en el tiempo
según principios propios de una tradición musical. Para capturar estos princi-
pios, hemos creado corpus y conjuntos de datos para dos tradiciones musicales,
dichas que tienen un rico conjunto de tales principios: makam turco otomano
y ópera de Beijing. Los conjuntos de datos y los corpus comprenden diferentes
tipos de datos: grabaciones de audio, partituras y metadatos. Desde esta per-
spectiva, los modelos propuestos pueden aprovechar tanto los datos como el
conocimiento del dominio de la música de determinados estilos musicales para
mejorar los enfoques existentes usados como referencia.

Como punto de partida, elegimos un reconocedor fonético basado en mode-
los ocultos de Markov (HMM): una metodología ampliamente utilizada para
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el rastreo de fonemas tanto en el canto como en los problemas de proce-
samiento del habla. Presentamos mejoras en los pasos típicos de los enfoques
de reconocimiento fonético existentes, dirigidos hacia las características de las
tradiciones musicales estudiadas. Además de los puntos de partida mejora-
dos, usamos modelos probabilísticos basados en redes bayesianas dinámicas
(DBN) que representan la relación de las transiciones de fonemas con su con-
texto complementario. Se construyen dos modelos independientes para dos
granularidades de contexto complementario: la estructura temporal de un
enunciado de la letra (alto nivel) y la estructura del ciclo métrico (nivel más
fino). En un modelo explotamos el hecho de que las duraciones de las sílabas
dependen de su posición dentro de un enunciado de la letra. La informa-
ción sobre las duraciones esperadas se obtiene de la partitura, así como de
conocimientos específicos de la música. Luego, en otro modelo, analizamos
cómo los onsets de notas vocales, estimados a partir de grabaciones de audio,
influyen en las transiciones entre vocales consecutivas y consonantes. Tam-
bién proponemos cómo detectar las posiciones de tiempo de los onsets de nota
cantada mediante el rastreo simultáneo de las posiciones en el ciclo métrico
(es decir, acentos métricos).

Con el fin de evaluar el potencial de los modelos propuestos, utilizamos la
alineación de letra a grabación de audio como una tarea concreta. Cada mod-
elo mejora la precisión de la alineación, en comparación con el modelo de
referencia inicial, que se basa únicamente en la acústica del timbre fonético.
Esto valida nuestra hipótesis de que el conocimiento del contexto complemen-
tario es un factor importante para el seguimiento computacional de las letras,
especialmente en el desafiante caso de cantar junto a un acompañamiento
instrumental.

Los resultados de este estudio no son sólo metodologías teóricas y datos, sino
también herramientas de software específicas que se han integrado en Dunya
— un conjunto de herramientas, construido en el contexto de CompMusic, un
proyecto para avanzar el análisis computacional de la música del mundo. Con
esta aplicación, también hemos demostrado que las metodologías desarrolladas
son útiles no sólo para el seguimiento de letras, sino también para otros casos
de uso, como una experiencia y apreciación enriquecidas al escuchar música,
y fines educativos.

(Translated from English by Néstor Nápoles)
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Chapter 1

Introduction

The way music is created, shared, distributed and listened to has been recently
changing rapidly due to advancements in Information Technology. Music In-
formation Retrieval (MIR) is a research subfield of music technology that aims
to advance in automatic music processing. Some of the subjects addressed
in MIR research include building computational models for describing music
structures and events, as well as their temporal progression.

Any musical instrument is characterized by an unique timbre. Classes rep-
resenting the perceived ’timbral colour’ of the singing voice can be described
by abstract categories, such as mellow, harsh, dull. This reflects a quality
described as instrumental quality of timbre by musicologists (Durga, 1978).
Still, the belonging of a singing excerpt to one particular colour class is rather
subjective and varies from one listener to another. This means that there
may not be mutual agreement among listeners on where in time the exact
transitions between these classes are.

Few instruments, including singing voice, have their timbre continuously vary
in time, causing frequent timbral alterations. Unlike other instruments though,
the singing voice has a unique characteristic: its ability to articulate actual
lyrics. Lyrics are one of the most important musical aspects. They carry
a message or a story and attract the attention of the listener. She/he will
naturally follow the lyrics while listening to the melody of the main singing
voice.

Phonemes — the building blocks of words — can be considered as a discrete
number of timbral classes, wherein each class has a characteristic spectral
template. Human speakers possess the ability to articulate phonemes. In
fact, singers articulate by means of given vowels even when not singing with
actual lyrics. For brevity, in the rest of this thesis we will refer to the aspect
of singing voice timbre that makes humans distinguish between the identity of
different phonemes as phonetic timbre. The transitions between consecutive
phonemes can be considered as gradual changes of timbre as opposed to the

1
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short-term timbral fluctuations, related to the instability of the human vocal
tract. We will refer to these changes as phonetic timbre changes. That is to
say, the timbre of the singing voice, in addition to carrying the identity and
instrumental quality, is the reason why we distinguish a particular phoneme in
a given time instant. Therefore, despite varying continuously, the singing voice
timbre can be considered to belong to one of a discrete set of phonemes at a
particular point in time. Unlike the transitions among classes of instrumental
timbre, the exact time positions, in which singers transition from one phoneme
to another, can be distinguished by most listeners unambiguously.

The research carried out in this dissertation focuses on the acoustics of the
lyrics of singing voice in polyphonic music and their relation to written lyrics.
Sung lyrics can be studied from many different perspectives, whereas this
thesis takes an MIR viewpoint, aiming at the analysis of temporal changes
of lyrics content with an end goal of automatic synchronization between sung
and written lyrics.

1.1 Scientific Context
Singing voice processing is still one of the most challenging subfields of MIR.
Challenging remain especially the problems of singing voice detection; tran-
scription of the singing melody and transcription of the lyrics. The timbre
of singing voice has multiple functions: One is to articulate actual phonemes;
another is to represent the ‘instrumental quality’, which makes singers stand
out from the rest of the accompanying instruments in orchestral performances
(Sundberg and Rossing, 1990). Some of the problems related to timbre are
summarized by Goto (2014) as ’vocal timbre analysis’ and include automatic
lyrics processing of voice, singer identification, comparison of timbral similar-
ity.

Looking at MIR in general, there is still a wide gap between what can be au-
tomatically extracted from audio recordings and the semantically meaningful
high-level musical concepts, which listeners associate with singing (Wiggins,
2009). A possible reason for this semantic gap might be that the approach
usually taken is bottom up: low-level features are extracted and then high-
level concepts are inferred by aggregating these features. In such approaches
often high-level musical knowledge is not reflected in the computational model
itself. Most MIR research outcomes have been validated against eurogenetic
music and do not generalize to other music cultures of the world1. Applying
state of the art methods for analysis of non-eurogenetic music yields subopti-
mal results (Serra, 2011). The lack of explicit modeling of music knowledge in

1The term eurogenetic is coined in Holzapfel et al. (2014) to avoid the misleading division
music into Western and non-Western. It designates the discussed theoretical constructs are
motivated by the European common practice period
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computational work becomes a more evident disadvantage for material from
non-eurogenetic music. This is because these musics are characterized by their
own specific music principles. In fact most music to the east of Europe has
elaborate rhythmic and melodic framework. Thus extending state of the art
approaches by fusing all music-specific concepts, relevant for a given task,
would exploit the full potential of the studied music. With this end goal in
mind, the project CompMusic2(Computational Models for the Discovery of
the World’s Music) was envisioned (Serra et al., 2013). Art music of five dif-
ferent cultures is being studied in the project: Hindustani (North India), Car-
natic (South India), Turkish-makam (Turkey), Arab-Andalusian (Maghreb)
and Beijing opera (China). The classical music of Turkey, also often referred
to as Turkish-makam, is the focus of this study. In this thesis we will refer
to it as OTMM3. We extended one of the presented models to Beijing opera
(also referred to as jingju), too.

In particular for singing voice, in current MIR research little work focuses
on methods, which model sung lyrics together with their interdependence on
complementary musical aspects like, for example, the progression of a metrical
cycle. One possible reason for that could be that such a model is hard to
design and develop, because it has to be considerably generic to represent
such interdependencies for any music genre in the broad sense. In contrast
to that, for each of the music traditions of CompMusic there is a well-defined
framework of specific music principles. Therefore it may be more feasible
to develop a singing voice model that represents jointly phonetic timbre and
these music principles for a particular music tradition. This is mainly because
these principles for one music tradition could be summarized into a model in
a much more straight-forward way than for multiple genres of music.

The work covered in this thesis has been developed to focus on OTMM. A per-
sonal motivation for me is that OTMM has nature very akin to the traditional
music of Bulgaria — the music with which I grew up. Being the official music
of the Ottoman Empire, it has influenced enormously all Balkan music, and
to a rather high extent Bulgarian traditional music. This made me naturally
understand and appreciate its musically rich melodic and rhythmic framework
throughout the research conducted in this thesis.

1.2 Motivation
1.2.1 Why consider complementary musical facets?
The progression of lyrics in singing is not an isolated aspect: lyrics have an
inherent correlation with other music facets. In an abstract sense these music

2http://compmusic.upf.edu
3For the sake of compliance, this naming is adopted from a related computational study

— Şentürk (2016)

http://compmusic.upf.edu
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facets can be imagined as the ’skeleton’ and lyrics as the ‘flesh’. Upon song-
writing composers often distribute the lyrics syllables, guided by the locations
of the ‘skeleton’ melodic and rhythmic accents. In this respect, studying the
temporal aspects of sung lyrics also requires describing their relations to the
temporal progression of the underlying music events. These relations unfold
in time to form musical context in time for the sung lyrics, that is different
from and in this sense complementary to their timbre. By complementary
musical context (or simply complementary context) we will refer to any music
facet, manifesting in events simultaneous to the transitions of lyrical units
and having an influence on them4. In this thesis we will refer to unit of
lyrics (or lyrical units) as a general concept that stands for different linguistic
granularity: lyrics line, a phrase of words, word, syllable, phoneme. For the
sake of organization, we suggest dividing the complementary context of lyrics
into three hierarchical levels with respect to its time granularity: the overall
structure of the composition (coarse-level), the temporal structure of a lyrics
line (mid-level) and the structure of a metrical cycle (fine-level).

Each facet of the complementary context manifests itself as the time progres-
sion of concrete music events (see Figure 1.1). Firstly, at the highest context
level, the overall structure of the composition determines the highest-level of
lyrics units: lyrics lines. The transition from current structural section (e.g.
verse, chorus) to another one can be considered a musical event, which signals
the transition to another lyrics line (or whole lyrics paragraph). Then, on
the mid-level of context, the duration of each lyrics syllable is conditioned on
events of the sung melodic phrase. Singers may prolong or shorten syllables,
in order to align them with accents of the melodic phrase. Finally, onsets of
syllables often co-occur with accents within a metrical cycle.

These interdependences are important for OTMM, which has some very spe-
cific principles of the main musical facets, explained by a well-grounded theory
(Ederer, 2011; Popescu-Judetz, 1996). In addition to that, the sung melodic
phrases are rich in expressive ornamentation elements (such as melismas).
For all these reasons, OTMM provides an excellent framework to incorporate
domain-specific knowledge into a context-aware model of sung lyrics.

Its well-grounded theory also paved the way to computational work on some of
these aspects, including among others predominant melody extraction (Atlı
et al., 2014); relation of metrical accents and vocal note onsets (Holzapfel,
2015); score-informed structural section discovery (Şentürk et al., 2014). In
this context, we can benefit from those studies and use their outcomes as
facets of complementary context.

4We adopted the term musical context from Mauch (2010), where it is introduced for
the task of chord estimation to serve a similar function. The authors use it to represent any
musical facet, which is complementary to the harmonic content of chords — the main facet
being tracked. We decided to use complementary instead of musical to emphasize the fact
it is complementary to phonetic timbre
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1.2.2 Why lyrics-to-audio alignment?
In this thesis, we will focus on the concrete problem of LAA. It aims to auto-
matically synchronize the lyrics in their two representations: sung in an audio
recording and written as text. An audio recording and its corresponding lyrics
are input to an alignment system. It estimates their temporal relationship,
providing as output the start timestamp of each phoneme from the phoneme
sequence, comprising the lyrics. Among all research questions, related to sung
lyrics defined in the context of MIR, we chose to work on LAA for several
reasons.

Firstly, the measuring the accuracy of an alignment system provides a quanti-
tative way to access the influence of the complementary context on the tran-
sitions between sung lyrical units. From this perspective, we only focused
on one aspect of singing voice timbre: the phonetic timbre changes. Sec-
ondly, automating the LAA has numerous end-user applications. Building a
piece of work with application potential is also a major motivation behind this
research. Some applications of alignment include karaoke-like lyrics visualiza-
tion, automatic thumbnailing and enriched music listening.

Note that some related singing voice language content modeling tasks like
singer identification and language identification are not the goals of this thesis,
because they can be, in principle, solved solely by signal processing methods,
wherein the use of complementary context does not necessarily provide a clear
advantage.

1.2.3 Why predominant singing voice?
Characterizing the lyrics content of singing when accompanying instruments
are present is challenging. One of the reasons for this is that the audio spec-
trum is a mixture of many different sources, which for computers are not easily
separable from each other.

This complexity is significantly mitigated in music traditions, which are cen-
tered around the singing voice, wherein the number of accompanying instru-
ments is often small. That is why, being a largely vocal-centered tradition,
OTMM provides a feasible context to validate the modeling developed in this
study.

In addition to all the reasons listed above, a strong motivation to pursue
this research is that, to our knowledge, this is the first work that designs a
computational model of lyrics by considering (relatively) comprehensively the
facets of its complementary context.



CHAPTER 1. INTRODUCTION 6

1.3 Opportunities and Challenges
Computational modeling of the singing voice has been focused to a large ex-
tent on transcribing the perceived pitch of the melody, leaving other musical
facets, among which sung lyrics, less investigated. In the broad area of compu-
tational analysis of the language content of the singing voice, MIR researchers
have explored tasks such as singing language identification, LAA, keyword
spotting, lyrics transcription, which are well overviewed in (Goto, 2014). In
total, however, there have been very few studies per each of these particular
lyrics-related tasks.

1.3.1 Challenges of lyrics-to-audio alignment
The topics related to tracking sung lyrics in particular have been approached
mostly by adopting the phonetic recognizer paradigm from speech recognition
(Fujihara and Goto, 2012). The main idea is that for each phoneme a separate
acoustic model is created, which describes the overall timbre of the phoneme
(Rabiner and Juang, 1993). However, compared to speech, multi-instrumental
music has several substantially different acoustic characteristics. Among them
are the presence of accompanying instruments, the longer and more varying
durations of vowels (Kruspe, 2014) and sections without singing voice.

1.3.2 Opportunities and challenges of analysing Makam
music

In contrast to eurogenetic music, in OTMM the singing voice interacts with
its accompanying instruments in a special way: Singers typically perform
variations of a simultaneously played instrumental melody. This interaction
is commonly referred to as heterophony (Cooke, 2013). As a consequence, the
harmonics of the singing voice spectrum are interwoven with the harmonics
from the spectrum of other instruments. Certain harmonics of the voice can
overlap with the harmonics of accompanying instruments, and thus can be
distorted by their energy. Therefore a model for lyrics tracking, based on
the traditional phonetic timbre features could easily loose track in music with
heterophonic voice-instrument interplay. For this reason, we expect that the
use the context, complementary to phonetic timbre can provide the ‘stepping
stones’ to the tracking of lyrics.

A benefit of the heterophony is that the main vocal melody is approximately
doubled by some backing instruments. This has been used among other fac-
tors to ease to a certain extent the automatic extraction of the vocal melody
contours in the recent work of (Atlı et al., 2014). Several vocal melodic tem-
poral events, such as note onsets, vibrato, glissando are evident looking at
the shape of the melodic contours. Therefore, ideally these events could be
automatically ’read off’ the melodic contours, if these are reliably extracted.
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1.3.3 Opportunities and challenges of analysing a specific
music tradition

Modeling lyrics is coupled with the particular language of singing: the pro-
nunciations of the phonemes of any language form an unique set of sounds.
Therefore classical approaches on modeling speech are trained and tested on
material from the same language. Being a relatively new research field, lyrics
modeling follows to a large extent this paradigm. Switching to another target
language in this sense would require the complete replacement of the lyrics
model with one of the new target language. Building such a model might
be a bottleneck, mainly because it depends on the availability of annotated
speech/singing corpus (for complete justification see the Background chapter).
This thesis, although focused on particular music traditions, aims at building
an approach that is not restricted to one specific language. An important
motivation for this are the similar characteristics of the traditions within the
CompMusic project (in particular being vocal-centered), whereas language is
one of the few differing aspects.

Characteristic for the singing in OTMM and jingju is that the sung vowels
could be prolonged to a significant extent (Ederer, 2011; Wichmann, 1991),
which makes it different from most eurogenetic musics. This lowers the quo-
tient of consonants (a big portion of the language-specific sounds) from the
total singing duration and thus mitigates their significance. This allows fo-
cusing on modeling of the acoustics of vowels, which makes it easier to adapt
the constructed model of lyrics to another language.

When this dissertation was started, the Turkish was the only CompMusic tra-
dition, for which an extensive collection of machine-readable musical scores
was available. Music scores provide important contextual information com-
plementary to lyrics, including but not limited to boundaries of structural
sections, note durations and metric cycles. Exploiting the information in the
musical score to its full extent is a major opportunity, in alignment with the
goal of CompMusic to pursue a data-driven study on a music tradition.

1.4 Research Objectives
In alignment with the goals of CompMusic, the goal of this thesis is to build
a culture-specific computational approach, which is meaningful for a concrete
music repertoire. We have focused on OTMM due to the reasons listed above.

This thesis exploits computational approaches for analysis of music recordings.
The approaches applied are taken from the fields of signal processing and ma-
chine learning. Signal processing is needed to extract the phonetic timbre of
lyrics from the audio signal. The recorded audio is the primary source of infor-
mation together with the given lyrics. Using complementary context, the pro-
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posed alignment models output words together with their aligned timestamps
(Fig. 1.1). Two separate phonetic recognizers are created: One represents the
influence of the expected syllable durations on phoneme transitions (Chap-
ter 4). Another one represents the influence of the structure of the metrical
cycle (Chapter 5). Depending on the nature of the complementary context,
different additional data sources or domain knowledge are explored.

Figure 1.1: Use of different facets of complementary context in the automatic
lyrics-to-audio alignment. Structural segmentation of a musical recording into
lines of lyrics is considered a ’black box’. The audio signal of the obtained lyrics
lines, along with its corresponding lyrics, is input to two separate phonetic
recognizers. Both of them perform alignment of the audio signal to lyrics.
Timestamps of aligned lyrics units are output.

The baseline method, on which we build upon, extends the HMM-s — a su-
pervised learning method. It is preferred, because its probabilistic generative
nature can describe adequately the temporal progression of the singing voice
from a phoneme to another one (Rabiner and Juang, 1993).
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1.4.1 Broad research objectives
Create a computational approach to describe transitions between
sung lyrics that is aware of specific complementary context

The goal is to address those bits of knowledge from the complementary con-
text, which have a clear influence on the phonetic timbre changes. The way
music events evolve in time for a given music tradition can be expressed as a
set of music principles. As a result of the work of musicologists, such princi-
ples specific to a music tradition have been aggregated in terms of concrete
patterns and rules (Ederer, 2011; Wichmann, 1991). We aim to create a
context-aware machine learning method of tracking sung lyrics, which bene-
fits from the knowledge, compacted in these music patterns. The model has to
jointly represent them and their influence on the transitions between consecu-
tive units of lyrics. More precisely, such a joint model will allow the transitions
of phoneme timbre be conditioned not only on the acoustic timbral features,
but also on the simultaneously occurring complementary context events.

Probabilistic graphical models provide an effective framework to integrate
complementary context knowledge in terms of the components of the model.
In this thesis, we will extensively use DBN-s — a particular graphical model
that can represent not only dependencies between concepts, but also their tem-
poral progression (Murphy, 2002). The phonetic recognizer baseline provides
a probabilistic framework (HMM), which allows to be extended to a DBN. We
suggest a method that captures the influence on the lyrics transitions of each
considered facet of complementary context. To this end, we represent events
from complementary context as components in a DBN and their influence on
the lyrics as a hierarchical dependence between the components.

The complementary contexts relevant for phonetic transitions, which we ex-
plore in this study, are:

• structure of the composition (coarse-level)

• lyrics durations (mid-level)

• structure of the metrical cycle (fine-level)

We do not aim to explicitly model the influence of the structure of the mu-
sic composition on lyrics. Instead, the segmentation of a recording into its
sections is obtained from an external method, which is considered as a ’black
box’. Each obtained section contains one or more lyrics lines. Usually a lyrics
line corresponds to a melodic phrase — a musically meaningful melodic entity,
usually delimited by an instrumental break 5. The audio signal of each ob-

5The term melodic phrase is used intentionally instead of a melodic motif, which usually
stands for a short segment/pattern being a part of a complete melodic phrase. Melodic
motif is for example used in this way in Gulati (2016)
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tained section, along with its corresponding lyrics line, is input to the proposed
phonetic recognizers (see Fig. 1.1). We aim at building a separate phonetic
recognizer with mid-level context (Chapter 4) and a separate one with fine-
level context (Chapter 5), each of which is a DBN. The mid-level one considers
the influence of the temporal structure of a lyrics line on the transitions be-
tween consecutive syllables. In particular, we focus on the sequence of some
reference durations of sung syllables. As to the fine-level context, we aim at
studying how phoneme transitions interact with the position of the accents in
the metrical cycle (i.e. the metrical accents). In an initial step we estimate
the timestamps of the vocal note onsets (the initial time segments of sung
tones), in a manner informed by the metrical accents. Then the goal is to
represent how the transition to a consecutive sung syllable is conditioned on
the transition to a consecutive note onset.

Since some of these complementary context relations to lyrics have not been
previously strictly formalized in a computational study, a major effort of this
thesis is conceptualizing them in terms of compact bits of probabilistic knowl-
edge.

Develop a novel approach for lyrics-to-audio alignment

The proposed contextual models are designed with the intention to be generic
enough and applicable in different end-tasks in the broader research area of
sung lyrics. Having in mind the time limitation of this study, we focused
on the particular task of LAA as a way to evaluate the performance of the
proposed generic model. However, we expect that due to the ubiquity of the
addressed facets of complementary context, the behavior of our model that we
asses on alignment will be comparable on neighboring tasks including keyword
spotting and lyrics recognition.

As a baseline for LAA we chose phonetic recognizer approach, adopted from
speech-to-text alignment, based on HMM-s. They not only have proven to be
the most successful strategy for the alignment of lyrics, but they also provide
an appropriate temporal probabilistic framework, which we can extend for
representing complementary context.

The alignment method, designed in this thesis, is evaluated mainly with
singing in Turkish language. Nevertheless, to assure its application to other
music genres we aim at devising ways for the easy transfer of the built mod-
els of Turkish phonemes to other languages. An ideal solution would be a
universal language-independent model of a superset of phonemes representing
a set of all languages of interest. Having in mind the reasonable differences
between the languages in the CompMusic traditions, this is an elaborate lin-
guistic task, outside the scope of this thesis. The approach commonly taken
in existing work is rebuilding a complete model for each language in turn.
Training models of phonemes in singing is in fact a laborious task (see Back-
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ground Chapter) and in general not a flexible strategy. Instead, we set as
a reasonable objective to find an adequate scheme for mapping the phoneme
models among two different languages. To our knowledge, there has been no
work so far in computational modeling of sung lyrics addressing the problem
of inter-language phoneme mapping.

Evaluate the contribution of each piece of complementary context
knowledge for modeling sung lyrics

Using LAA as a concrete end task allows evaluating the contribution of any
particular facet of complementary context in a quantitative way and compar-
ing them.
The novelty of the presented models is that their capability to integrate facets
of complementary context into the main alignment step. Some of the con-
text facets explored in this thesis have also been addressed in previous work
(Fujihara and Goto, 2012). However their relation to phonetic timbre is not
represented explicitly in the main alignment model. Instead, the knowledge
from complementary context is isolated: part of a preprocessing or postpro-
cessing step, relative to the main alignment step (see Background Chapter).
On top of that, with the exception of Fujihara et al. (2011), almost no work
has evaluated the contribution of these separate steps on the final alignment
accuracy. To address this research ’vacuum’, we compare the alignment ac-
curacy for each different piece of complementary context and the baseline
phonetic recognizer, agnostic to any complementary context.

Explore extensions and generalizations of the music-specific
models to other traditions in the context of CompMusic

Working in tradition-specific context, there is a danger that the devised models
become overfitted to the unique characteristics of the music tradition. To
avoid that, the model should not reflect cases, unique for OTMM, but instead
induce patterns that are applicable also to other music traditions with similar
characteristics.
When a song is performed, the degree of deviation from the musical score
is arguably the least, compared to other CompMusic traditions. In jingju,
for example, the duration of sung syllables frequently deviates to a bigger
extent from the score and could span a very long time interval. To proof the
transferability of some of the proposed models outside of OTMM, we evaluate
on material from another music tradition. We focused on a particular aspect
of complementary context — the temporal structure of sung lyrics lines, for
a particular tradition — jingju. Comparing the application of the syllable-
duration aware model for two traditions also serves to quantitatively evaluate
if a facet of complementary context contributes to a different degree for each
of the two traditions (see Chapter 4).
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1.4.2 Contributions
In pursuing the above presented goals we build methods, which can be seen
as concrete technical and scientific contributions:

1. We extend the existing state of the art phonetic recognizer approach for
tracking sung lyrics in a way that involves selected facets of complemen-
tary context knowledge. We conceptualize the interaction of phoneme
transitions and these facets in a compact way as probabilistic depen-
dencies. These dependences are represented as hidden variables in a
DBN.

2. We suggest several implementation strategies for detection with the pro-
posed DBN-s. In some cases the topology becomes relatively complex,
because of, for example, the big number of hidden variables. This makes
the inference with DBNs computationally demanding and thus model
simplifications are required:

a) integrate the complementary context knowledge in the inference
method, instead of being hidden variable

b) reduce the range of the state-space exploiting all available comple-
mentary context knowledge

c) integrate the complementary context knowledge as a modification
of the transition model

3. We develop a clean and modular software framework, which can be easily
used to reproduce or extend the outcomes of the research, conducted in
this thesis.

1.5 Outline
The thesis is organized into six chapters, wherein the main contributions are
contained in Chapters 4 and 5. Chapter 2 covers the research background,
summarizing the principles of the musics studied: OTMM and jingju. It also
overviews the state of the art in the methodologies used in lyrics-to-audio
alignment. A focus is put on describing the pipeline of a phonetic recognizer
alignment approach. Finally, the chapter outlines related research on DBN-
s — the main probabilistic model, used throughout the thesis. Chapter 3
presents our developed baseline system for lyrics to audio alignment, which
is also based on a phonetic recognizer. Refinements in some of the recognizer
steps, which makes it tailored to OTMM, are discussed. Chapter 4 describes
the first core proposal of the thesis, a lyrics-to-audio alignment system that
considers some context facets complementary to lyrics, in particular the se-
quence of reference durations of sung syllables. Chapter 5 presents a separate
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model for lyrics-to-audio alignment that considers another facet of complemen-
tary information, the accents in the metrical cycle of music. Finally, Chapter
6 concludes the thesis with a review of the key findings and a summary of the
contributions.



Chapter 2

Background

In Section 2.1.1 we first summarize some of the principles of OTMM, the main
music tradition analysed in this thesis, which influence directly or implicitly
the way phonetic timbre progresses in time. We put a focus among all princi-
ples on the ones related to the structural form of the compositions; the music
scores; and the rhythmic patterns of the music. Language, being one of the
important aspects of lyrics, is reviewed in terms of the acoustic characteristics
of the phonemes. Analogously, for jingju we review the language and some
relevant principles of complementary context (Section 2.1.2). We emphasize
the structure of a lyrics line, being the specific context facet we exploit later
in Chapter 4.

Then in Section 2.2 we summarize the existing approaches to the LAA problem
whereby the focus is put on those based on the phonetic recognizer paradigm.
Common shortcomings as well as opportunities for extension are identified.

Finally, after introducing briefly the concept of dynamic Bayesian networks
(Section 2.3), we review in Section 2.4 particular examples of related work
on sung lyrics, in which consideration of concepts of complementary context,
complementary to phonetic timbre, proved to be beneficial.

14
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2.1 Background on the music traditions
As complementary context in this thesis we defined the music events that
occur simultaneously to and are complementary to the lyrics. OTMM and
jingju, the music traditions studied, are characterized by well-defined theory
and music principles. In this section we introduce the music traditions in
general and exemplify in particular the principles of complementary context
for each tradition in turn.

2.1.1 Ottoman Turkish makam music
The term makam describes a system of melodic scales used in numerous music
traditions in Asia, north Africa and east Europe. Makam music is character-
ized by solid theory and modal principles. One of these traditions is Turkish
classical/art music — the tradition, which proliferated in the Ottoman Empire
and Turkey afterwards.

For a comprehensive introduction on the concepts of OTMM from a computa-
tional point of view, the interested reader is referred to Bozkurt et al. (2014)
and (Şentürk, 2016, Section 2.1).

Principles of complementary context

Examples of complementary context principles can be organized by the levels
of granularity, as we suggested in the Introduction Chapter.

Coarse-level: (structure of the composition) Vocal melodic phrases
are organised in the course of the performance according to principles of the
composition structure. The şarkı form (the principal form in makam with
a lead vocal) adheres to a well-defined verse-refrain-like structure. A şarkı
contains three vocal sections: zemin (verse), nakarat (refrain), meyan (second
verse). They are preceded/surrounded by aranağme (an instrumental inter-
lude) (Ederer, 2011). Each section is rather short and contains usually one
(or 2-3) melodic phrases. In a vocal section through almost all its duration a
singing voice is present, except for short instrumental interludes (at the end
of a melodic phrase).

Mid-level: (lyrics durations) In this thesis we utilized information about
musical note events from the music scores. For most of its existence, OTMM
has been predominantly an oral tradition. However, since early 20th century,
in parallel to the oral practice, music scores were introduced (Popescu-Judetz,
1996). The scores extend the traditional Western music notation and contain
usually also the lyrics organized into sections. Karaosmanoğlu et al. (2014)
prepared a machine-readable score collection, in which melodic phrases are an-
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notated into smaller melodic units (motives). A melodic unit in this collection
corresponds roughly to a metrical cycle.

Fine-level: (structure of the metrical cycle) The metric structure is
explained by usul. A certain usul roughly defines the metrical cycle, and it
can be described by a group of strokes with different velocities, which imply
the beats and downbeats in the rhythmic pattern. Some of the common
usuls include düyek with 8/8 time signature; aksak (9/8); curcuna (10/8). In
contrast to the eurogenetic music, a metrical cycle can be rather long and
have a complex rhythmic pattern with an odd number of beats. The number
of pulses (finest metrical accents) in an usul cycle might be up to 120 (Ederer,
2011). The progression of the events in a vocal melody is correlated tightly
to the underlying metric pulsation. For example, studies on symbolic music
data showed that the likelihoods of vocal note events are influenced by the
their position in a metrical cycle (Holzapfel, 2015).

Singing style

OTMM is predominantly a voice-centered tradition. This implies not only
that singing voice is the source of predominant melody. It also entails that
in performances the vocal melodies are rich in expressive embellishment. Em-
bellishments of the melody is, in fact, a fundamental aesthetic aspect of the
music. Singers typically perform variations of a simultaneous instrumental
melody in their own register, a musical interaction commonly referred to as
heterophony (Cooke, 2013). The melodies are embellished to a high extent,
because this way singers can ‘stand out’ from the instrumental mix and evi-
dence their virtuosity.

The melody contours of singing voice are not flat: skilled singers can control
the variation of their voice’s pitch to articulate expressive figures such as
portamento, vibrato and melisma. Examples of singers very versed at that
are Zeki Müren, Melihat Gülses, Kani Karaça. Vocal melodies have often a
’slow start’ — the first tone is approached after a long vocal slide (portamento)
(Ederer, 2011). Detecting the exact onset timestamp of vocal onsets is hard
because of the ’slow start’ effect. A further challenge is the ambiguity of note
transitions — the transitions to another note are often ’enriched’ by melismas.

Language

Unlike modern Turkish, Ottoman Turkish is characterized by more loanwords
from Arabic and Persian origin. The lyrics language for the şarkı compo-
sitions in our evaluation dataset spans both modern and Ottoman Turkish.
Turkish has 38 distinctive phoneme sounds, 8 of which are vowels. There are
no diphthongs, and when vowels come together, they retain their individual
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sounding. Lengthening of vowels is realized by a non-pronounced character ğ.
However vowel lengths have a negligible importance in sung Turkish.

2.1.2 Jingju
Jingju1, also known as Beijing or Peking opera, is one of the around 300 differ-
ent local genres of Chinese traditional theatre. It formed in Beijing during the
19th century as result of the combination of different local genres from south
and west regions of China. Chinese traditional theatre is a comprehensive
art form that encompasses disciplines as music, a special style of recitation,
acting, dancing and acrobatics. The main dimension of its music component
is singing, used for an expressive delivery of a passage of lyrics that can be
equivalent to the concept of aria in opera.

Singing in jingju music has attracted the interest of MIR researchers during the
recent years, who have studied topics like pitch contour analysis (Caro Repetto
et al., 2015) or segmentation into syllables (Gong et al., 2017).

Principles of complementary context

Coarse-level: (structure of the composition) Lyrics in jingju are a
central musical facet. Lyrics have poetic structure and are thus commonly
organized into couplets. Each couplet has two lyrics lines and can be consid-
ered a structural section. The lyrics describe the story of the play and rarely
repeat, even though some melodic motives could recur.

Meter is another musical facet that creates the impression of progression in the
structure of an aria. Each aria can have one or more metrical pattern (banshi):
it indicates the mood of the story and is correlated to tempo(Wichmann,
1991). When more than one banshi are present, an aria starts with a slow
banshi which changes a couple of times to one with faster tempo. In this way
the overall tempo of the aria increases gradually up to the fastest tempo to
express more intense mood at the culmination point of the aria.

Mid-level: (lyrics durations) In contrast to OTMM, music scores in
jingju serve a different purpose. Music in jingju originally was not created
by composers, but arranged by performers from a repertory of pre-existing
tunes, to fit new lyrics. Once a new play was in this way set to music, it would
be transmitted orally from teacher to student by means of imitation. Scores
would appear only a posteriori to register specific performances or to provide
learning material to aficionados, since professionals rarely rely on scores. As
a result, it is common that music scores and audio recordings of the same
aria present many differences in many aspects, including note durations. This

1jingju literally means theatrical play from the capital (i.e. from Beijing)
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is one of the reasons why machine readable music scores of jingju are rarely
present.

In jingju a lyrics line (sentence) is usually divided into 3 syllable groupings,
called dou. Interestingly, in jingju there exist some conventions of the dura-
tions of the dou-s, which serve as guidance to actors. A dou consists of 2 to
4 syllables (Wichmann, 1991, Chapter III). To emphasize the semantics of a
phrase, or according to the plot, an actor has the option to sustain the vowel
group of the dou’s final syllable. One (or in rare cases more) of the the vowels
in the belly part can be prolonged substantially (in the order of 20 seconds).
There is, however, no indication on which vowel is the prolonged one.

There are also some conventions about the number of dous: If a poetry line
of the lyrics has 10 syllables, a rule of thumb is that it consists of 2 3-syllable
dous, followed by a 4-syllable dou. Respectively, if a poetry line has 7 syllables,
it is a rule of thumb that it consists of 2 2-syllable dous, followed by a 3-
syllable dou. These rule-like relations present a clear example of some music-
specific knowledge that could be probabilistically modeled in a lyrics tracking
approach as a complementary source of information.

Language

The language used in jingju is based mainly in the Beijing dialect, but in-
cluding some characteristics from southern dialects, coming from the different
genres that formed this one. Chinese is a predominantly monosyllabic lan-
guage, meaning that most of the lexical units (words) are conveyed by single
syllables. On the other hand, Chinese script is logographic, meaning that
each written character represents not a phonetic unit, but a lexical one. As
a result, Chinese characters represent lexical units that are pronounced with
single syllables. Therefore it makes naturally sense that LAA is evaluated on
the syllable level. When referring to jingju we will use the term syllable as
equivalent to one written character. As a theatrical genre, the delivery of the
lyrics is fundamental in jingju performance, therefore mastering correct and
clear pronunciation plays a central role in jingju training. With the aim of im-
proved syllable’s pronunciation, jingju actors traditionally divide the syllable
into three constituent parts head (initial part), belly (middle part) and tail
(final part) (Wichmann, 1991). The belly, the middle part, is the main vowel
group of the syllable that could be a pure vowel, diphthong or triphthong.
The head, not present in all syllables, is the preceding consonant or semi-
consonant. Finally, the tail, also not present in all syllables, is the semivowel
or final nasalization, following the belly. In this thesis, all Chinese characters
are transliterated by the official romanization spelling system pinyin 2.

2https://en.wikipedia.org/wiki/Pinyin

https://en.wikipedia.org/wiki/Pinyin
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2.2 Background on Lyrics-to-Audio Alignment
Although humans are very versed in making sense of the lyrics, sung in songs,
for machines the task of automatically tracking lyrics is very challenging. LAA
refers to the automatic synchronization between sung lyrics and their written
representation. According to Fujihara and Goto one of the ultimate goals of
research in sung lyrics is the automatic transcription of lyrics from a mix-
ture of singing voice and accompaniment. Lyrics transcription (a.k.a. lyrics
recognition) is the problem of finding where and what units of lyrics occur
in the music signal. LAAs can be seen as a particular subproblem of lyrics
recognition, in which the search space is limited: the sequence of lyrical units
is known, leaving to find their timestamps (temporal locations). The recog-
nition of ordinary speech in noisy environments itself started only recently to
reach satisfactory results. Therefore, it is still not realistic to strive for rea-
sonable results in automatic lyrics recognition. Despite the fact that there has
been a few research attempts, none of them has succeeded in achieving satis-
factory performance with instrumental-accompanied musical signals (Mesaros
and Virtanen, 2010; McVicar et al., 2014). Still, approaching LAA one could
gain precious insights, that could be useful as stepping stones to disentangling
the riddle of lyrics recognition. LAA relates to lyrics recognition much in the
same way speech-to-text alignment relates to speech recognition.

2.2.1 Evaluation metrics
The accuracy of alignment can be evaluated at different level of granularity,
which depends on the application. In this sense the accuracy is measured
in different level of entities, which we will refer to in what follows as lyrical
units. A unit could be either phoneme, syllable, word, lyrics line/phrase,
or complete lyrics paragraph/section. When generating subtitles for music
videos, for instance, line- or phrase-level alignment might suffice. On the
other hand, when precise alignment is required, as in the case of automatic
generation of highlights for karaoke, syllable- or even phoneme-level alignment
is required.

Being a rather under-researched problem, there has not been established
a standard evaluation metric. There have been proposed several metrics,
whereby each one has been used in only one or two works.

Average absolute error/deviation Initially utilized in Mesaros and Vir-
tanen (2008), the absolute error e measures the time displacement between
the actual timestamp ti and its estimate t̂i at the beginning and the end of
each lyrical unit.

e =
1

Nk

∑
word i

(̂ti − ti) (2.1)
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Figure 2.1: Evaluation by percentage of correct segments

The error is then averaged over all Nk words in the dataset. Evaluation was
carried on timestamps at boundaries of lyrics lines. The authors themselves
note that an error in absolute terms has the drawback that the perception
of an error with the same duration can be different depending on the tempo
of the song. The granularity of the lyrical units was refined in Mauch et al.
(2012), where alignment was evaluated on the word level and further in Chang
and Lee (2017) on the syllable level.

Percentage of correct segments The perceptual dependence on tempo
is mitigated by measuring for a song k the percentage ρk of the total length
of the correctly-labeled audio segments to the total length of the song — a
metric, suggested by Fujihara et al. (2011, Figure 9):

ρk =
length of correct segmetns

total length of the song
× 100 (2.2)

Figure 2.1 illustrates the metric by an example.

The granularity on which the authors evaluated was lyric lines. This metric
can be seen as a special case of the frame clustering metric for evaluating
structural segmentation proposed in the work of Levy and Sandler (2008).
This is essentially the same as the percentage of correct segments if we consider
a lyrical unit acting as a “section”. Despite being rather unbiased by tempo
and rather strict, the percentage of frames does not give a very intuitive
estimate from a perceptual point of view, because the correlation to the extent
of the absolute error is not obvious.

Percentage of correct estimates according to a tolerance window
A metric that takes into consideration that displacements from ground truth
below a certain threshold could be tolerated by human listeners, was suggested
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in Mauch et al. (2012). The authors evaluate the mean percentage of start time
estimates t̂i that fall within τ seconds of the start time ti of the corresponding
ground truth lyrics unit:

ρkτ =
1

Nk

∑
word i

1|t̂i−ti|<r × 100 (2.3)

where Nk is the count of words in a given song k. The final metric is computed
averaging ρkτ over all songs.

In that particular work evaluation was carried out on the level of words, and
τ was set to 1 second. Later in alignment was evaluated for both words and
syllables. Further, the authors investigated more elaborately the influence of
the its window τ , ranging tolerance values from 0 to 2 seconds.

2.2.2 Phonetic recognizer overview
The only existing overview of LAA approaches can be found in Fujihara and
Goto (2012, Literature Review), which is a bit old but still encompasses the
most seminal approaches up to date. Here we review only the approaches
based on what the authors call a ‘phonetic recognizer’, because it is the align-
ment strategy, which has resulted in most promising results. The core ma-
chine learning model used in phonetic recognizers is HMM-s. They are suit-
ably representing the time-changing nature of lyrics, because they can model
time-contiguous, non-overlapping events.

The task of automatically converting spoken speech into text is known as
automatic speech recognition (ASR) and has been one of the most well re-
searched acoustic processing problems. One typical way speech recognition
is approached is by building a model for each phoneme based on the char-
acteristics of its timbral acoustics (Rabiner and Juang, 1993). The acoustic
properties of spoken phonemes can be induced by the spectral envelope of
speech.

An end-task, related to ASR is the automatic alignment between speech and
its written transcript, also known as text-to-speech alignment. The classical
approach of alignment is conducted by using the so called ‘forced alignment’
method: a transcribed piece of text is expanded to a network of phonetic
models and matched to an audio recording of a speaker speaking this partic-
ular text. Each phonetic model represents the acoustic characteristics of the
phoneme and is used to compare the likelihoods of feature vectors, extracted
from the audio. A phonetic model is usually a HMM consisting of 1 up to 3
states representing the initial, middle and final acoustic state of a phoneme.
The audio is aligned to the phonemes by finding the most likely path for the
extracted sequence of feature vectors in the phoneme network (Rabiner and
Juang, 1993).
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When the vocal audio recordings are monophonic (commonly referred to as a
cappella, too), LAA can be considered a special case of text-to-speech align-
ment, which is essentially solved (Anguera et al., 2014). Since the forced
alignment technique was originally developed for clean speech, the presence of
accompanying instruments and non-vocal sections pose a challenge to migrat-
ing it as-is to accompanied singing. Therefore, accompaniment attenuation
and singing voice detection are steps that are commonly executed before the
actual alignment. A LAA that is based on phonetic recognizer with forced
alignment comprises a sequence of typical steps, presented in Figure 2.2.

Figure 2.2: Typical steps of lyrics-to-audio phonetic recognizer approach

The goal of accompaniment attenuation (AA) is to isolate from the mixture
signal the spectral content, which has its origin in singing voice, while atten-
uating the rest of the spectrum, with origin in accompanying instruments.
Singing Voice Detection also known as Voice Activity Detection (VAD) has
the aim to identify time intervals of the music signal, in which singing voice
is present. Since AA and VAD can be considered separate problems on their
own, in some related work existing prior methods are adopted.
Then, lyrics lines are expanded to a sequence of phonemes based on language-
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Author Features Training approach >1 language
Mesaros MFCC Speech + adaptation N
Fujihara MFCC Speech + singer adaptation Y
Kruspe MFCC+PLP Singing N

Table 2.1: Seminal LAA works based on the phonetic recognizer approach.
These are respectively: Mesaros, Mesaros and Virtanen (2008); Fujihara, Fu-
jihara et al. (2011); Kruspe, (Kruspe, 2016)

specific grapheme-to-phoneme rules. In this way, the HMM-s are concatenated
into a phoneme network. Phonetic models are trained on acoustic character-
istics of material from either clean speech or a cappella singing.

In what follows we take a reviewing journey through the subsets of existing
approaches from Table 2.1, staying some time at each of these steps and
scrutinizing how some of the approaches address it. The approach of Kruspe
(2016) is evaluated on a cappella singing, which excludes the need of both the
AA and VAD steps.

2.2.3 Accompaniment attenuation
Compared to a cappella, the automatic alignment of lyrics in singing voice
accompanied by various instruments is much more challenging. The phonetic
models trained on features extracted from unaccompanied voice represent en-
tirely the singing voice properties. In polyphonic mixtures of the voice and
accompaniment, however, the vocal properties interfere with the instrumental
sounds. Spectral peaks from harmonics of accompanying instruments may
occlude the harmonic components of the voice. This means that some timbral
characteristics, that are key to detecting the vowel identity, can be distorted.
In this setting, phonetic models trained on a cappella voice lose their dis-
criminative power. To address this problem researchers have come up with
techniques that isolate as much as possible the spectral content, which has its
origin in singing voice while attenuating the rest of the spectrum.

In Mesaros and Virtanen (2008) and Fujihara et al. (2011) a method for seg-
regating the predominant melody is utilized: First the spectral components
that are multiples of the fundamental frequency of the vocal melody (also
known as harmonic partials) are extracted from the sound mixture. Then
they are optionally refined and eventually grouped together to form the vocal
signal. In the end, the vocal content is resynthesized from these by means
of a sinusoidal model. At the core of representing singing voice content in
polyphonic mixtures is a model capable of representing the complex interac-
tions between the vocal harmonic partials and other instrumental sources in
the mix. Several strategies of harmonic modeling have been proposed (Serra,
1989; Yeh and Röbel, 2009). A key challenge to such models is how to tackle
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partials from two different sources that have spectral overlap. Yeh and Röbel
(2009) describe the expected amplitude of two overlapping partials based on
the assumption that the partials overlap at the same frequency.

A drawback of the harmonic modeling presented above is that unvoiced conso-
nant regions are not detected due to their lack of predominant pitch. Fujihara
et al. (2011) suggest as a solution a method for fricative (unvoiced conso-
nants) detection. In the alignment stage the time intervals for which the
presence of fricative sounds is unlikely are forbidden to be matched to frica-
tives (actually only ‘sh’) from the phonemes network. A slight improvement
in alignment accuracy was registered, supposedly because phoneme gaps in
the middle of lyrics phrases were shorter than they were without fricative de-
tection. However, since alignment accuracy was measured on lyrics phrase
level, the effectiveness of the proposed fricative recognition method could not
be fully evaluated.

The importance of the accompaniment attenuation method has been con-
firmed by comparing the alignment performance when disabling it (see Section
3.5). The phrase-level accuracy was improved by 4.8 absolute percent when
MFCC were extracted from the vocal segregated signal compared to when ex-
tracted directly from the polyphonic mix (rows 3 and 4 of Table 3.6). Apart
from that, the quality of the attenuation process can be objectively judged
with the metrics used for evaluation of source separation on the segregated
vocal (ideally vocal-only) signal. It is however hard to interpret how much the
quality of attenuation affects the subsequent processing. To our knowledge no
study has taken efforts in carefully examining the correlation between the de-
gree of attenuation and the alignment accuracy, despite it being an important
element in dealing with real-world accompanied singing.

2.2.4 Singing voice detection
In early LAA approaches (including the work of Mesaros and Virtanen (2008))
no automatic VAD method was applied. Instead the authors annotate manu-
ally structural sections (verse, chorus, bridge) with singing voice present. The
sections’ durations range from 9 to 40 seconds. The authors assume that in
all vocal sections the predominant source is the voice. This permits to apply
harmonic modeling, presented in the previous section 2.2.3, without the need
of explicitly determining if the source of the main melody is voice. Short in-
strumental interludes are accommodated by training a model for instrumental
accompaniment, which is expected to get activated in such interludes.

2.2.5 Acoustic Features
The timbre of singing voice is related to its harmonic partials — the timbral
properties of a sung note depend on the distribution of the energy of its
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harmonic partials, whereby more energy is concentrated in harmonics around
specific frequencies, commonly known as formant frequencies.

Formant frequencies

The formant frequencies represent resonances of the vocal tract and cavities
(Ladefoged, 1996). Formants spectral regions, ordered according to their en-
ergy, with first formant (F1) representing the one with highest energy. Find-
ings in phonology have indicated that the two lower order formants (F1-F2)
are most important for understanding speech, whereas higher order ones (F3-
F5) are related to the identity of the singer (Ladefoged, 1996). The first
formant is known to change with the vocal tract shape (mainly by varying the
jaw opening), while the second is correlated to the tongue shape. The vowels
of speech are determined by specific combinations of F1 and F2, which are
relatively stable for each vowel among different speakers.

Mel frequency cepstral coefficients

The MFCC are reliable descriptor of phonetic timbre. It is usually well cap-
tured by the first 12 coefficients and their differences to the preceding time
instants (Rabiner and Juang, 1993). A commonly adopted variant of MFCC
is the default configuration of the HMM toolkit (htk) (Young, 1993).

Ideally the efforts on reducing the influence of accompanying instruments can
be mitigated by focusing on designing features that capture phonetic timbre in
a way robust to background instruments. There has been some efforts recently
to use end-to-end learning: for example encouraging results for singing voice
detection were presented in Schlüter (2016). Hopefully, in the future insights
from this approach can be adopted to recognizing not only if bits of spectral
content originated from singing voice, but also its phonetic class. However,
since no such features are yet designed, the working strategy for recognition
of phonemes remains to extract features after the accompaniment has been
reduced from the original polyphonic mix.

2.2.6 Introduction to Hidden Markov Models
Not only are HMM-s the main machine learning algorithm behind the phonetic
recognizer approach, but they can be also considered a reduced case of DBN-s,
in which only one hidden variable is present (see Section 2.3). We will give
here a very brief overview of HMM-s and interpret them in the context of a
phonetic recognizer.

They are probabilistic finite-state automata, where transitions between states
xk ∈ 1, ..., S (S is the number of states) are ruled by probability functions. Let
x1:K = {x1, ..., xK} be a sequence of hidden states with length K (number of
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audio frames in an audio excerpt). In speech research, traditionally a 3-state
HMM for each phonemes is trained. It has left-to-right topology, which cor-
responds to how the acoustics of the voice evolve sequentially in time from an
initial, through a middle, and ending in a final state. Transition probabilities
are assumed to depend only on a finite number of previous states.

P (xk|xk−1, xk−2, ...) = P (xk|xk−1) (2.4)

This assumption is known as the Markov property, i.e. the current state di-
rectly depends only on a limited number of previous states (in this example
only one). The term P (xk|xk−1) is known as the transition model between
states, which can be expressed in a stochastic transition matrix (Aij), where
aij = P (xk = j |xk−1 = i) (Rabiner and Juang, 1993). Transition probabil-
ities can be learned from annotated data or hand-crafted by imposing some
musically-meaningful constraints. For example, when the target phoneme
transcript is given, at inter-phoneme transitions, the network ‘forces’ only a
single possible transition: to the following phoneme3.

States (in our case the time phases of the phonemes) are not visible. Instead,
one observes acoustic features (in our case the phonetic timbre), which are
modeled as a sequence of random variables y1:K . The featureyk is assumed
to depend exclusively on the current state, which can be represented in a
probability distribution P (yk|xk). In short, we refer to this quantity as the
acoustic model or the observation model. It can be learned by maximizing the
probability of emitting a given set of sequences of (observed) acoustic features
from training data. Although traditionally modeled by GMM-s, the acoustic
model could be virtually any machine learning model, which can output a
continuous probability distribution.

Inference

Inference in probabilistic models refers to the process, in which we estimate
the probability distribution of one or more unknown variables, given that we
know the values of other variables. The joint probability distribution of the
hidden and observed variables factorizes as:

P (x1:K , y1:K) = P (x0)Π
K
k=1P (xk|xk−1)P (yk|xk) (2.5)

where P (x0) is the initial state distribution. The most likely hidden state
sequence x1:K can be decoded, among others, by the Viterbi decoding — an
efficient dynamic programming algorithm (Rabiner, 1989). Let δk(j) be the
probability for the path in the state space with highest probability, among all

3This is the reason why it is called ’forced’ alignment
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paths, which end in state j at time k. The δk(j) is defined recursively in a
maximization step:

δk(j) = max
i∈(j, j−1)

δk−1(i) aij bj(Ok) (2.6)

Here bj(Ok) = P (yk = Ok |xk = j) for feature vector Ok (complying with the
notation of Rabiner (1989, III. B). Note that in the case of forced alignment
we maximize only over two possible transitions — from the current state j
and its previous one j − 1.

A complete discussion on theory and applications of HMM-s can be found in
Rabiner and Juang (1993).

2.2.7 Phoneme network
The goal of the grapheme-to-phoneme conversion is to create a phoneme se-
quence out of the input lyrics. The conversion is carried out using a set
of phonemes from a phonetic alphabet, based on a pronunciation dictionary
prepared by linguists.

In the phonetic recognizer approach, it is assumed that the observed feature
sequence is generated from an HMM. The phoneme network is a super-HMM,
concatenated from the individual phoneme HMM-s in the order of the input
phoneme sequence. The transition model imposes the ’forced’ transition to
the consequent phoneme. The only exception are special case phonemes for
short silent pauses, which can be optionally skipped. Most LAA approaches
adopt this paradigm: Both Mesaros and Virtanen (2008) and Fujihara et al.
(2011) utilized the 3-state HMM-s and trained for each state a GMM fitted
on a feature vector yk of MFCC.

Cross-language modeling

As a rule of thumb the phoneme models used in the recognition are trained
from the same target language to ensure their integrity. However, often there
might not be enough training material for the language of interest, which
opens a necessity for finding a cross-language phoneme mapping strategy as an
alternative. As a matter of fact cross-language mapping has been an important
research direction in speech recognition for long time, but only recently some
substantial results were achieved (Sun et al., 2016) (for the particular task
of speech synthesis). One of the few LAA research works using phonemes
trained on a different language was done by Fujihara et al. (2011). To align
English songs the authors mapped English phonemes to their closest in sound
entries from a set of Japanese phoneme models. This resulted in suboptimal
alignment results though, due to the different language phonetics. In Japanese
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all vowels are pure (i.e. monophthongs), which is a clear limitation for the more
complex acoustic characteristics of English diphthongs.

2.2.8 Training procedure
In the absence of enough singing material with annotated phonemes, the
acoustic model P (yk|xk) is trained on a big corpus of speech with annotated
sentences. Later these phonetic speech models are adapted to match the
acoustic characteristics of clean singing voice using a small singing dataset
with annotated phonemes. The adaptation techniques are borrowed from
research carried on adapting universal speech models to characteristics of a
particular speaker.

Training on speech

Compared to speech, the singing voice has more complex frequency and dy-
namic characteristics: fluctuation of fundamental frequency (F0) and loudness
of singing voices are far stronger than those of speech sounds (Sundberg and
Rossing, 1990). The fundamental frequency of women in speech is between
165 and 200 Hz, while in singing it can reach 1000 Hz. This is much higher
than the normal for speech value range of the first formant (500 Hz). In such
cases the first formant moves higher in frequency, so that it corresponds ap-
proximately to the fundamental frequency, while the second formant might
also move higher. Therefore the first two formants of singing voice are less
stable than speech and harder to predict. In addition, some skillful singers
are capable of changing drastically their position by moving their vocal cavity,
tongue and lips. On top of that, compared to speech, some phenomena includ-
ing vibrato and singer’s formant are present only in singing. To address all
these discrepancies an adaptation of the acoustic properties of spoken phoneme
models is needed.

Mesaros and Virtanen (2008) proposed to borrow a technique from speech
recognition that adapts an universal speech model to the speech for a partic-
ular speaker. They used the method Maximum Likelihood Linear Regression
(MLLR). In Fujihara et al. (2011) after applying a MLLR, another statisti-
cal adaptation technique, the Maximum a posteriori (MAP) transform, was
run. MAP shifts the mean and variance components of the Gaussians of the
each spoken phoneme model in an acoustic space towards the characteristics
of the corresponding sung phoneme. An advantage of the MAP transform
compared to other adaptation techniques is that it allows the manipulation of
each phoneme model independently.
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Training on singing voice

Another fundamental difference between speech and singing voice is that the
time a vowel is held in singing is much longer and much more variable than in
speech. In a recent study Kruspe (2015b) compared the accuracy of recogni-
tion of individual phonemes with model trained on speech and a model trained
on the same speech modified with ‘sing-like’ transformations: In turn pitch
shifting, time-stretching and vibrato addition were applied on the same data.
The author obtained 18% correctly classified audio frames with the model
with all three modifications jointly, improving from the baseline of 12% with
the speech model. Furthermore, result showed that a significant accuracy
improvement was observed mainly due to time-stretching. The adaptation
strategy presented above might compensate to a certain extent for most of the
acoustic difference, except arguably for the variation of phoneme durations.
One reason might be that when sung vowels are prolonged their transitions
to neighboring phonemes have more variability than in speech, too.

A bottleneck for training on actual singing is the lack of singing material
with phoneme annotations. Kruspe (2016) proposed a viable strategy for
annotation: they trained on a speech corpus monophone one-state HMM-
s, wherein each observation model is a GMM. Then the author preselected
around 6000 recordings of full songs from the DAMP dataset from Stanford
University4. DAMP is a huge collection of a cappella popular music, sung
by amateur singers with lyrics available, but without any annotated word
locations. The authors aligned the a cappella audio on the phoneme level to
its lyrics by means of forced alignment with the fitted speech-trained GMM-s.
The aligned phoneme timestamps were fed into a 3-hidden-layer Multi-Layer
Perceptron (MLP) with sigmoid activation function, as if they were manual
annotations. On material from DAMP the resulting model reached a phoneme
recognition of 25% (better than the previous state of the art of Hansen (2012))
of correctly classified frames. This is a remarkable improvement over the 12%
with a model trained only on the speech dataset. Results on the word-level
alignment were however not reported.

In summary, there has been only a few research works on the problem of
LAA. The phonetic recognizer was established as one of the successful align-
ment strategies. Solutions were proposed for all steps necessary to carry out
a complete alignment: including all pre- and post- processing steps. Still,
looking back at Table 2.1, some research questions remain open or not fully
exploited:

1. Almost all of the presented approaches is trained on material from the
language, on which it was tested. This means each time an aligner is

4https://ccrma.stanford.edu/damp/

https://ccrma.stanford.edu/damp/


CHAPTER 2. BACKGROUND 30

required for a language, different from the one of existing work (for ex-
ample Turkish), reuse of the existing aligner as a baseline is not straight-
forward. At least this is not feasible without a modification/adaptation
of the acoustic model. This problem is further aggravated by the lack of
singing material with reliable phoneme annotations, to use as training
material5.

2. In most approaches the extracted acoustic features (usually MFCC) are
agglomerated into classes of phonetic timbre in a bottom-up fashion,
without considering the dependence of simultaneously occurring rhyth-
mic musical events or reference durations of syllables. Although pho-
netic timbre is the core distinguishing facet of sung lyrics, relying solely
on the MFCC can be error-prone. They are usually trained on a cap-
pella material and extracted (likely with artifacts) from the vocal part of
multi-instrumental recordings, which is premise for acoustic mismatch.

3. There is no existing approach on LAA with instrumental accompani-
ment, which can be reproduced. None of the papers discussed have their
implementation available. After personal communication with some of
the authors we were able to obtain several pieces of source code, but
for several reasons, none of the LAA systems presented in this section
is reproducible in its entirety6.

5In fact, to our knowledge, the biggest and only dataset with phoneme annotations is of
English pop songs with total duration of less than 30 minutes — the one prepared and used
in Hansen (2012)

6Personal communication with H. Fujihara in March 2014; with A. Mesaros in October
2013
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2.3 Background on dynamic Bayesian networks
A probabilistic graphical model is a probabilistic model that expresses condi-
tional dependence between random variables using a graph. HMM-s can be
considered a probabilistic graphical model with a single hidden random vari-
able. A Bayesian network is a probabilistic graphical model that represents a
set of random variables and their (conditional) dependencies with a directed
acyclic graph.

A DBN is an extension of a Bayesian network that can relate variables over
time (Murphy, 2002). In a DBN variables could be either continuous or dis-
crete, which we represent in all diagrams in this dissertation by circles and
squares respectively. To build a model of sung lyrics we have at our disposal
sequential data from audio features, as well as complementary context events
that are interrelated to phonetic timbre. DBN-s hence provide an effective
and explicit way to encode the dependence relationships between the phonetic
timbre and these context events. Excellent resources on graphical probabilis-
tic models and inference, in general, is Koller and Friedman (2009) and for
Bayesian models in time, in particular, is (Barber et al., 2011).

Research by Whiteley et al. (2006) introduced DBN-s to music processing.
The authors emphasize the fact that they can natively model higher-level
musical facets more intuitively and efficiently than an HMM.

2.3.1 Inference in DBNs
To execute inference, one has to obtain the distribution over the required
set of hidden variables, by marginalizing over the rest of the variables. This
can be achieved by direct marginalization, variable elimination and/or other
techniques (D’Ambrosio, 1999). However, in practice this can be complex and
without closed form solutions. Therefore, in this dissertation we take a viable
workaround, by reducing the proposed DBN-s, without losing their encoded
dependence between musical phenomena, to HMM-s and resort to the Viterbi
decoding (Section 2.2.6).
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2.4 Background on sung lyrics with
complementary context

In what follows we review existing studies on sung lyrics, in which knowledge
from complementary context contributed to improvement in accuracy. We
have organised these studies, according to the levels of granularity of comple-
mentary context, to which we comply in this thesis. As some approaches can
be considered to benefit from more than one level, we do not aim at strict
formal subdivision, but rather at laying out the background in a structured
way, which we can start off extending systematically in the following chapters.

2.4.1 Coarse-level context
An experimental evaluation of the relation of structure and sung lyrics remains
outside the scope of this study. Instead, we utilize automatic segmentation of
complete song recording into its structural segments as a preprocessing step
to LAA. However, in a future work, it is desirable to incorporate structural
information into the phonetic recognizers, proposed in this thesis.

The use of music structural information has provided guidance for alignments
on the higher-level in previous works (Lee and Cremer, 2008; Wang et al.,
2004). Lee and Cremer (2008) showed that the results of rough structure seg-
mentation can be used for paragraph-level alignment of lyrics. First, a struc-
tural segmentation of the audio recording is performed using acoustic features.
Then the chorus section is determined by a clustering method, whereas the vo-
cal ones are determined by a VAD method. The resulting sections are aligned
to the hand-labeled lyrics paragraphs by means of dynamic programming.

2.4.2 Mid-level context
Musical chords are a piece of complementary context parallel to lyrics in the
granularity of lyrics lines. Mauch et al. (2012) proposed the integration of
textual chord information into the baseline phonetic recognizer approach of
Fujihara et al. (2011), which we described above. The authors assume that
the complete chord annotation is provided together with lyrics in the format
of song sheets, which can be obtained from web-sites such as UltimateGuitar.
The song sheet provides chord annotations anchored to words. To handle the
ambiguous mapping of the word-level annotation to the finer-level of syllables,
Mauch et al. suggest ‘a flexible chord onset’ strategy: To allow a chord change
in any of the syllable of its corresponding word, for each syllable alternative
paths are constructed in the syllable-HMM network . The syllable-HMM-
network can be unambiguously expanded to a phoneme-HMM-network.

In this setting, since the phoneme sequence is fixed, a hidden phoneme state h
determines several possibilities with equal likelihood for a hidden chord state
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c, which can be represented as a DBN. The combined transition probability is
‘inherited’ from the trained phoneme transitions. In addition to the baseline
phoneme emission ym an emission feature yc for chroma is added. Both are
combined into one mutual observation probability on inference. The approach
greatly improves the word-level accuracy of the baseline, from 46.4% to 87.5
% in terms of the percentage of correct estimates according to a tolerance
window of 1 second.

Chang and Lee (2017) described a method to deal with both syllable- and
word-level lyrics-to audio alignments of accompanied music recordings in Ko-
rean and English. The approach is to discover repetitive acoustic patterns of
vowels in the target audio by referencing vowel patterns appearing in lyrics.

2.4.3 Fine-level context
Few works for tracking lyrics in singing voice have proposed a method that
represent features, describing phoneme timbre jointly with other melodic char-
acteristics (Fujihara et al., 2009).

Fujihara et al. (2009) concurrently estimate the phoneme classes and fun-
damental frequency of singing voice from recordings with instrumental ac-
companiment. They suggest the use of probabilistic spectral templates of
singing voice to represent both phoneme identity and the predominant f0. No
temporal progression from one template to the next is modeled though. An
important advantage of the approach is that the templates can be trained
directly from the polyphonic mix without segregating the predominant voice
or affecting the instrumental accompaniment, which is often a necessity in
other studies. Accuracy for phoneme estimation is evaluated in terms of the
ratio of the number of frames that are correctly estimated to the total num-
ber of frames. Frames taken into consideration in this calculation were only
the five Japanese vowels a,e,i,o and u. The ratio of 55 % for a baseline with
GMM-s and MFCC was increased to 60.1 % with the proposed model, which
is arguably the best vowel recognition system in accompanied singing.

In (Korzeniowski, 2011) a hidden state space is proposed that combines the
typical 3-state left-to-right HMM-s for phonemes with the note state space
introduced in Orio and Déchelle (2001): each note has 3 states corresponding
to its temporal phases attack, sustain and release. The goal of the study
is to improve automatic score-to-audio alignment by integrating information
from the lyrics timbre, available in parallel to the score. However, due to
the very large state space, result of the the Cartesian combination of the
note and phoneme state space, the authors were not able to implement this
strategy. Instead they used the note HMM and incorporated vowel information
as additional feature (together with pitch, loudness, etc.) via the observation
probabilities of the states.
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Summarizing, almost none of the related work that considers complementary
context is based on a temporal modeling framework (such is the phonetic rec-
ognizer). The only exception is the approach of Mauch et al. (2012), which
is however limited to music traditions for which the concept of chords is ap-
plicable. Due to the heterophonic interaction of accompaniment instruments
with singing voice for traditions like OTMM the harmony does not occur in
the form of chords and we cannot benefit from that work.

Typical exploited knowledge about temporal musical facets, complementary
to phonetic timbre, is the one of structural sections or the interaction of the
vocal with the fundamental frequency. However, this knowledge is modeled
outside the main alignment step. For example, the events of transition of a
structural section to the next one are used in a preprocessing step (Lee and
Cremer, 2008).



Chapter 3

Baseline Lyrics-to-audio
Alignment Model

3.1 Introduction
In this chapter we describe our LAA baseline system. It is a phonetic rec-
ognizer, based on phoneme HMM-s. To date most of the studies on LAA
are based on the phonetic recognizer approach, as described in Section 2.2.
The goal is to describe the key elements of the baseline approach, which are
not related to the complementary context of lyrics. In this way we “set the
scene” for the methods that consider context — the main contribution of this
thesis. They will be the focus of the following two chapters. In this chap-
ter we go through the key steps of a phonetic recognizer and describe which
existing methods we plugged in. Some of these are tailored to the specific
characteristics of OTMM (see Section 2.1.1). In particular, we explain how
we utilized a method for linking structural sections of the composition to their
respective audio segments in a recording. Further, we describe the benefit of
a predominant melody extraction method, whereby we comment on tuning its
parameters. We present in more detail the construction of the phoneme net-
work from the lyrics transcription, for which some rules for Turkish language
are required.

A major contribution of this chapter is a strategy to represent phonemes
in the Turkish language by mapping them to phonemes in English. This
enables the use of a reliable model for English as a viable replacement for
Turkish, for which the available training material is scarce. We also describe
the datasets used to evaluate the LAA methods, presented throughout this
thesis. Compiling datasets, representative of the music tradition and the key
facets of complementary context, is an important effort of this study.

We start the chapter by describing the evaluation datasets, comprising both
a cappella and multi-instrumental recordings from OTMM (Section 3.2). We

35
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then introduce our choices for each of the steps of the standard phonetic rec-
ognizer in Section 3.3. We describe the construction of the phoneme network
in Section 3.3.2. In Section 3.4, we present a comparison of three strategies to
train the acoustic model for Turkish language. Finally, in Section 3.5 we dis-
cuss the alignment results by evaluating the baseline model on the presented
datasets.

3.2 Datasets
In this thesis we evaluate the proposed lyrics tracking approaches on datasets
of selected recordings from OTMM and jingju repertoire. To this end we pre-
pared two datasets: multi-instrumental lyrics OTMM dataset, which encom-
passes original studio recordings with accompaniment of multiple instruments,
and an a cappella lyrics OTMM dataset, which contains solo signing voice. Ad-
ditionally, we compiled a multi-instrumental vocal onsets OTMM dataset with
annotations of vocal note onsets containing performances with well-perceived
percussive accents. In all datasets we payed special attention to annotating
carefully the timestamps of the music events, in which complementary context
manifests.

3.2.1 Multi-instrumental lyrics OTMM dataset
The multi-instrumental lyrics OTMM dataset, which we compiled, consists
of 13 performances with a soloing singer — 5 with male and 8 with female
one. The performances are from 11 compositions in the şarkı form and have
total duration of 19 minutes. They are drawn from the CompMusic corpus
of OTMM repertoire (Uyar et al., 2014) and have varying recording quality,
including historic recordings. Some these are not necessarily with good studio
quality. Music scores are provided in a custom machine-readable format, called
symbTr, complying with the humdrum notation philosophy (Karaosmanoğlu,
2012). These scores contain annotations of the structural sections of the şarkı
form. The words in a section are further split adopting the division into
musical phrases, proposed by Karaosmanoğlu et al. (2014). What the authors
call a musical phrase represents a musically-meaningful melodic motif. A
phrase spans roughly the same number of metrical cycles depending on the
tempo (1 or 2 cycles). This corresponds to up to 4 words depending on their
length. A musical phrase often also contains short instrumental motives before
or after the vocal is present. If an original phrase boundary splits a word we
have modified it to include the complete word, in order to assure appropriate
evaluation on word or phrase level. Table 3.1 presents statistics about the
derived phrases of lyrics. The total number of words in the dataset are 732.

The performance recordings contain the annotations of the boundaries of seg-
ments corresponding to the score sections, which have been done in the study
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total #sections #phrases per section #words per phrase

75 2 to 5 1 to 4

Table 3.1: Phrase and section statistics for the multi-instrumental lyrics
OTMM dataset

of Şentürk et al. (2014). We annotated further the musical phrase boundaries
using the Praat annotation tool1. Whenever needed, we split or merged some
lyrics phrases with outlier duration so that phrases within a recording have
approximately equal duration2.

3.2.2 A cappella lyrics OTMM dataset
Due to the lack of appropriate a cappella material in the şarkı form, we
recorded especially for this study an a cappella version of the accompanied
vocal OTMM dataset.

The vocal parts of the multi-instrumental lyrics OTMM dataset have been
sung by professional singers, especially recorded for this study. A perfor-
mance has been recorded while listening to the original recording, whereby
instrumental sections are left as silence. This assures that the order, in which
sections are performed, is kept the same. Therefore, the generated times-
tamps are valid for the accompanied version, too. Although each recorded
singer sings sporadically off-time at some syllables, the recordings are to a
very high degree in-sync with the originals. We carefully validated that by
listening simultaneously to both the original and the a cappella version3.

Additionally, the singing voice for 6 recordings (with a total duration of around
10 minutes) from the dataset has been manually transcribed with notes, in-
ferred by the music score. A special care is taken to place the onset annotation
on the time instant, where a voiced sound starts. In this way, an onset is con-
sidered to be always at the beginning of a portamento, when it is present (it
is common for some singers)4. Similarly, if a syllable starts with an unvoiced
consonant, the onset is placed at the beginning of the succeeding vowel (see
Figure 5.3).

1http://www.fon.hum.uva.nl/praat/
2The dataset is available at http://compmusic.upf.edu/turkish-sarki
3The audio and the annotations are available under a CC license at

http://compmusic.upf.edu/turkish-makam-acapella-sections-dataset
4Onset annotations are available at http://compmusic.upf.edu/node/233

http://www.fon.hum.uva.nl/praat/
http://compmusic.upf.edu/turkish-sarki
http://compmusic.upf.edu/turkish-makam-acapella-sections-dataset
http://compmusic.upf.edu/node/233
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#sentences per aria 9.2
#syllables per sentence 10.7

avrg sentence duration (sec) 18.3
avrg syllable duration (sec) 2.4

Table 3.2: Sentence and syllable statistics for the jingju dataset

3.2.3 Multi-instrumental vocal onsets OTMM dataset
Unlike the previous two datasets, being designed for LAA, we compiled the
multi-instrumental vocal onsets OTMM dataset to be used for note onset de-
tection of singing voice. We utilize it for automatic note onset detection,
informed by underlying metrical accents. To that end, all recordings have
clearly audible percussive strokes, at some of the beats in a metrical cycle.
The dataset includes two meter types, referred to as usuls in Turkish makam:
the 9/8-usul aksak and the 8/8-usul düyek. It is a subset of the dataset pre-
sented in Holzapfel et al. (2014), including only the recordings with singing
voice present. The beats and downbeats were annotated by Holzapfel et al.
(2014). The vocal note onsets are annotated by a single annotator, whereby
only pitched onsets are considered (2100 onsets). To this end, we had the same
strategy for annotation onsets as in the a cappella lyrics OTMM dataset5. Un-
like it, however, we used as guidance the annotated beats — being aware of
the location of a beat helped to put more precisely the location of an onset.
Annotations were done as different layers in Sonic Visualiser6.

3.2.4 A cappella lyrics jingju dataset
The dataset has been especially compiled for this study and consists of excerpts
from 15 arias, chosen from the CompMusic corpus of jingju arias, compiled
by Caro Repetto and Serra (2014). It has total duration of 67 minutes and
comprises two female singers. For a given aria were present two versions: a
recording with voice plus accompaniment and an accompaniment-only one.
From these, we generated a cappella singing by subtracting manually the in-
strumental accompaniment from the complete version7. Table 3.2 presents
the average values per sentence and syllable.

Each aria is annotated on different event granularities: from the banshi type,
through boundaries of lyrics sentences, down to boundaries of syllables and
boundaries of phonemes. Annotations are carefully done by native Chinese

5The dataset is available at http://compmusic.upf.edu/node/345
6http://www.sonicvisualiser.org/
7The resulting monophonic singing is perceived as clean as if it were a cappella, having

slightly audible artifacts from percussion on the non-vocal regions

http://compmusic.upf.edu/node/345
http://www.sonicvisualiser.org/
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Figure 3.1: Overview of the steps of the baseline lyrics-to-audio alignment
system

speakers and a jingju opera musicologist8. The phoneme set has 29 phonemes
and is derived from Chinese pinyin, and represented using the x-sampa stan-
dard9. To assure enough training data for each model, certain underrepre-
sented phonemes are grouped into phonetic classes, based on their perceptual
similarity.

3.3 Phonetic recognizer
An overview of the steps of the proposed approach can be seen in Figure
3.1. These steps follows some of the the typical steps of existing phonetic
recognizer approaches (presented in Fig. 2.2 of the Background Chapter). In
what follows we discuss in detail the design choices and the preferred solutions
for each step.

8These are the CompMusic team members Rong Gong, Yile Yang and Rafael Caro
Repetto

9Annotations are made available at http://compmusic.upf.edu/node/286

http://compmusic.upf.edu/node/286
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3.3.1 Structural segmentation
Being a challenging problem itself, a full-fledged VAD is outside the scope
of this study. We instead divided manually each audio recording into sec-
tions (e.g. zemin, nakarat, meyan) as indicated in the music score, whereby
instrumental-only sections were discarded. In the şarkı form each vocal seg-
ment corresponds to a structural section (zemin, nakarat, or meyan). We
assign manually to each segmented vocal section its corresponding lyrical line,
in order to assure correct lyrics.

All alignment throughout this thesis is performed on an audio recording and
text for each vocal section separately. LAA on complete audio recordings was
not desirable due to the unpredictability of the sections order in a şarkı form.
The sections are often performed in an order differing from that indicated in
the score. On top of that, improvisation sections not present in the score are
commonly inserted (Popescu-Judetz, 1996).

To verify the feasibility of automating the structural segmentation, we utilized
a method for linking score sections to their beginning and ending timestamps
in a recording with Makam singing (Şentürk et al., 2014). Due to the high
accuracy of this method, almost all sections are mapped correctly with minor
section boundary displacements. We showed that integrating section link-
ing as a preprocessing step yields estimated section boundaries that are not
detrimental to matching the correct lyrics sections (Dzhambazov et al., 2014).

3.3.2 Accompaniment attenuation
It is difficult to successfully track the phonemes in multi-instrumental music
signals by using the models, trained solely on a cappella singing. The har-
monic partials in unaccompanied singing can be extracted relatively reliably,
mainly because they form clear intensity peaks in the spectrogram (Serra and
Smith, 1990). A simple intensity-peak-picking strategy is however prone to
failure in accompanied singing, because of the interference with instrumen-
tal harmonic partials. To handle this case many harmonic partial detection
methods were proposed (see Section 2.2.3).

Such a method for the detection of vocal harmonic partials requires a melody
contour as an input, being generated by a melodic source. We first extract the
vocal contour of the singing voice. Then, based on it, its harmonic partials are
derived from the spectrum Y at a given time frame. Then the vocal harmonic
partials are resynthesized into an interpolated vocal spectrum Y h. Finally, we
extract acoustic features from Y h instead of the original polyphonic spectrum
Y .



CHAPTER 3. BASELINE LYRICS-TO-AUDIO ALIGNMENT MODEL 41

Singing voice melody extraction

To extract the contour of the predominant singing voice in music with in-
strumental accompaniment, we utilized the algorithm described in Atlı et al.
(2014). It is a method for the extraction of the melody of a predominant
instrument. It relies on the basic methodology of Salamon and Gómez (2012),
but modifies the way in which the final melody contour is selected from a set
of candidate contours, in order to reflect the specificities of OTMM:

1. It chooses a finer bin resolution of only 7.5 cents that approximately
corresponds to the smallest noticeable change in Makam melodic scales.

2. Unlike the original methodology, it does not discard time intervals where
the peaks of the pitch contours have relatively low magnitude. This
accommodates time intervals at the end of the melodies, where Makam
singers might sing softer.

In addition to generating fundamental frequency values (f0) values, the algo-
rithm performs in the same time a predominant source detection: it returns
zero values forf0 in regions with no predominant melody. The melody con-
tour obtained this way has its origin not only from singing voice but also from
accompanying instruments. This happens in short instrumental interludes,
where an accompanying instrument carries the main melody.

Harmonic model

We utilized the harmonic model of Serra and Smith (1990) to filter the spec-
tral peaks corresponding to the harmonic partials of the singing voice. The
spectral peaks are computed at the expected location of harmonic partials at
multiples of the normalized fundamental frequency f̂0. Equation 3.1 repre-
sents a spectral bin k as the sum of R harmonic partials from the spectrum
of the analysis window W , weighted by their corresponding amplitudes Ar

Serra (2016). Parabolic interpolation refines the exact frequency locations.
We estimated Y h with a relatively large number of harmonics (R = 30), in
order to preserve as much as possible the phonetic timbre.

Y h[k] =

R∑
r=1

ArW [k − rf̂0] (3.1)

It should be noted that it is not an end goal of this study to have the best
possible segregation of the singing voice from the polyphonic mix. Segrega-
tion methods strive to obtain a representation of the vocal content with the
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(a) Extracted fundamental frequency f0 of the predominant
melody

(b) Detected harmonic partials (R=4) with the harmonic
model, based on the fundamental frequency f0 of the predom-
inant melody

Figure 3.2: An example of extracting harmonic partials of predominant voice
with the harmonic model

least amount of introduced artifacts. In contrast to that, in our case some
artifacts may be acceptable as long as they do not distort significantly the
intelligibility of vowels. As a benchmark, we carried out a study, in which we
evaluated the quality of voice segregation using the harmonic model (Dzham-
bazov and Serra, 2016). Results in terms of the common source separation
metrics showed that for pop music the harmonic model is inferior to recent
separation methods based on convolutional neural networks, like for example
the method of (Chandna et al., 2017)10. However, a shortcoming of convolu-
tional neural networks is the necessity of a big amount of clean singing voice
training data, which was not available for OTMM.

Resynthesis

The interpolated vocal harmonic partials are resynthesized by means of a
constant overlap add resynthesis with the sms-tools package11. Despite being

10results on the MIREX 2016 task on singing voice separation are available at
http://www.music-ir.org/mirex/wiki/2016:Singing_Voice_Separation_Results

11http://mtg.upf.edu/technologies/sms

http://www.music-ir.org/mirex/wiki/2016:Singing_Voice_Separation_Results
http://mtg.upf.edu/technologies/sms
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distorted by energy leaks from instruments, the interpolated partials seem
to preserve well the overall spectral shape of the singing voice, including the
formant frequencies, which encode the phoneme identities. The resynthesis
allowed us to listen and verify that vocals are still to a large extent intelligible.

Note that melody resynthesis usually results in singing voice with perceivably
worse intelligibility of the phonemes than the original signal. Some unvoiced
consonants are dropped, as well as some artifacts are introduced. However,
for computers, which are not as versed as human listeners in distinguishing
among sources, the accompaniment reduction is an imperative step.

An example for the audio segment with the lyrics phrase bakmıyor çeşmi siyah
can be seen in Figure 3.3b.

(a) Original spectrogram.

(b) Spectrogram of resynthesized harmonic partials content.
Note that some unvoiced consonants are replaced with silences

Figure 3.3: An example of the resynthesized harmonic partials of singing voice
for the lyrics phrase bakmıyor çeşmi siyah. Content up to 10 kHz is shown.
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TARGETKIND = MFCC_0_D_A_Z
TARGETRATE = 100000.0
WINDOWSIZE = 250000.0
USEHAMMING = T
PREEMCOEF = 0.97
NUMCHANS = 26
CEPLIFTER = 22
NUMCEPS = 12
HIFREQ = 8000

Table 3.3: Parameters of the MFCC extraction (in the htk format). The target
kind of feature has added 0th coefficient for energy (_0), plus its frame-to-
frame difference (_D) and difference of the difference (_A) with zero-mean
(_Z). The unit of htk is 100 nanoseconds, so the frame size is 25 ms, while
hopsize is 10 ms. 26 mel bands and 22 liftering bands are used.

3.3.3 Acoustic Features
The MFCC have several parameters that could be tuned according to the ap-
plication use case. A standard for their extracting for the characterization of
singing voice are the default parameters of the HMM toolkit (htk), which is
tailored to speech recognition (Young, 1993). The parameters are presented
in Table 3.3 and are explained in detail in the htk book12. We adopted these
to assure consistency to previous work, as in fact all the background lyrics-to-
audio alignment approaches reviewed in the previous chapter rely on the htk
variant of MFCC features. We believe that an important contribution of this
work, from a practical point of view, is that we ported the variant of MFCC
with the htk parameters to the open-source feature extraction library essen-
tia13. Reducing the dependency on htk encourages the easier reproducibility
and extensibility of this research14.

3.3.4 Phoneme network
The phonetic recognizer is an HMM, whose states represent the sequence of
phonemes from the phoneme transcription of the lyrics. As we described in
Section 2.2.7 the goal of the grapheme-to-phoneme conversion is to create the
phoneme transcription out of the word sequence, comprising the input lyrics
for a particular vocal section.

A phonetic recognizer HMM can be represented as a DBN with a single hid-
12https://www.researchgate.net/publication/236023819_The_HTK_book_for_HTK_version_34
13http://essentia.upf.edu/documentation/
14A walkthrough on how to reproduce the htk-parameters

in essentia is available at https://github.com/georgid/mfcc-htk-an-
librosa/blob/master/mfcc_parameters_comparison_essentia.ipynb

https://www.researchgate.net/publication/236023819_The_HTK_book_for_HTK_version_34
http://essentia.upf.edu/documentation/
https://github.com/georgid/mfcc-htk-an-librosa/blob/master/mfcc_parameters_comparison_essentia.ipynb
https://github.com/georgid/mfcc-htk-an-librosa/blob/master/mfcc_parameters_comparison_essentia.ipynb
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Figure 3.4: DBN for the baseline phonetic recognizer: one hidden variable
represents the phoneme state. Circles and squares denote continuous and dis-
crete variables, respectively. Gray nodes and white nodes represent observed
and hidden variables, respectively.

den state for the current phoneme (Figure 3.4). In all DBN diagrams in
this thesis we use circles and squares to denote continuous and discrete vari-
ables, respectively. Also gray nodes and white nodes represent observed and
hidden variables, respectively. Although in initial experiments we trained a
3-state-HMM per phoneme, in most of the work presented in this dissertation
a single-state-HMM was preferred. Preliminary experiments revealed that the
difference in alignment accuracy with 3-states is negligible than that with one
state. In this section we present the derivation of the phoneme network for
Turkish. While in general the derivation of the phoneme network used for
jingju is following the same principles, some Mandarin-particular details are
discussed in Section 4.5.1.

Graphene-to-phoneme conversion

The words are expanded to phonemes based on a phonetic alphabet. Linguists
have developed the international phonetic alphabet (IPA) — a language-
independent notation system of phoneme sounds15, because many of them
are not language specific. For each language exists one or several options
for an alphabet of machine-readable representation of IPA. For Turkish we
have adopted the alphabet METUbet, proposed for one of the speech recog-
nition state-of-the art systems for Turkish (Özgül Salor et al., 2007, Table
1). METUbet is very easy to interpret, because of its intuitiveness. All latin
written characters are mapped to their corresponding latin phoneme, while
the characters ç, ş, ı, ö and ü unique to the Turkish language are mapped to
capital letters — respectively C, S, E, OE and UE. The unpronounced ğ is
omitted from the transcript, whereas g is represented as GG.

15https://en.wikipedia.org/wiki/International_Phonetic_Alphabet

https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
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After the grapheme-to-phoneme conversion optional filler silence tokens are
inserted in between words. A silence model represents short non-voiced time
intervals, when the singing voice is not active to accommodate silent pauses
or breaths between words. Using METUbet the lyrics phrase bakmıyor çeşmi
siyah is expanded to a phoneme sequence seen in Figure 3.5a. Square brackets
denote zero or one occurrence of a token, and vertical bars denote alternatives.
Its corresponding phoneme network is depicted in Figure 3.5b.

[sp] b a k m I y o r [sp] C e S m i [sp] s i y a h [sp]
(a) Phoneme sequence for the lyrics phrase bakmıyor çeşmi siyah.

(b) Phoneme network for the lyrics phrase bakmıyor çeşmi siyah. Arrows
indicated possible transitions with non-zero probabilities.

Figure 3.5: An example of the phoneme sequence and phoneme network for
the phrase bakmıyor çeşmi siyah for a cappella voice. The phoneme set used
is the Turkish METUbet.

Handling accompaniment artifacts

The phoneme network for accompanied singing ideally should be identical to
the a cappella one presented above. In practice however, some of the phonemes
in the accompaniment attenuation process are not accurately resynthesized.
To address such cases, we build the network in a flexible way.

Except for silences, another filler model for non-vocal parts is introduced:
a model for the instrumental background. We assume that the stochastic
characteristics of the background music could be approximated by those of
the instrumental-only regions in a music recording. We therefore trained a
GMM for accompaniment instruments (ACC) from the time intervals, which
are not annotated as words in the test dataset. It has a substantial amount of
mixtures (40) to be able to capture the diverse timbral characteristics of back-
ground instruments. It is integrated as a single-state-HMM in the phoneme
network. Setting the filler models as optional lets the phonetic recognizer
activate the ACC model, depending on whether sound from background in-
struments was re-synthesized by the sinusoidal model, due to short regions,
detected falsely as being vocal (see accompaniment attenuation step). In
addition, this also accommodates potential instrumental leaks due to auto-
matically detected boundary timestamps of vocal sections, displaced from the
actual boundaries of sung lyrics.
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A side effect of the resynthesis is that non-voiced consonants are not synthe-
sized, which leaves short time intervals of silence. Looking carefully at Figure
3.3b one can notice that the time intervals for most METUbet unvoiced con-
sonants: k, S, s, and h are converted into silences. Fujihara et al. (2011)
suggested to tackle this problem by incorporating a separate method for de-
tection of unvoiced consonants in the musical audio. The strategy we used
instead is replacing unvoiced consonants by silence in the phoneme sequence.
For example, for the phrase bakmıyor çeşmi siyah it will look accordingly in
Figure 3.6a.

[sp|ACC] b a sp m I y o r [sp|ACC] sp e sp m i [sp|ACC] sp i y a sp [sp|ACC]
(a) Phoneme sequence for the lyrics phrase bakmıyor çeşmi siyah.

(b) Phoneme network for the lyrics phrase bakmıyor çeşmi siyah.

Figure 3.6: An example of the phoneme sequence and phoneme network for
the phrase bakmıyor çeşmi siyah when accompanying instruments are present.
The phoneme set used is the Turkish METUbet

Figure 3.6b presents its corresponding phoneme network. We evaluated the
contribution of this simple resynthesis handling strategy by comparing to the
performance of alignment between the resynthesizes audio and the phoneme
network of Figure 3.5b that is meant for a cappella singing. The results
(see Table 3.6) outlined a slight improvement with the accompaniment-aware
network. We inspected carefully the flawed alignment cases with the a cappella
phoneme network. This revealed that sometimes when there is a fricative in
the vicinity of an inter-word sp (for example the ş from çeşmi following the
sp between bakmıyor and çeşmi) the Viterbi would confuse the model of sp
with the MFCC for the fricative sound, due to the similarity of the phoneme
acoustics of the two. This means that usually a couple of phoneme models
(ç and e in this example) are assigned falsely to the regions of the inter-word
silence, which is extended in longer time than it should be. Sometimes instead
of being delayed, the sp model is prematurely ’jumped to’ due to the same type
of fricative confusion. In contrast, when leaks of accompaniment sounds are
present, the added ACC model helps in distinguishing between the fricative
and silence/ACC.
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3.4 Training the acoustic model
To represent the acoustic model (also known as the phonetic model) P (yk|xk)
of observing the MFCC feature vector yk at a time instant k, given a phoneme
xk, a classifier of the different phonemes is needed. In essence, for a phonetic
recognizer a hidden variable is the current phoneme class xk (see Figure 3.4).
The phoneme classifier has to represent the acoustic specificities of the different
phonemes. In this section we present how we trained GMM-s and MLP-s —
two different types of classifiers.

3.4.1 Gaussian mixture models
As presented in Section 2.2.7 the GMM-s until recently have been the de
facto choice of phonetic timbre classifier. They have the ability, given enough
mixtures, to approximate arbitrarily shaped densities. It is reasonable to
assume that each mixture represents a broad class of a phonetic timbre event.
Another reason to be preferred, is the so called embedded reestimation training
technique. By means of it, it is relatively straightforward to train the model’s
parameters even from material with no phoneme annotations. Embedded
reestimation is an generalization of the Expectation Maximization algorithm
over time-series of feature vectors and has an efficient implementation in htk
(Young, 1993). Utilizing htk we fitted a 9-component GMM for each phoneme
on feature vectors extracted from a dataset of Turkish speech (Özgül Salor
et al., 2007)16. The dataset encompasses diverse speech recordings totaling
to approximately 500 minutes. Preliminary experiments confirmed that the
trained models can successfully recognize withheld speech material from the
same dataset.

To address the acoustic differences between speech and singing an adaptation
of the trained GMM-s to singing material is needed. However due to lack of
sufficient adaptation material we did not perform any adaptation17. Instead
of that we explored the option of using neural networks for the acoustic model.

3.4.2 Multilayer perceptron neural networks
Recent work on keyword spotting in English a cappella singing showed that
a MLP trained on singing-like material results in much better accuracy, com-
pared to a GMM, trained on speech Kruspe (2015b).

This motivated us to take the opportunity to consider the deep MLP model
the authors trained from amateur singers in their subsequent work — (Kruspe,
2016). We introduced their training procedure in Section 2.2.8 and will refer

16Training script is available at https://github.com/georgid/Lyrics2AudioAligner/tree/synthesis/TrainingStep
17Some scripts on preliminary adaptation experiments are available at

https://github.com/georgid/Lyrics2AudioAligner/tree/synthesis/AdaptationStep

https://github.com/georgid/Lyrics2AudioAligner/tree/synthesis/TrainingStep
https://github.com/georgid/Lyrics2AudioAligner/tree/synthesis/AdaptationStep
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METUbet IY AA UE E LL I O M U OE NN VV
CMU iy aa y eh l ax ao m uw ow n v

METUbet Z C ZH H CH B D GG F KK P S RR
CMU z jh zh hh ch b d g f k p s r

Table 3.4: Direct mapping of English CMU phonemes to Turkish METUbet.
Upper row vowels and liquids. Lower row all the rest consonants.

to their model as MLP-English. The MLP-English has 3 hidden layers with
sigmoid activation function. The layers have respectively 1024, 850 and 1024
neurons and have as input the first 13 MFCC, extracted with the htk extraction
parameters, described in 3.3.3 plus their deltas and accelerations. This results
in a 39-dimensional feature vector. The phonetic alphabet used is the English-
specific encoding of IPA from Carnegie Mellon University (CMU)18.

Since we did not have as many Turkish singing voice phoneme annotations,
sufficient for training a deep MLP, we simply adapted the MLP-English to
Turkish. We exploited two cross-language phoneme mapping strategies: direct
mapping and fuzzy mapping

Direct cross-language mapping

As observation probability for each Turkish phoneme we substituted the prob-
ability of an English phoneme from the output layer of the MLP-English. The
mappings we used are listed in Table 3.4.

To most phonemes in Turkish corresponds an English phoneme that repre-
sents a sound with perceivably the same acoustics. The only two Turkish
phonemes not existing in English are OE and UE, for which we experimented
with different mappings and ended up with respectively ow and y as most
optimal. We will refer to this mapping strategy as MLP-DirectM.

Fuzzy cross-language mapping

A more reasonable alternative to enforcing a phoneme to be represented by
exactly one phoneme from another language is a weighted sum of the acoustics
of a set of similar phonemes. Such types of ’fuzzy’ many-to-one mapping
strategy has been proposed for speech synthesis of a given speaker from her
mother tongue to another language by Sun et al. (2016). Adopting the core
idea of their concept, we trained GMM-s with the steps presented in Figure 3.7.
First the extracted MFCC features from the a cappella lyrics OTMM dataset
are input to the English-MLP. Then a vector of the posterior probabilities
p(sn|xk) of the n = 39 English phoneme classes for each time frame k are

18http://cmusphinx.sourceforge.net/

http://cmusphinx.sourceforge.net/
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Figure 3.7: Cross-language phoneme mapping strategy from the source lan-
guage (English) to the target language (Turkish). The English-MLP network
is trained on a huge DAMP singing voice dataset, whereas the GMM-s are
trained with phoneme annotations of a subset of the small a cappella lyrics
OTMM dataset.

generated (see the left hand-side of Figure 3.7). These phonetic posterior
probabilities are commonly known as phonetic posteriograms (PPG). Then in
a second stage, a new model is trained to capture the mapping relationships
between the posteriograms p(sn|xk) and the 38 Turkish phoneme classes. The
PPGs are fed into the classifier as if they were the acoustic feature vectors.
While Sun et al. (2016) built another deep neural network, we preferred a 2-
component GMM classifier, because training material with data sizes as small
as 30 minutes of phoneme-annotated singing is usually enough for a GMM.
Note that one could have trained GMM-s by embedded re-estimation to avoid
the need of phoneme boundary annotations. However, we preferred training
on annotations to ensure appropriate mappings between the acoustics of the
two languages. Then on recognition the English PPGs are generated in the
same way as on training. Training was conducted with leave-one-recording-out
cross validation. We will refer to this mapping strategy as MLP-FuzzyM19.

We compared the two mapping strategies with the baseline GMM-s trained
with Turkish speech. We evaluated the percent of correct frames. To generate
binary phoneme activations, we set to 1 the phonemes with maximum pos-
terior probability for each time frame and zero to the rest of the phonemes.
Then this sparse activation matrix is intersected with an oracle matrix, in-
ferred from manually annotated phoneme boundaries. The first two models
were evaluated on the whole phoneme-annotated subset of the a cappella lyrics

19Data preparation script available at https://github.com/georgid/englishMLP2turkish

https://github.com/georgid/englishMLP2turkish
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model % correct frames
GMM 9.8

MLP-DirectM 15.4
MLP-FuzzyM 9.2

Table 3.5: Percentage of correctly identified phoneme frames for the 3 different
phoneme models utilized: GMM trained from Turkish speech, MLP-English
model mapped directly to Turkish phonemes, MLP-English model mapped by
the proposed fuzzy phoneme mapping strategy.

OTMM dataset, whereas the MLP-FuzzyM in the leave-one-out cross valida-
tion manner.

Table 3.5 present the percentage of correctly detected frames compared to the
phoneme annotations — a metric used for the first time by Kruspe (2015b)20.
The MLP-directM evidences a major improvement over the GMM-s trained
on speech. It still scores reasonably worse than the reported 23 % in Kruspe
(2016) on excerpts from the same English dataset, with which it was trained.
This large margin indicates that the direct mapping strategy may not be the
optimal one. Surprisingly, the fuzzy mapping strategy did not yield improve-
ment over the baseline mixture model. We believe that the explanation lies
in the very small size of the training singing dataset with phoneme annota-
tions. We attribute the remarkable improvement of the English-to-Turkish
directly mapped model to the big learning capacity of a deep feedforward
neural network.

3.5 Experiments
Experiments are carried out on the a cappella lyrics OTMM dataset (Sec-
tion 3.2.2) and the multi-instrumental lyrics OTMM dataset (Section 3.2.1).
To assess the effectiveness of the accompaniment attenuation (AA) step, we
aligned the multi-instrumental recordings from the a cappella lyrics OTMM
dataset with and without AA. In initial experiments we build a Python wrap-
per around htk that has efficient Viterbi decoding21. To assure the same
parameter setting of the baseline and the models that are aware of comple-
mentary context, we preferred to implement a custom HMM and Viterbi de-
coding22. The results reported are run with the latter implementation. We
make available the source code of all experiments in this dissertation with the

20We implemented the percentage of phoneme frames in a script available at
https://github.com/georgid/AlignmentEvaluation/blob/master/align_eval/evalPhonemes.py

21https://github.com/georgid/Lyrics2AudioAligner/tree/synthesis/AlignmentStep
22It is available as part of the repository https://github.com/georgid/AlignmentDuration

by setting the parameter WITH_DURATIONS to 0. This repository has adopted some
classes and Viterbi decoding logic from https://github.com/guyz/HMM

https://github.com/georgid/AlignmentEvaluation/blob/master/align_eval/evalPhonemes.py
https://github.com/georgid/Lyrics2AudioAligner/tree/synthesis/AlignmentStep
https://github.com/georgid/AlignmentDuration
https://github.com/guyz/HMM
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intention to serve as the first fully reproducible system for LAA. In addition,
we hope this will encourage future research not only on LAA, but also on
related computational topics of lyrics tracking.

When accompanying instruments are present, we employed the modified phoneme
network, which can handle possible artifacts from the AA step (see Section
3.3.4).

3.5.1 Evaluation metrics
Throughout this thesis, we evaluate the LAA by the metrics average absolute
error and accuracy (percentage of correct segments), introduced in Section
2.2.1. We implemented a script for both metrics23, which we plan to con-
tribute to the collection of evaluation scripts of MIR research mir_eval24.
The alignment error and accuracy are computed at boundaries of the lyrics
phrases, which are manually annotated.

acoustic model data AA AH accuracy error

GMMs a cappella OTMM - - 70.2 1.14
MLP-DirectM a cappella OTMM - - 79.2 0.57

GMMs multi-instrumental OTMM N - 59.1 2.15
GMMs multi-instrumental OTMM Y N 63.2 1.98
GMMs multi-instrumental OTMM Y Y 67.5 1.26

Mesaros multi-instrumental English - - - 1.4
Fujihara multi-instrumental Japanese - - 85.2 -

Table 3.6: Comparison of performance of the baseline phonetic recognizer
with different variants of the acoustic model. Evaluation is performed on
both a cappella and accompanied singing from OTMM. Alignment accuracy
and alignment error on the boundaries of lyrics phrases and reported on total
for all recordings. Mesaros stands for the approach of Mesaros and Virtanen
(2008); Fujihara for the approach of Fujihara et al. (2011). AH stands for
handling accompaniment artifacts (see Section 3.3.4).

23https://github.com/georgid/AlignmentEvaluation The implementation of the percent-
age of correct segments metric was ported from the script, kindly provided by H. Fujihara
used in his work Fujihara et al. (2011)

24https://craffel.github.io/mir_eval/

https://github.com/georgid/AlignmentEvaluation
https://craffel.github.io/mir_eval/
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3.5.2 Discussion
Table 3.6 lists results for the different system variants and steps of the rec-
ognizer. We compared the performance of the baseline phonetic recognizer
on a cappella singing with two different variants of the acoustic model: with
phoneme GMM-s and MLP-directM (the direct mapping to English-phonemes
MLP). The GMMs result in rather low accuracy. The most possible explana-
tion is the acoustic mismatch between our phoneme GMMs and the character-
istics of singing voice. This is confirmed by the rather low results on a cappella
singing. Training phoneme acoustics merely on speech is clearly suboptimal.
The high score of the MLP-DirectM confirms that training on singing voice is
a big advantage.

As to multi-instrumental material, adding the accompaniment attenuation
improves reasonably accuracy (from 59.1 to 67.5 %). However still below
the a cappella (70.2) clearly there is still room for improvement. In fact,
investigating particular recording excerpts with low accuracy revealed that
false positives of the AA module is a considerable reason for misalignment.
We realize that the harmonic model (a generic model of singing voice) may
not be the best choice for music with heterophonic character.

We observed that a problem is that alignment performs poorly towards the
end of longer sections, which results in outliers of huge magnitude.

As a benchmark the best existing alignment systems for English pop songs
(Mesaros and Virtanen, 2008) and for Japanese pop (Fujihara et al., 2011)
are listed in the table. Comparison to them is not possible because they are
developed for different genre and language and evaluated on different datasets.
These are short-named in Table 3.6 respectively as Mesaros and Fujihara. Still,
in these works alignment is also evaluated with GMM-s on the level of a lyrical
line/phrase. Our baseline approach differs from both works essentially in that
they conduct speech-to-singing-voice adaptation. In comparison, we did not
perform any adaptation of the original speech model. Adaptation data of
clean singing voice for a particular singer might not always be available and
thus does not allow the system to scale to data from unknown singers.

Moreover, Fujihara et al. (2011) trains a VAD module on data selected from
material with same acoustic characteristics as the test data. The module
showed to notably increase the average accuracy of 72.1 % for a baseline to
accuracy of 85.2 % for their final system.

3.6 Summary
In this chapter we described our LAA baseline system. It is a phonetic recog-
nizer, based on phoneme HMM-s. We described the choices of the key steps
of the phonetic recognizer, which are not related to modeling complementary
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context. Phoneme observation modeled as GMM-s, trained on Turkish speech
proved not to be the optimal acoustic model. The alignment accuracy on
a cappella (70.2 %) is rather low; whereas on multi-instrumental recordings
(67.5%) is below the state of the art on LAA on English pop songs (85.2 %).
The most possible explanation is the acoustic mismatch between our phoneme
model and the characteristics of singing voice. To address this mismatch, we
proposed a strategy of mapping a state-of-the-art model for English, trained on
English pop songs, to Turkish. We explored two different mapping strategies.
The simpler direct mapping increased reasonably the alignment accuracy (79.2
%). To our knowledge, this thesis presents the first work on computational
modeling of sung lyrics, addressing the problem of inter-language phoneme
mapping.

Despite its superiority, not all experiments (e.g. some presented in Chapter
4) are carried out with the phoneme GMM-s. This is because the mapping
strategies were explored once the English-MLP became available (towards the
end of this thesis25). However, we believe that the validity of the experiments
in this dissertation is not negatively influenced by that.

25August 2016



Chapter 4

Lyrics-to-audio Alignment
with Mid-level
Complementary Context

4.1 Introduction
In this chapter, we propose how to improve the baseline lyrics-to-audio align-
ment method by considering some context facets, complementary to lyrics.
We focus on one particular mid-level facet — the temporal structure of the
sung lyrics line. Studies of sheet music have indicated that there is a corre-
lation between the accents of sung syllables and the accents in the melodic
motif (Nichols et al., 2009). Singers may often prolong or reduce the duration
of some syllables, in order to align them with the accents in the melody.

Music scores provide important contextual information complementary to
lyrics, including note values. Nevertheless, the length of sung syllables could
deviate considerably from the durations indicated in the music score. Singers
in OTMM in particular tend to deviate from the music score to a significantly
larger extent, in comparison, for example, to classical music. To address this,
we propose an extension of the phonetic recognizer that explicitly models some
reference syllable durations. The proposed duration-aware model is designed
to accommodate duration variations. The major technical contribution of this
chapter is the derivation an inference method for the model. The reference
syllable durations are obtained from the music score. To our knowledge, this
study is the first application of music-score-induced durations as a cue for
tracking sung syllables.

To show the transferability of the proposed explicit-duration model outside of
OTMM, we also evaluate it on material from jingju. The comparison to jingju
has an aim to quantitatively evaluate if the duration knowledge contributes to
a different degree for another music tradition. Jingju is a music tradition char-
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acterized by sung syllables that span particularly long time intervals. Being a
largely oral tradition, it rarely has machine-readable music scores. Instead, to
determine how long to sustain a given syllable, actors follow conventions for
the structure of the lyrics line. Therefore we apply the previously proposed
core modeling, wherein syllable durations are derived from these conventions,
instead of score. Among all the approaches presented in this thesis, this is the
clearest example of an approach informed by music-specific knowledge.

The chapter is organized as follows: We start off by introducing existing com-
putational approaches of lyrics tracking, which explicitly model durations of
syllables (Section 4.2). In Section 4.3 we introduce the duration-aware proba-
bilistic model. Then we describe its application in two different cases: Firstly,
in Section 4.4 we study how durations parsed from music scores in makam
can be utilized as input reference syllable durations. Secondly, the core model
is applied to jingju, for which reference durations are obtained from music-
specific knowledge in the form of rules (Section 4.5).

4.2 Background on duration-aware lyrics-to-audio
alignment

The phonetic recognizer approach is based on phoneme HMM-s. Standard
HMMs have the drawback that they do not impose any restrictions on the
waiting time in a state, resulting in a geometric distribution. This does not
correspond to the naturally occurring durations of phonemes in speech. Intro-
ducing restrictions on the state waiting time of the phoneme HMMs improves
speech recognition results (Ferguson, 1980).

Unlike speech, for which the variation of the durations of the vowels is rel-
atively small, sung vowels can have significantly bigger variations and long
durations. HMM-s are by far not capable to represent vowels with long dura-
tions, because the waiting time implied by the geometric distribution cannot
be unlimitedly long (Rabiner, 1989). Durations can be modeled instead by a
DHMM (also known as hidden semi-Markov models). In DHMMs the under-
lying process is allowed to be a semi-Markov chain with variable duration of
each state (Yu, 2010). The idea is that the actual waiting time in a state can
be generated by any statistical distribution. Common choices are the gamma
distribution or normal distribution, whereby the distribution’s parameters can
be set by using some a-priori knowledge about the waiting time. In this re-
spect, DHMM provide a flexible methodology that allows the injection of some
music-specific context knowledge, from which the expected waiting time of a
phoneme can be derived.

An approach to detect keywords from a cappella English pop songs exploiting
knowledge about possible phoneme durations is presented in Kruspe (2015a).
The authors used a DHMM with a gamma distribution, motivated by findings



CHAPTER 4. LYRICS-TO-AUDIO ALIGNMENT WITH MID-LEVEL
COMPLEMENTARY CONTEXT 57

Figure 4.1: A DBN representing the duration-aware phonetic recognizer. Cir-
cles and squares denote continuous and discrete variables, respectively. Gray
nodes and white nodes represent observed and hidden variables, respectively.
A duration counter hD keeps track of the waiting time in a phoneme state
h. When hD reaches 0, the binary indicator node f is fired, which triggers a
change to next phoneme.

that gamma distribution represents well naturally observed phoneme dura-
tions in speech. The mean and variance of each phoneme is empirically esti-
mated from a small portion of an a cappella dataset. The precision of keyword
detection increased when durations were restricted. A limitation is that the
learned phoneme parameters do not take into account the temporal structure
of the lyrics lines. In other words, the duration of each phoneme is globally
estimated, based on some training data. In addition to that, DHMM-s have
been successful in modeling other problems from the domain of music informa-
tion retrieval. In particular, they can represent chord durations in automatic
chord recognition (Chen et al., 2012).

4.3 Duration-aware probabilistic model
In this section we describe the syllable-duration-aware probabilistic model,
presented first in Dzhambazov and Serra (2015). In Figure 4.1 a DBN rep-
resents the duration spent in a phoneme h explicitly as a duration counter
variable hD. When the duration counter expires (reaches 0), the indicator
node fk turns on, the current phoneme hk can change state, and the next
duration counter, hDk , is reset. The reason there is no h to f arc is that the
duration termination process is deterministic (Murphy, 2002, Figure 2.22).
Inference in such a DBN with the Viterbi decoding will have time complex-
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ity of O(TDH2), where D is the maximal duration of the counter, T is the
total time of a recording, and H is the number of phonemes in the phoneme
network. In the case of forced alignment, it reduces to O(TDH). In compar-
ison to speech, the range of D for sung phonemes (especially in traditions like
jingju with reasonably long vowels) can cause a big time complexity.

A limitation of this DBN is that due to the additional hidden counter variable
hD the size of the state space can become memory-demanding. To overcome
that, we have adopted the idea of Chen et al. (2012) not to explicitly add the
hD to the model, but instead to extend the inference (Viterbi decoding) by
handling the duration of states. Note that this inference does not reduce the
time complexity. In what follows we describe a variation of Viterbi decoding
method, in which maximization is carried over the most likely duration for
each state. The duration counter is controlled by a normal distribution with
mean derived from a lookup table of reference durations Ri, where i is the ith

phoneme in the phoneme network. The way the lookup table is constructed
is related to how the complementary context is exploited and is the topic of
sections 4.4 and 4.5

4.3.1 Parameter definitions
The Viterbi decoding is adapted from the procedure described in Chen et al.
(2012). We assume that the duration d for a state j may vary according to
a normal distribution Pj(d) with mean at the reference duration d = Rj and
standard deviation σ. We will use a separate global standard deviation σv for
all vowels and a global one σc for all consonants. For the sake of representation
clarity, in the following equations we will use only one standard deviation
symbol σ.

4.3.2 Recursion
The recursion step in the Viterbi algorithm from Eq.2.6 is extended by adding
a term for the duration distribution Pj(d).

For Rmax < t ≤ T

δk(j) = max
d

{δk−d(j − 1).Pj(d)
αBk(j, d)

1−α} (4.1)

where
Bk(j, d) = Πk

s=k−d+1bj(Os) (4.2)

is the observation probability of staying d frames in state j until frame k. For
the sake of simplicity, we define the likelihood Pj(d) to be non-zero in the
range d ∈ (max{Rj − σ, 1}, Rj + σ). The left margin of the range is reduced
for states with reference duration Rj < σ.
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A duration back-pointer is defined as

χk(j) = arg max
d

{δk−d(j − 1).Pj(d)
αBk(j, d)

1−α} (4.3)

Note that in forced alignment the source state could be only the previous state
from the phoneme sequence j−1, therefore the transition probabilities aij are
omitted.

To be able to control the influence of the duration we have introduced a
weighting factor α. Note that setting α to zero is equivalent to using a uniform
distribution for Pj(d).

4.3.3 Initialization
For t ≤ Rmax

δk(j) = max{δk(j)∗, κk(j)} (4.4)

where a reduced-duration delta δk(j)
∗ is defined in the same way as in Eq.(4.1)

but

d ∈

{
∅, t ≤ Ri − σ

(Rj − σ,min{t− 1, Rj + σ}), else
(4.5)

reduces the duration to k when k < Rj + σ.

Lastly the probability of staying at initial state j at time k is defined as:

κk(j) = πjPj(k)
α[Πk

s=1(Os)]
1−α (4.6)

for k ∈ (1, Rj + σ).

4.3.4 Backtracking
Finally the decoded state sequence is derived by backtracking starting at the
last state N and switching to a source state a number of d = χk(j) frames
ahead according to the backpointer from Eq.4.3.
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4.4 Durations derived from music score
In this section we present an application of the duration-aware model to ma-
terial from OTMM. Makam singers tend to deviate from the music score to a
significantly large extent. The goal is to show that the duration-aware model is
capable to accommodate these varying durations. A reference lookup syllable
duration table is constructed from note values from the music score.

Figure 4.2: Overview of the steps of the lyrics-to-audio alignment system
aware of phoneme durations. Durations are derived from the note values in
the music score. The phonetic recognizer is a duration-explicit HMM

A general overview of the proposed approach is presented in Figure 4.2. As
in all approaches presented in this thesis, first an audio recording is manually
divided into segments according to the coarse level complementary context —
the sections of the composition. In the case of OTMM the boundaries of vocal
section (one of zemin, nakarat, meyan) are indicated in the music score. An
audio recording and its corresponding score are input. Relying on HMM-s of
phonemes the DHMM returns start and end timestamps of the aligned lyrics
phrases.
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4.4.1 Deriving phoneme durations
For each lyrics syllable a reference duration is derived by summing the values
of its corresponding musical notes (in units of 64th notes). Then the reference
duration is spread among its constituent phonemes, whereby consonants are
assigned constant duration and the rest is assigned to the vowel. Each conso-
nants in a syllable is assigned a constant reference duration Ri = 0.3 seconds.
To align the score-inferred Ri to a recording of a performance, its reference
musical tempo Tr is inferred, and Ri are linearly scaled according to Tr. After
that scaling the unit of Ri becomes the number of acoustic frames.

4.4.2 Experiments
Experiments are carried out on the a cappella lyrics OTMM dataset (Sec-
tion 3.2.2) and the multi-instrumental lyrics OTMM dataset (Section 3.2.1).
Alignment is performed on each manually divided audio section and results
are reported per recording (on total for its sections). To assess the benefit
of the DHMM-s, results are compared to the baseline phonetic recognizer,
presented in Section 3.5.

We summarize results for the most optimal α = 0.97. The most optimal
standard deviation for vowels σv was found to be 0.7, while we fixed the one
for consonants σc to 0.1 seconds, based on the fact that consonant durations
do not vary significantly. These parameters were optimized by minimizing
the alignment error on a separate development dataset of 20 minutes OTMM
acapella recordings. To assure precision, we measured alignment of the devel-
opment dataset on annotations on the word level.

Evaluation metrics

Alignment accuracy is measured as the percentage of duration of correctly
aligned regions from total audio duration (see Figure 2.1 for an example).

In addition, we define a metric musical score in-sync (MSI) to measure the
approximate degree to which a singer performs a recording in synchronization
with note values, indicated in the music score. Low accuracy of MSI indicates
a higher temporal deviation from the music score. We compute MSI per
a recording as the AA of score-inferred reference durations Ri compared to
ground-truth, as if they were results after the alignment.

Discussion

Table 4.1 presents comparison of the proposed DHMM system performance
and the baseline system. It can be observed that modeling durations with
the DHMM increases the accuracy by 10 absolute percent. One reason for
this are cases of long vocals, in which the standard HMM switches to the
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System variant alignment
accuracy

alignment
error

musical score in-sync 88.14 0.32
baseline a cappella 70.2 1.14
DHMM a cappella 90.04 0.26
baseline polyphonic 67.46 1.26
DHMM polyphonic 77.74 0.63
HMM+adaptation Mesaros
and Virtanen (2008)

- 1.4

HMM+
singer adaptation Fujihara
et al. (2011)

85.2 -

Table 4.1: Alignment accuracy (in percent) for musical score in-sync; differ-
ent system variants: baseline HMM and DHMM; state-of-the-art for other
languages. Alignment accuracy is reported as total for all recordings. Addi-
tionally the total mean phrase alignment error (in seconds) is reported

Figure 4.3: An example of decoded phonemes. very top: resynthesized spec-
trum; upper level: ground truth, middle level: HMM; bottom level: DHMM;
(excerpt from the recording Kimseye etmem şikayet sung by Bekir Unluater).

next phoneme prematurely (due to its low likelihood of staying long in a given
state). In contrast, the duration-explicit decoding allows picking the optimal
duration (which can be traced in an example in Figure 4.3). 1

Figure 4.4 allows a glance at results per recording, ordered according to MSI.
It can be observed that the DHMM-s performs consistently better than the
baseline (with some exceptions, for which accuracy is close). Unlike the rela-

1A complete demo of the alignment for this recording can be found
at http://dunya.compmusic.upf.edu/makam/lyric-align/567b6a3c-0f08-42f8-b844-
e9affdc9d215 after clicking access lyrics player. One needs to register in the Dunya-web.

http://dunya.compmusic.upf.edu/makam/lyric-align/567b6a3c-0f08-42f8-b844-e9affdc9d215
http://dunya.compmusic.upf.edu/makam/lyric-align/567b6a3c-0f08-42f8-b844-e9affdc9d215
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Figure 4.4: Comparison between results from DHMM (for both polyphonic
and acapella) and the baseline HMM. The metric used is alignment accuracy.
A connected triple of shapes represents results for one recording. Results are
ordered according to musical score in-sync (on the horizontal axis)

tively stable accuracy for the a cappella case, when background instruments
are present, the accuracy varies more among recordings.

For the sake of comparison, the alignment results of the best existing LAA
systems for English pop songs (Mesaros and Virtanen, 2008) and for Japanese
pop Fujihara et al. (2011) are also listed. These are abbreviated in Table
4.1 respectively as HMM + adaptation and HMM + singer adaptation. In
these studies alignment is evaluated also on the level of a lyrical line/phrase.
Despite the lack of adaptation, our DHMM-based system, based on an acoustic
model trained only on speech, yields results in similar order to these reference
approaches.

4.5 Durations derived from music principles
In jingju the durations, indicated in the music scores are not as strictly ob-
served as in OTMM. Instead as a reference usually serve the orally transmit-
ted singing examples of master actors. As we introduced in Section 2.1.2,
over time, as part of this oral practice, specific rules have been formed. For
example, if a poetry lyrics line has 10 syllables, a rule of thumb is that it
consists of 2 3-syllable dou-s, followed by a 4-syllable dou. Respectively, if a
poetry line has 7 syllables, it is a rule of thumb that it consist of 2 2-syllable
dous, followed by a 3-syllable dou reference phoneme durations. These rules
provide an excellent source to derive the phonemes reference durations for a
duration-informed LAA. Therefore, we apply the duration-aware probabilistic
model (see 4.3), whereby syllable reference durations are derived from these
principles, instead of the music score. The experiments in this section are first
presented in Dzhambazov et al. (2016).
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Figure 4.5: Overview of the steps of the lyrics-to-audio alignment system
aware of phoneme durations. Durations are derived from music knowledge:
the rules of durations of dous (syllable groups). The phonetic recognizer is a
duration-explicit HMM

4.5.1 Steps of a phonetic recognizer
A general overview of the proposed approach is presented in Figure 4.5. As
in all approaches presented in this thesis, first an audio recording is manually
divided into segments according to the coarse level complementary context —
the sections of the composition. In the case of jingju as a section serves a
lyrics line or a couplet (two lines). Because lyrics in jingju are derived from
poetry a lyrics line is in fact a lyrics sentence.

Training phoneme models The lyrics transcription in pinyin, divided
into sentences for each aria, is expanded to phonemes based on grapheme-
to-phoneme rules for Mandarin. A syllable-to-phoneme mapping table for
Mandarin is used. Together with native Chinese speakers in the CompMu-
sic team we created a mapping of pinyin syllables to the x-sampa phonetic
alphabet 2. Due to the small amount of training material, and due to their

2Part of the mapping (for diphthongs) rules can be found at
https://github.com/georgid/AlignmentDuration/blob/noteOnsets/src/for_jingju/syl2ph.txt

https://github.com/georgid/AlignmentDuration/blob/noteOnsets/src/for_jingju/syl2ph.txt
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relatively small ratio in total recording duration, most unvoiced consonants
have been grouped into one class. Due to lack of publicly available Mandarin
speech corpus, we trained the phoneme models on the jingju a cappella dataset
(3.2.4). To assure a reasonable amount of training data, we trained in a 3-
fold manner, using 10 of the arias from the dataset. Each fold has 5 arias of
around 40 minutes each. A mapping from the MLP-English to Mandarin was
not endeavored, because it seemed infeasible due to the audibly significant
differences in the acoustics of the Mandarin vowels. Diphthongs and triph-
thongs make the sound of vowels very dependent on the acoustic context.

The first 13 MFCC and their delta and accelerations are extracted from 25
ms audio frames with the hop size of 10 ms from the a cappella singing. The
extracted features are then fed to fit a GMM with 40 components for each
phoneme. Phoneme-level annotations were used to isolate the segments for
each phoneme. For jingju we prefer such a big number of mixture components
to assure that it fits the varying acoustic conditions of the big number of
diphthongs.

4.5.2 Music-knowledge-based durations
In Jingju an actor has the option to sustain the vocal of the dou’s final syllable.
We will refer to the final syllable of a dou as key syllable. Therefore, reference
phoneme durations are derived according to the key syllables, as follows:

Firstly, each key syllable in a dou is assigned longer reference duration, while
the rest gets equal durations. Additionally, we observed in the dataset (see
Section 3.2.4) that usually the last key syllable of the last sentence in a banshi is
prolonged additionally. Thus we lengthened additionally the reference syllable
duration of these last key syllables. Figure 4.6 depicts an example. According
to dou groups the 3rd, 6th and last syllable are expected to be prolonged.
Note that these expectations often do not hold — in this example they do not
hold for the 3rd syllable.

To apply the duration-aware probabilistic model, we need to segment fur-
ther the syllable reference durations down to phonemes reference durations
Ri. To this end, the reference durations of syllables are divided among their
constituent phonemes, according to the head-belly-tail division of syllables in
the Jingju dialect (Wichmann, 1991). We assign consonants a fixed reference
duration Rc = 0.3 seconds, while the rest of the syllable is distributed equally
among vowels. The reference durations Ri are linearly scaled to a reference
number of frames according to the ratio between the number of phonemes in
a lyrics line and the duration of its corresponding audio segment. In com-
parison to the model presented for OTMM, we opted for a separate standard
deviation dc for consonants, and dv for vowels. Proper values for dc and dv
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assure that a phoneme sung longer or shorter than the expected Ri can be
adequately handled.

Figure 4.6: An example of 10-syllable sentence, being last in a banshi (before
the banshi changes). Actual syllable durations are in pinyin, whereas reference
durations are in orange parallelograms (below).

4.5.3 Experiments
Evaluation is carried on the dataset, presented in Section 3.2.4. Alignment
accuracy is measured as the percentage of duration of correctly aligned regions
from total audio duration (see Figure 2.1 for an example). In the context of the
work, presented in this dissertation a value of 100 means perfect matching of
all Mandarin syllable boundaries from evaluated audio. Accuracy is measured
for each manually segmented lyrics sentence and accumulated on total for all
the recordings.

To define a glass ceiling accuracy, alignment was performed considering phoneme
annotations as an oracle for the acoustic features. Considering phoneme an-
notations, we set the probability of a phoneme to 1 during its time interval
and 0 otherwise. We found that the median accuracy per a sentence of lyrics
is close to 100%, which means that the model is generally capable of handling
the highly-varying vocal durations of jingju singing. Most optimal results were
obtained with σc = 0.7; σv = 3.0

As a baseline we employed a standard HMM with Viterbi decoding with the
htk toolkit (Young, 1993). For both the HMM and the DHMM, because of the
small size of the dataset, evaluation is done by cross validation on 3 folds with
approximately equal number of syllables. Phoneme models are trained on 10 of
the arias and evaluated on a 5-aria hold-out subset. Table 4.2 shows that the
proposed duration model outperforms substantially the baseline alignment.
Looking at oracle, one can conclude that reaching closer to it can be achieved
in the future by improving the phoneme models, to capture phoneme identities
in a more deterministic way.
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oracle baseline duration-aware
average 98.5 56.6 89.9

median per sentence 98.3 75.2 92.3

Table 4.2: Comparison of total oracle, baseline and DHMM alignment. Accu-
racy is reported as accumulate correct duration over accumulate total duration
over all sentences from a set of arias.

4.6 Summary
In this chapter we proposed how to extend an HMM-based phonetic recognizer
for lyrics-to-audio alignment by utilizing lyrics duration information as a cue,
complementary to phonetic timbre. An advantage of the presented model is
that it allows room for certain temporal flexibility to handle cases of significant
deviation of sung vowels from the expected reference durations. We evaluated
on material from two music traditions: OTMM and jingju.

For the former reference phoneme durations are inferred from sheet music.
The proposed model is tested on polyphonic audio recordings, as well as on
an acapella dataset. Results show that the explicit modeling of phoneme du-
rations outperforms a baseline approach, unaware of durations, by absolute 10
percent on the level of lyrics phrases. Information about durations can serves
as a an important ’stepping stone’ for the alignment process especially in the
case of polyphonic audio, for which timbral features may not be deterministic
enough.

For jingju we derived the expected syllable durations from music rules, specific
for this music tradition.



Chapter 5

Lyrics-to-audio Alignment
with Fine-level
Complementary Context

5.1 Introduction
In this chapter, we propose how to improve the baseline lyrics-to-audio align-
ment method by considering facets of fine-level context, complementary to
lyrics. We focus on one particular fine-level facet — the accents in the metri-
cal cycle (i.e. metrical accents). In sung voice, transitions between consecutive
lyrics units are aligned with the metrical accents to a certain degree. How-
ever, we found that it is not obvious how to conceptualize the direct relation
of metrical accents to syllable transitions. Instead, we investigate the relation
of metrical accents to the locations of onsets (attacks) of sung notes in the
vocal melody. In this way, the influence of metrical events on syllable transi-
tions is represented implicitly through its influence on note onsets, which are
in turn influenced by metrical events. In this sense, metrical accents can be
considered a facet of complementary context of lyrics.

With this motivation, we propose in the first part of the chapter a vocal on-
set detector that considers the simultaneously occurring accents in a metrical
cycle. Vocal onset detection can be seen as a subtask of singing voice transcrip-
tion. That is why we propose how to extend a state of the art probabilistic
model for singing voice transcription, in which a priori probability of a note
at a specific position in the metrical cycle interacts with the probability of
observing a vocal note onset. Designing in a compact manner meter-aware
transition probabilities between consecutive notes is the first major contribu-
tion of this chapter.

In the second part of the chapter, we address the relation of the transitions
between consecutive phonemes to the simultaneously occurring vocal onsets.

68
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A well-known fact is that when singing voice advances from the current syl-
lable to another one, simultaneously with the change of timbre a vocal onset
is perceived (Sundberg and Rossing, 1990). That is to say, the first voiced
sound in a syllable bears the onset of a new note. The second major contribu-
tion of this chapter is conceptualizing onset-aware phoneme transition rules,
because such relations between vocal onsets and phonemes have not been
previously formalized in a computational study. We propose further how to
integrate these rules into the transition model of a phonetic recognizer. This
contributes to alignment based on knowledge about the vocal onsets. To test
the feasibility of the proposed model, we aligned the lyrics utilizing manu-
ally annotated onsets. Further, we explore how automatically detected vocal
onsets can replace the annotations. Using automatic singing transcription to
detect the vocal onsets instead of score-informed methods reduces the need for
music scores. Evaluation is carried out on a cappella material from OTMM.

We start this chapter off by reviewing existing methods for singing voice tran-
scription and existing methods for tracking metrical accents (in particular
tracking beats) (Section 5.2). In Section 5.3 we explore how the accuracy of
vocal onset detection can be increased by simultaneously tracking the beats
in a metrical cycle. Finally, in Section 5.4 we present a study of how the
detected note onsets influence the transitions between consecutive phonemes.
The novel phoneme transition rules and their integration into the transitions
of an HMM are presented respectively in Sections 5.4.1 and 5.4.2.

5.2 Background
5.2.1 Singing voice transcription
The process of converting an audio recording into some form of music nota-
tion is commonly known as automatic music transcription. Current transcrip-
tion methods use general purpose models, which are unable to capture the
rich diversity found in music signals from different instruments Benetos et al.
(2013). In particular, singing voice poses a challenge to transcription algo-
rithms because of its soft onsets and expressive elements such as portamento
and vibrato. In recent years there has been a substantial amount of work on
the extraction of pitch from both a cappella singing (Babacan et al., 2013;
Molina et al., 2014) and predominant singing voice from polyphonic music
(Salamon et al., 2014). This has paved the way to an increased accuracy of
singing voice transcription algorithms. One of the reasons for this is that a
correctly detected melody contour is a fundamental precondition for singing
voice transcription (SVT).

The core subtasks of SVT are detecting note events with a discrete pitch value,
an onset time and an offset time from the estimated time-pitch representation.
A HMM that describes notes is presented in Ryynänen (2004), wherein a note
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has 3 states: attack (onset), stable pitch state and silent state. The transition
probabilities are learned from data. Recently Mauch et al. (2015) suggested to
represent the observation and transition likelihoods by rules compacted from
music knowledge, instead of learning them from data. The model covers a
range with distinct pitches from a lowest MIDI tone C2 up to B7. Each MIDI
pitch is further divided into 3 sub-pitches, resulting in n = 207 notes with
different pitch, each having the 3 note states. Although being conceptually
capable of tracking onsets in singing voice audio with accompaniments, these
approaches were tested only on a cappella singing. In multi-instrumental
recordings, an essential first step is to extract reliably the predominant vocal
melody. One of the few works dealing with SVT for polyphonic recordings
— Kroher and Gómez (2016); Nishikimi et al. (2016) — are based on the
algorithm for predominant melody extraction of Salamon and Gómez (2012).
Temporal deviations of the sung onsets from their positions indicated in music
score are modeled in a probabilistic way in Nishikimi et al. (2016). In Kroher
and Gómez (2016) as a primary step of the note transcription stage, notes are
segmented by a set of flamenco-specific onset detection rules, based on pitch
contour and volume characteristics.

Vocal onsets are usually soft (a slower attack phrase), in contrast to some
instruments with percussive onsets (Sundberg and Rossing, 1990). This makes
the precise location of a vocal onset ill-defined. The note onset corresponds
to the initial segment of the three temporal segments of a vocal note: attack,
sustain and release1. As the location of a note onset we will refer to the time
instant, in which a pitched segment starts. They could follow (but exclude) a
region with higher energy in case a syllable starts with a non-voiced consonant.
The other temporal segments — sustain and release (offset) have undoubtedly
also impact on the transition of phonemes. However, in this thesis, we consider
the impact of vocal note onsets only, for they have arguably the most evident
influence on syllable transitions.

The detection of instrumental onsets in polyphonic recordings is a challeng-
ing problem itself, which has attracted the attention of researchers for many
years2. Most algorithms are based on the observation that an onset entails a
change of the energy of the signal or of its harmonic content. One successful
approach is to distinguish the spectral peaks, which are due to candidate note
transient time segments (Röbel, 2009). Soft onsets are treated as a special
case: the sensitivity of the generic transient detector is modified whenever the
transients appear in a harmonic structure, which is usually a condition for
soft onsets. A thorough review of onset detection methods can be found in
Benetos et al. (2013, Section 2.2). Vocal onset detection in multi-instrumental
music is, in fact, one of the hardest MIR problems. Determining their exact

1We stick to the definition of temporal segments, adopted from the chapter Singing
Transcription of Klapuri and Davy (2006)

2www.music-ir.org/mirex/wiki/2015:Audio_Onset_Detection

http://www.music-ir.org/mirex/wiki/2015:Audio_Onset_Detection
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onset timestamp is even harder in OTMM because of expressive singing phe-
nomena: vocal onsets are often approached by portamentos. Therefore any
complementary information can be an important ’stepping stone’ for increased
detection accuracy.

5.2.2 Beat Detection
Recently a Bayesian approach, referred to as the bar-pointer model, has been
presented (Whiteley et al., 2006). It describes events in music as being driven
by their current position in a metrical cycle (i.e. musical bar). The model
represents as hidden variables in a DBN the current position in a bar, the
tempo, and the type of musical meter, which can be referred to as bar-tempo
state space.

The work of Holzapfel et al. (2014) applied this model to recordings from non-
Western music, in order to handle jointly beat and downbeat tracking. The
authors showed that the original model can be adapted to different rhythmic
styles and time signatures, and an evaluation is presented on Indian, Cretan
and Turkish music datasets.

Later Krebs et al. (2015) suggested a modification of the bar-tempo state
space, in order to reduce the computational burden from its huge size.
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5.3 Metrical-accent-aware vocal onset detection
Metrical accents are a facet of complementary context that defines the rhyth-
mic backbone of vocal melodies. Therefore it is worth studying how the tran-
sitions between lyrics of units (in particular syllables) interact with these
accents. By metrical accents we will refer to notes that are emphasized as a
result of the context of the musical meter. Naturally, accents occur on the
beats, whereby downbeats (the first beat in a meter) will be perceived as be-
ing stronger accentuated. Detecting the times of vocal note onsets can benefit
from automatically detected metrical events, such as beats. In fact, the ac-
cents in a metrical cycle determine to a large extent the temporal backbone of
the singing melody. Studies on symbolic music data showed that the times-
tamps of vocal note onsets are influenced by the their position in a metrical
cycle (Huron, 2006; Holzapfel, 2015). Despite that, there have been very few
studies on meter-aware analysis of onsets in music audio (Degara et al., 2010).

In this section we make a hypothesis that the knowledge of the current position
in a metrical cycle (i.e. metrical accent) can improve the accuracy of vocal
note onset detection. To this end we propose a novel probabilistic model to
jointly track beats and vocal note onsets.

5.3.1 Model Architecture
The proposed approach extends the beat and meter tracking model, presented
in Krebs et al. (2015). We adopt from it the variables for the position in
the metircal cycle (bar position) ϕ and the instantaneous tempo ϕ̇. We also
adopt the observation model, which describes how the metrical accents (beats)
are related to an observed onset feature vector yf . All variables and their
conditional dependencies are represented as the hidden variables in a DBN (see
Figure 5.1). We consider that the a priori probability of a note at a specific
metrical accent interacts with the probability of observing a vocal note onset.
To represent that interaction we add a hidden state for the temporal segment
of a vocal note n, which depends on the current position in the metrical cycle.
The probability of observing a vocal onset is derived from the emitted pitch
yp of the vocal melody.

In the proposed DBN, an observed sequence of features derived from an au-
dio signal y1:K = {y, .., yK} is generated by a sequence of hidden (unknown)
variables x1:K = {x1, ..., xK}, where K is the length of the sequence (number
of audio frames in an audio excerpt). The joint probability distribution of
hidden and observed variables factorizes as:

P (x1:K , y1:K) = P (x0)Π
K
k=1P (xk|xk−1)P (yk|xk) (5.1)

where P (x0) is the initial state distribution; P (xk|xk−1) is the transition model
and P (yk|xk) is the observation model.
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Figure 5.1: A dynamic Bayesian network for the proposed beat and vocal
onset detection model. Circles and squares denote continuous and discrete
variables, respectively. Gray nodes and white nodes represent observed and
hidden variables, respectively.
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5.3.2 Hidden variables
At each audio frame k, the hidden variables describe the state of a hypothetical
bar pointer xk = [ϕ̇k, ϕk, nk], representing the instantaneous tempo, the bar
position and the vocal note respectively.

Tempo state ϕ̇ and bar position state ϕ

The bar position ϕ points to the current position in the metrical cycle (bar).
The instantaneous tempo ϕ̇ encodes how many bar positions the pointer ad-
vances from the current to the next time instant. To assure feasible com-
putational time we relied on the combined bar-tempo efficient state space,
presented in Krebs et al. (2015). To keep the size of the bar-tempo state
space small, we input the ground truth tempo for each recording, allowing a
range for ϕ̇ within ±10 bpm from it, in order to accommodate gradual tempo
changes. This was the minimal margin at which beat tracking accuracy did
not degrade substantially. For a study with data with higher stylistic diver-
sity, it would make sense to increase it to at least 20% as it is done in Holzapfel
and Grill (2016, Section 5.2). This yields around 100-1000 states for the bar
positions within a single beat (in the order of 10000 for the 8-9 beats of the
usuls ).

Vocal note state n

The vocal note states represent the temporal segments of a sung note. They
are a modified version of these suggested in the note transcription model of
Mauch et al. (2015). We adopted the first two segments: attack region (A),
stable pitch region (S). We replaced the silent segment with non-vocal state
(N). Because full-fledged note transcription is outside the scope of this work,
instead of 3 steps per semitone, we used for simplicity only a single one, which
deteriorated just slightly the note onset detection accuracy. Also, to reflect
the pitch range in the datasets, on which we evaluate, we set as minimal MIDI
note E3 covering almost 3 octaves up to B5 (35 semitones). This totals to 105
note states.

To be able to represent the DBN as an HMM, the bar-tempo efficient state
space is combined with the note state space into a joint state space x. The
joint state space is a cartesian product of the two state spaces, resulting in up
to 10000×105 ≈ 1M states.

5.3.3 Transition model
Due to the conditional dependence relations in Figure 5.1 the transitional
model factorizes as
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P (xk|xk−1) = P (ϕ̇k|ϕ̇k−1)×
P (ϕk|ϕk−1, ϕ̇k−1)× P (nk|nk−1, ϕk)

(5.2)

The tempo transition probability p(ϕ̇k|ϕ̇k−1) and bar position probability
p(ϕk|ϕk−1, ϕ̇k−1) are the same as in Krebs et al. (2015). Transition from one
tempo to another is allowed only at bar positions, at which the beat changes.
This is a reasonable assumption for the local tempo deviations in the analyzed
datasets, which can be considered to occur relatively beat-wise.

Note transition probability

The probability of advancing to a next note state is based on the transitions
of the note-HMM, introduced in Mauch et al. (2015). Let us briefly review it:
From a given note segment the only possibility is to progress to its following
note segment. To ensure continuity each of the self-transition probabilities
is rather high, given by constants cA, cS and cN for A, S and N segments
respectively (cA=0.9; cS=0.99; cN = 0.9999). Let PNiAj be the probability of
transition from non-vocal state Ni after note i to attack state Aj of its following
note j. The authors assume that it depends on the difference between the pitch
values of notes i and j and it can be approximated by a normal distribution
centered at change of zero (Mauch et al. (2015), Figure 1.b). This implies that
small pitch changes are more likely than larger ones. Now we can formalize
their note transition as:

p(nk|nk−1) =



PNiAj , nk−1 = Ni nk = Aj

cN , nk−1 = nk = Ni

1− cA, nk−1=Ai nk = Sj

cA, nk−1 = nk = Ai

1− cS nk=1 = Si nk = Nj

cS , nk−1 = nk = Si

0 otherwise

(5.3)

Note that the outbound transitions from all non-vocal states Ni should sum
to 1, meaning that

cN = 1−
∑
i

PNiAj (5.4)

In this study, we modify PNiAj to allow variation in time, depending on the
current bar position ϕk.
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p(nk|nk−1,ϕk) =


PNiAjΘ(ϕk), nk−1 = Ni, nk = Aj

cN , nk−1 = nk = Ni

...

(5.5)

where

Θ(ϕk) : function weighting the contribution of a beat adjacent to current bar
position ϕk

and

cN = 1−Θ(ϕk)
∑
i

PNiAj (5.6)

The transition probabilities in all the rest of the cases remain the same. We
explore two variants of the weighting function Θ(ϕk) :

1. Time-window redistribution weighting: Singers often advance or
delay slightly note onsets off the location of a beat. The work Nishikimi et al.
(2016) presented an idea on how to model vocal onsets, time-shifted from a
beat, by stochastic distribution. Similarly, we introduce a normal distribution
N 0,σ, centered around 0 to re-distribute the importance of a metrical accent
(beat) over a time window around it. Let bk be the beat, closest in time to a
current bar position ϕk. Now:

Θ(ϕk) = [N0,σ(d(ϕk, bk))]
we(bk) (5.7)

where

e(b) : probability of a note onset co-occurring with the bth beat (b ∈B); B is
the number of beats in a metrical cycle

w : sensitivity of vocal onset probability to beats

d(ϕk, bk) : the distance from current bar position ϕk to the position of the
closest beat bk

Equation 5.5 means essentially that the original PNiAj is scaled according to
how close in time to a beat it is.

2. Simple weighting: We also aim at testing a more conservative hypothesis
that it is sufficient to approximate the influence of metrical accents only at the
locations of beats. To reflect that, we modify the PNiAj only at bar positions
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corresponding to beat positions, for which the weighting function is set to the
peak of N0,σ, and to 1 elsewhere.

Θ(ϕk) =

{
[N0,σ(0)]

we(bk), d(ϕk, bk) = 0

1 else
(5.8)

5.3.4 Observation models
The observation probability P (yk|xk) describes the relation between the hid-
den states and the (observed) audio signal. In this work we make the as-
sumption that the observed vocal pitch and the observed metrical accent are
conditionally independent from each other. This assumption may not hold in
cases when energy accents of singing voice, which contribute to the total en-
ergy of the signal, are correlated to changes in pitch. However, for music with
percussive instruments the importance of singing voice accents is diminished
to a significant extent by percussive accents. Now we can rewrite Eq.2.5 as

P (x1:K , yf1:K , yp1:K) =

P (x0)Π
K
k=1P (xk|xk−1)P (yfk |xk)P (ypk|xk)

(5.9)

This means essentially that the observation probability can be represented as
the product of the observation probability of a metrical accent P (yfk |xk) and
the observation probability of vocal pitch P (ypk|xk).

Accent observation model

For P (yfk |xk) we train GMM-s on the spectral flux-like feature yf , extracted
from the audio signal using the same parameters as in Krebs et al. (2013)
and Holzapfel et al. (2014). The feature yf summarizes the energy changes
(accents) that are likely to be related to the onsets of all instruments together.
The probability of observing an energy change depends on the position in the
bar and the rhythmic pattern, P (yfk |xk) = P (yfk |ϕk, rk).

Pitch observation model

The pitch probability P (ypk|xk) reduces to P (ypk|nk), because it depends only
the current note state. We adopt the idea proposed in Mauch et al. (2015)
that a vocal note state emits pitch yp according to a normal distribution,
centered around its average pitch. The standard deviation of stable states
and the one of the onset states are kept the same as in the original model,
respectively 0.9 and 5 semitones. The melody contour of singing is extracted
in a preprocessing step. We utilized an algorithm, extended from Salamon
and Gómez (2012) and tailored to Turkish makam. Each audio frame k gets
assigned a pitch value and probability of being voiced vk Atlı et al. (2014).
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Based on frames with zero probabilities, one can infer which segments are
vocal and which not. Since correct vocal segments is crucial for the sake of
this study and the VAD of these melody extraction algorithms are not state of
the art, we manually annotated segments with singing voice, and thus assigned
vk = 0 for all frames, annotated as non-vocal.

For each state the observation probability P (ypk|nk) of vocal states is normal-
ized to sum to vk (unlike the original model which sums to a global constant
v). This leaves the probability for each non-vocal state be 1−vk/n.

5.3.5 Learning model parameters
Accent observation model

For this study we divided the the multi-instrumental vocal onsets OTMM
dataset (see section 3.2.3) into training and test subsets. The training dataset
spans around 7 minutes of audio from each of the two usuls. Due to the scarcity
of material with solo singing voice, several excerpts with choir sections were
included in the training data. We trained the accent probability patterns
P (yfk |ϕk, rk) on the training dataset. For each usul we trained one rhythmic
pattern by fitting a 2-mixture GMM on the spectral-flux-like feature vector
yf . Analogously to Holzapfel et al. (2014) we pooled the bar positions down
to 16 patterns per beat. The feature vector is normalized to zero mean, unit
variance and taking moving average. Normalization is done per song.

Probability of note onset

The probability of a vocal note onset co-occurring at a given bar position e(b)
is obtained from studies on sheet music. Many notes are aligned with a beat
in the music score, meaning a higher probability of a note at beats compared
to inter-beat bar positions. A separate distribution e(b) is applied for each
different metrical cycle. For the düyek and aksak usuls e(b) has been taken
from a recent study Holzapfel (2015, Figure 5. a-c). The authors used a
corpus of music scores, on data from the same corpus, from which we derived
the dataset. The patterns reveal that notes are expected to be located with
much higher likelihoods on those beats with percussive strokes than on the
rest.

5.3.6 Inference
We obtain the best state sequence x1:K by decoding with the Viterbi algo-
rithm. A note onset is detected when the state path enters an attack note
state after being in non-vocal state.
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With manually annotated beats

We explored the option that beats are given as input from a preprocessing step
(i.e. when they are manually annotated). In this case, the detection of vocal
onsets can be carried out by a reduced model with a single hidden variable:
the note state. The observation model is then reduced to the pitch observation
probability. The transition model is reduced to bar-position-aware transition
probability aij(k) = p(nk = j|nk−1 = i, ϕk)(see Eq.5.5). To represent this
time-dependent self-transition probabilities we we utilize time-varying transi-
tion matrix. It falls in the general category of variable-time HMM-s (VTH-
MMs) Johnson (2005). The standard transition probabilities in the Viterbi
maximization step in equation 2.6 are substituted for the bar-position-aware
transitions aij(k)

δk(j) = max
i∈(j, j−1)

δk−1(i) aij(k) bj(Ok) (5.10)

Full model

In addition to onsets, a beat is detected when the bar position variable hits
one of B positions of beats within the metrical cycle.

Note that the size of the state space x poses a memory requirement. A record-
ing of 1 minute has around 10000 frames at a hopsize of 5.8ms. To use Viterbi
thus requires to store in memory pointers to up to 4G states, which amounts
to 40G RAM (with uint32 python data type).

5.3.7 Experiments
Vocal detection is evaluated on 5 1-minute excerpts from each of the two
usuls from the multi-instrumental vocal onsets OTMM dataset (see Section
3.2.3), totaling in 10 minutes of audio (on total 780 onsets). The hopsize
of computing the spectral flux feature, which resulted in best beat detection
accuracy in Holzapfel et al. (2014) is hf = 20ms. In comparison, the hopsize
of predominant vocal melody detection is usually of smaller order i.e. hp =
5.8ms (corresponding to 256 frames at sampling rate of 44100). Preliminary
experiments showed that extracting pitch with values of hp bigger than this
values reasonably deteriorated the vocal onset accuracy. Therefore in this
work we used hopsize of 5.8 ms for the extraction of both features. The time
difference parameter for the spectral flux computation remains unaffected by
this change in hopsize, because it can be set separately.

As a baseline we run the algorithm of Mauch et al. (2015) with the 105 note
states, we introduced in Section 5.3.23. The note transition probability is the

3We extended the port of the original VAMP plugin implementation to
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meter beat Fmeas P R Fmeas

aksak
Mauch - 33.1 31.6 31.6
Ex-1 - 37.5 38.4 37.2
Ex-2 86.4 37.8 36.1 36.1

düyek
Mauch - 42.1 36.9 37.9
Ex-1 - 44.3 41.0 41.4
Ex-2 72.9 45.0 39.0 40.3

Table 5.1: Evaluation results for Experiment 1 (shown as Ex-1) and Exper-
iment 2 (shown as Ex-2). Mauch stands for the baseline, following the ap-
proach of Mauch et al. (2015). P, R and Fmeas denote the precision, recall
and F-measure of detected vocal onsets. Results are averaged per usul.

original as presented in Eq.5.3, i.e. not aware of beats. Note that in Mauch
et al. (2015) the authors introduce a post-processing step, in which onsets of
consecutive sung notes with same pitch are detected considering their intensity
difference. We excluded this step in all system variants presented, because it
could not be integrated in the proposed observation model in a trivial way.
This means that, essentially, in this experiments cases of consecutive same-
pitch notes are missed, which decreases somewhat the recall compared to the
original algorithm.

Evaluation metrics

Beat detection Since improvement of the beat detector is outside the scope
of this dissertation, we report accuracy of detected beats only in terms of their
F-measure4. This serves solely the sake of comparison to existing work5. The
F-measure can take a maximum value of 1, while beats tapped on the off-
beat relative to annotations will be assigned an F-measure of 0. We used the
default tolerance window of 70ms, also applied in Holzapfel et al. (2014).

Vocal onset detection We measured vocal onset accuracy in terms of pre-
cision and recall6. Unlike a cappella singing, the exact onset times of singing
voice accompanied by instruments, might be much more ambiguous. To ac-
commodate this fact, we adopted the tolerance of t = 50ms, used for vocal

Python https://github.com/ronggong/pypYIN, which we make available at
https://github.com/georgid/pypYIN

4The evaluation script used is at
https://github.com/CPJKU/madmom/blob/master/madmom/evaluation/beats.py

5Note that F-measure is agnostic to the phase of the detected beats, which is clearly not
optimal

6We used the evaluation script available at https://github.com/craffel/mir_eval

https://github.com/ronggong/pypYIN
https://github.com/georgid/pypYIN
https://github.com/CPJKU/madmom/blob/master/madmom/evaluation/beats.py
https://github.com/craffel/mir_eval
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onsets in accompanied flamenco singing by Kroher and Gómez (2016), which
is much bigger than the t = 5ms used by Mauch et al. (2015) for a cappella.
Note that measuring transcription accuracy remains outside the scope of this
thesis.

Experiment 1: With manually annotated beats

As a precursor to evaluating the full-fledged model, we conducted an exper-
iment with manually annotated beats. This is done to test the general fea-
sibility of the proposed note transition model (presented in 5.3.3), unbiased
from errors in the beat detection.

We did apply both the simple and the time-redistribution weighting schemes
for Θ(ϕk), presented respectively in Eq.5.8 and in Eq.5.7. In preliminary
experiments we saw that with annotated beats the simple weighting results
in much worse onset accuracy than the time-redistributed one. Therefore the
experimental results reported are conducted with the latter weighting scheme.

We have tested different pairs of values for w and σ from Eq.5.5.The onset
detection accuracy peaked at w = 1.2 and σ = 30ms. Table 5.1 presents the
accuracies compared to the baseline. Inspection of detections showed that the
proposed model added some onsets around beats, which are missed by the
baseline.

Experiment 2: Full model

To assure computational speed, we did extend the efficient implementation
of the joint bar-tempo state space and the Viterbi algorithm of the madmom
toolbox7. The average F-measure of detected beats for the different metrical
cycles can be seen in Table 5.18. For aksak and düyek usuls, the accuracy
is somewhat worse than the results of 91 and 85.2 respectively, reported in
Holzapfel et al. (2014, Table 1.a-c, R=1). We believe the reason is in the
smaller size of our training data. Table 5.1 evidences also a reasonable im-
provement of the vocal onset detection accuracy for both music traditions.
The results reported are only with the simple weighting scheme for the vo-
cal note onset transition model (the time-redistribution weighting was not
implemented in this experiment).

Adding the automatic beat tracking improved the baseline, whereas this was
not the case with manual beats for simple weighting. This suggests that
the concurrent tracking of beats and vocal onsets is a flexible strategy and
can accommodate some vocal onsets, slightly time-shifted from a beat. We
observe also that the vocal onset accuracy is on average a bit inferior to that

7We did a fork of the madmom toolbox https://github.com/CPJKU/madmom/, which
we make available at https://github.com/georgid/madmom

8per-recoding results can be found in sheet 2 of https://tinyurl.com/kz4mpkz

https://github.com/CPJKU/madmom/
https://github.com/georgid/madmom
https://tinyurl.com/kz4mpkz
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with manual beat annotations (done with the time-redistribution weighting).
All the experiments in this Section are to be presented in Dzhambazov et al.
(2017).
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5.4 Onset-aware lyrics-to-audio alignment
In the previous section we investigated the relation of metrical accents to the
positions of vocal onsets. We proposed a method for automatic vocal onset
detection in a way aware of metrical accents. Using as input the detected
vocal onsets, in this chapter we propose a strategy to improve LAA by repre-
senting the interaction of vocal onsets with syllable transitions. In this way
the influence of metrical events on syllable transitions is represented implic-
itly through its influence on vocal note onsets, which are in turn influenced
by metrical events.

As we saw in the previous chapter, automatically determining the time po-
sitions of transitions between sung syllables can be greatly assisted by infor-
mation from the music score. Similarly, by relying on music score, one can
infer automatically the timestamps of vocal note onsets. Such timestamps
are estimated reasonably well by a recent study on automatic score-to–audio
alignment Şentürk (2016, chapter 6). In contrast, with the help of automatic
singing voice transcription, vocal note onsets can be derived without the need
for music score (Benetos et al., 2013). Since we intend that the proposed
methodologies can be applicable for material with no music scores available,
we preferred to apply automatic vocal onset detection instead of score-to-audio
alignment. Detecting vocal onsets in any setting is arguably one of the hardest
MIR problems. Still, for the study of onset-aware phoneme transitions, it is
important that onsets timestamps are detected as accurately as possible. To
assure better accuracy, experiments in this section are conducted only on a
cappella material from OTMM, as well as with manually annotated onsets.

An overview of the proposed approach is presented in Figure 5.2. As in all
approaches presented in this thesis, first an audio recording is manually di-
vided into segments according to the coarse level complementary context —
the sections of the composition. The boundaries of vocal section (one of zemin,
nakarat, meyan) are taken from manual annotations. An audio recording and
its corresponding lyrics are input. The vocal note onsets (automatically de-
tected or manually annotated) together with phoneme transition rules are fed
as input to the transition model. The phonetic recognizer, guided by the
phoneme transition rules, returns the start and end timestamps of the aligned
phonemes.
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Figure 5.2: Overview of the modules of the proposed approach. The transition
model is derived from phoneme transition rules and onset positions from the
singing voice transcription. Then it input to the phonetic recognizer, together
with the phonemes network and the features, extracted from audio segments.

5.4.1 Phoneme transition rules
The transition to a consecutive lyrics syllable implies a concurrent transition
to a new note. The onset of the new note occurs usually at the start of the
first voiced sound in the syllable. If we look at this reversely, the occurrence of
note attack in a sung melody can signal a phonetic transition. The transition
depends on the phoneme types, since, for example, a new note cannot start
at unvoiced consonants. Taking advantage of that fact, we formulate rules
that guide the transition between consecutive phonemes when a note onset is
present. In general, we consider note onsets (attack) events as complementary
context of phonetic timbre. Similar phoneme transitions rules have been used
successfully to enhance the perceived naturalness of synthesized singing voice
(Sundberg, 2006). The onset-aware phoneme transitions rules, we designed,
have been presented in Dzhambazov et al. (2016).

We formalize transition rules described in this Section for Turkish, in which
each syllable has exactly one vowel. In this sense, the rules could be transferred
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to another language with single-vowel syllables9.

Let V denote a vowel, C denote a consonant and L denote a vowel, liquid
(LL, M, NN) or the semivowel Y. Rules R1 and R2 represent inter-syllable
transition, e.g. phoneme i is followed by phoneme j from the following syllable:

R1 : i = V j = ¬L
R2 : i = C j = L

(5.11)

For example, for rule R2 if a syllable ends in a consonant, a note onset im-
poses with high probability that a transition to the following syllable is done,
provided that it starts with a vowel. The same rule applies if it starts with
a liquid, according to the observation that pitch change takes place during a
liquid preceding the vowel Sundberg (2006, timing of pitch change). Rule R2
is valid also for intra-syllabic phoneme patterns, together with rule R3:

R3 : i = V j = C (5.12)

Essentially, if the current phoneme is vocal and the next one is non-voiced
(e.g. R1, R3) the transition to the next is discouraged. An example of the
intra-syllable R2 can be seen for the syllable KK-AA in Figure 5.3 where the
note onset triggers the change to the vowel AA. Unlike that, an onset for
example, to the syllable Y to onset at Y for the syllable Y-E-T.

5.4.2 Transition model
The phoneme transitions are dependent on the current vocal note tempo-
ral segment. When a note is in its onset segment, the transition between
phonemes could be conditioned differently, compared to when a note is in
a another segment. A crucial limitation of the phonetic recognizer HMM is
the single latent variable, which can represent only one music facet - phonetic
timbre. To represent the influence of events of different music facets, such as
vocal note segments, one can use the hidden variables in a DBN (see in Figure
5.4).

9Among single-vowel syllabic languages are also Japanese and to some extent Italian
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Figure 5.3: Ground truth annotation of syllables (in orange/top), phonemes
(in red/middle) and notes (with blue/changing position). Audio excerpt cor-
responding to the word şikayet with syllables SH-IY, KK-AA and Y-E-T.

Figure 5.4: A DBN for the simultaneous music note and phoneme states. Cir-
cles and squares denote continuous and discrete variables, respectively. Gray
nodes and white nodes represent observed and hidden variables, respectively.
A phoneme transition is conditioned on the vocal note state. If a note onset is
present the likelihood of transition is modified according to what the current
hk−1 and its following hk phoneme are.

For particular states, transitions are modified depending on the presence of
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time-adjacent note onset. Let k′ be the timestamp of the onset ∆nk′ = 1,
which is closest to given time k. Now the transition probability can be rewrit-
ten as

aij(k) =

{
aij − g(k, k′)q, R1 orR3

aij + g(k, k′)q, R2
(5.13)

R1 to R3 stand the phoneme transition rules, which are applied in the phonemes
network by picking the states i and j for two consecutive phonemes. The term
q is a constant whereas g(k, k′) is a weighting factor sampled from a normal
distribution with its peak (mean) at k′:

g(k, k′) =

{
f(k; k′, σ2) ∼ N (k′, σ2), |k − k′| ≤ σ

0 else
(5.14)

Since singing voice onsets are regions in time, they span over multiple con-
secutive frames. To reflect that fact, g(k, k′) serves to smooth in time the
influence of the discrete detected ∆nk, where σ has been selected to be 0.075
seconds. In this way an onset influences a region of 0.15 seconds - a value
we found empirically to be the optimal. Furthermore, this allows to handle
slight timestamp inaccuracies of the estimated note onsets.

5.4.3 Inference
The most likely state sequence is found by means of a forced alignment Viterbi
decoding. Similarly to the inference for metrical-accent-aware detection of vo-
cal onsets (see Section 5.3.6), we apply a VTHMM. For the sake of brevity we
will refer to the onset-aware alignment model as VTHMM. The standard tran-
sition probabilities in the Viterbi maximization step in Eq.2.6 are substituted
for the onset-aware transitions aij(k) from Eq.5.13:

δk(j) = max
i∈(j, j−1)

δk−1(i) aij(k) bj(Ok) (5.15)

5.4.4 With automatically detected onsets
To obtain reliable estimate of singing note onsets, we adapt the automatic
singing transcription method, developed for polyphonic flamenco recordings
Kroher and Gómez (2016). It has been designed to handle singing with high
degree of vocal pitch embellishments. We expect that this made it suitable
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for material from OTMM singing, which has many embellishments, too10. We
replace the predominant vocal extraction method with the OTMM-tailored
pitch detection method of Atlı et al. (2014), which we described in Section
3.3.2.

The algorithm of Kroher and Gómez (2016) considers two cases of onsets:
interval onsets and steady pitch onsets. A Gaussian derivative filter detects
interval onsets as long-term change of the pitch contour, whereas steady-pitch
onsets are inferred from pitch discontinuities. Since phoneme transitions are
modified only when onsets are present, we opt for increasing recall at the cost
of losing precision. This is achieved by reducing the value of the parameter
cF : the minimum output of the Gaussian filter. Since the algorithm cannot
be integrated easily in an HMM, note onset segmentation is performed as a
preprocessing step to the actual alignment. The extracted note onsets are
converted, as in the case of manually annotated onsets, to a binary onset
activation at each frame ∆nt = (0, 1).

5.4.5 Experiments
LAA is evaluated on the 6-recording subset of the a cappella lyrics OTMM
dataset (see Section 3.2.3), for which vocal onsets have been annotated. A
cappella was preferred because of the very low vocal onset detection accu-
racy on instrumentally-accompanied singing. Experiments are executed with
the MLP-DirectM (direct mapping to the MLP-English acoustic model from
Section 3.4.2).

Evaluation metrics

Alignment accuracy is measured as the percentage of duration of correctly
aligned words from the total audio duration (see Figure 2.1 for an example).
Unlike previous chapters, in this experiment we preferred to measure accuracy
at the finer level of words, since looking at boundaries of phrases, we could
potentially miss certain onset locations with improvement over the baseline.
To this end, we annotated also word boundaries in the 6-recording subset.

We measured vocal onset accuracy in terms of recall. Similarly to the experi-
ments on vocal onset detection from the previous Section 5.3, we adopted the
tolerance of t = 50ms.

With manually annotated onsets

Unfortunately, as we saw in Section 5.2 note onsets could not be estimated
from polyphonic recordings with high accuracy. To assure reasonable accuracy,

10We preferred it, because preliminary experiments showed that with default parameters
it outperforms the algorithm of Mauch et al. (2015) with default parameters, which we
extended in Section 5.3
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cF 5 4.5 4.0 3.5 3.0

OR 57.2 59.7 66.8 72.3 73.2

AA 78.1 79.1 81.5 81.7 81.2

Table 5.2: VTHMM performance, depending on the sensitivity parameter cF.
Vocal onset recall (OR) and alignment accuracy (AA) are reported as a total
for all the recordings.

we utilized firstly manually annotated note onsets. This is done to test the
general feasibility of the proposed model, unbiased from errors in the note
segmentation algorithm, and to set a glass-ceiling alignment accuracy.

As a baseline we conduct alignment with unaffected phoneme transition prob-
abilities, e.g. setting all ∆nt = 0, which is equivalent to the baseline, presented
in Section 3.5. This resulted in average alignment accuracy of 79.2 %. We
have tested with different values of q from Eq.5.13 achieving best accuracy of
82.5% at q = 0.23, which is used on in the next experiment, too11.

With automatically detected onsets

We measured the impact of the note segmentation approach of Kroher and
Gómez (2016) (introduced in Section 5.2), varying onset detection recall by
changing the minimum output of the Gaussian filter (controlled by the param-
eter cF ). Table 5.2 summarizes the alignment accuracy with the VTHMM
depending on recall. On a cappella best improvement over the baseline is
achieved at recall of 72.3% (at cF = 3.5). This is though still much lower than
the best recall of 81-84% achieved for flamenco Kroher and Gómez (2016). Set-
ting recall higher than that degraded performance probably because there are
too many false alarms, resulting in forcing false transitions.

Figure 5.5 allows a glance at results at the level of detected phonemes: the
baseline HMM switches to the following phoneme after some amount of time,
relatively similar for all phonemes. One reason for this might be that the
waiting time in a state in HMMs with a fixed transition matrix cannot be too
long Yu (2010). In contrast, for VTHMM the presence of note onsets at vowels
activates rules R1 or R3, which allows waiting in the same state longer, as
there are more onsets (for example AA from the word SH-IY-KK-AA-Y-E-T
has five associated onsets). We chose to modify cF because setting it to lower
values increases the recall of the interval onsets only. Often in our dataset
several consecutive notes with different pitch correspond to the same vowel.
In fact, due to some characteristic for OTMM descending/ascending melody

11Per-recording results can be found at https://tinyurl.com/ksqsqla

https://tinyurl.com/ksqsqla
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progressions, a single syllable may happen to span many notes (up to 12 in
our dataset) (Ederer, 2011). However, for cases of vowels held long on same
pitch, conceptually VTHMM is not capable of bringing any benefit. This is
illustrated in Figure 5.5 by the prematurely detected end boundary of E from
the word SH-IY-KK-AA-Y-E-T. Although no separate experiment for each
rule was made, inspection of particular cases revalued almost no contribution
of R2, supposedly due to the difficulty of detecting onsets are syllables starting
with unvoiced consonants.

Figure 5.5: An example of boundaries of phonemes for the word şikayet (SH-
IY-KK-AA-Y-E-T): on top: spectrum and pitch; then from top to bottom:
ground truth boundaries, phonemes detected with the HMM, detected on-
sets, phonemes detected with VTHMM; (excerpt from the recording Kimseye
etmem şikayet (in original sung by Bekir Unluater).
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5.5 Summary
In this chapter we assessed the contribution of explicitly representing met-
rical accents (fine-level complementary context) for improving the tracking
of sung lyrics. We studied the relation of metrical accents to lyrics in two
steps: how metrical accents interact with vocal onsets and how the latter, in
turn, interact with phoneme transitions. In this way, the influence of metrical
events on syllable transitions is represented implicitly through its influence on
note onsets, which are in turn influenced by metrical events. Therefore, we
presented two separate probabilistic models for two separate tasks: metrical-
accent-aware vocal onset detection and onset-aware lyrics-to-audio alignment.
We carry out an evaluation on material from OTMM.

Metrical-accent-aware vocal onset detection We strived to improve the
automatic vocal note onset detection by incorporating information about their
position in a metrical cycle (i.e. metrical accents). To this end we proposed
a DBN for the simultaneous tracking of metrical position and vocal onsets.
The main contribution is that the approach integrates in one coherent model
two existing state of the art probabilistic approaches for different tasks: beat
tracking and singing voice transcription. We carried out an evaluation on a
multi-instrument dataset from OTMM with two different usul (meter) types.
Context knowledge about the usul is built within the transition model of the
DBN. Results confirmed that the proposed model reasonably improves vocal
note onset detection accuracy compared to a baseline model that does not
take the metrical position into account. The F-measure rises from 31% to 36
% for the düyek usul, which has better beat detection F-measure and from 38
to 40 % for aksak usul.

Detecting vocal onsets is polyphonic audio is arguably one of the hardest MIR
problems. Although not the goal of this thesis, the presented DBN can be used
for full-fledged singing voice transcription.

Onset-aware lyrics-to-audio alignment. We extended the phonetic
recognizer approach by modeling the singing voice onsets, occurring simulta-
neously with phoneme transitions. We conceptualized onset-aware phoneme
transition rules and proposed how to integrate them into the transition model
of the phonetic recognizer. The method was tested on an a cappella OTMM
dataset. The new model resulted in a slight improvement of from 79.2 % for
baseline, unaware of singing voice onsets, to 81.7 %. In particular, the onsets
due to rules discouraging premature transition, the states of sustained vowels
were allowed to have longer durations. This is, to our knowledge, the first at-
tempt to model explicitly onsets from the vocal melody in the LAA decoding
process itself.



Chapter 6

Conclusions

Broadly, this dissertation aimed to build culture-aware and domain-specific
MIR approaches using probabilistic models for tracking lyrics in music audio
signals. We proposed specific probabilistic models to represent how the tran-
sitions between consecutive sung phonemes are conditioned by different facets
of music-domain knowledge. The models we build take into account some of
these facets and consider them as temporal context, which is complementary
to lyrics.

In order to evaluate the potential of the proposed models, we built a complete
methodology for the automatic LAA and evaluated its performance by the
accuracy of the LAA. As a baseline we chose a phonetic recognizer based on
HMM-s: a methodology applied in most of existing computational studies on
lyrics tracking. We applied the proposed methodologies on especially com-
piled for this study datasets that are subsets from the CompMusic research
corpora on OTMM and jingju. These music traditions pose a challenge to
LAA because of their highly expressive singing style and the resulting thereof
high degree of temporal variability and relatively long syllable durations. The
reason is that conventional HMM-s have waiting time in a state that cannot
be too long. The low accuracy of the baseline phonetic recognizer confirmed
that.

To this end, we built two separate extensions of the phonetic recognizer: one
for mid-level complementary context and a separate one for fine-level context.
As mid-level we modeled the influence of the temporal structure of a lyrics
phrase on the phoneme transitions of lyrics. As to the fine-level context, we
modeled how phoneme transitions interact with the position of the accents in
the metrical cycle.

92
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6.1 Importance of complementary context
We represented events from complementary context as components in a DBN
and their influence on the lyrics as a hierarchical dependence between the
components. The presented solutions provide an alternative to the prevail-
ing music-knowledge-uninformed approach to modeling lyrics, in which the
extracted phonetic timbre features are agglomerated in a bottom-up fashion.

6.1.1 Mid-level context
We first proposed a phonetic recognizer that utilizes lyrics duration informa-
tion as a cue, complementary to phonetic timbre. It is representing how the
position of a syllable in a lyrics phrase influences its duration. An advantage of
the model is that it allows room for certain temporal flexibility to handle cases
of significant deviation of sung vowels from the expected reference durations.
Evaluation showed that syllable durations is the facet of complementary con-
text with biggest contribution to the improvement of the baseline LAA (up
to absolute 10 %). For OTMM, despite the accuracy of around 90% for a
cappella singing, LAA of material with instrumental accompaniment remains
somewhat lower and still far from industry-ready order of performance.

For jingju the relative improvement was somewhat bigger than for OTMM.
One explanation is the very long durations of sung vowels in jingju, which is
a challenge to conventional HMM-s.

6.1.2 Fine-level context
In this thesis we focused on one particular fine-level facet — the accents in
the metric cycle. We studied the relation of metrical accents to lyrics in two
steps: how metrical accents interact with vocal onsets and how the latter, in
turn, interact with phoneme transitions. Therefore, we devised two separate
probabilistic models for two separate tasks: vocal-onset-aware lyrics-to-audio
alignment and metrical-accent-aware vocal onset detection. We tested the
model on recordings from OTMM. Results confirmed that its well-grounded
rhythmic framework provides an excellent piece of music knowledge.

For vocal-onset-aware lyrics-to-audio alignment we conceptualized phoneme
transition rules that consider the presence of vocal note onsets. We integrated
these into the transition model of the phonetic recognizer. Results showed
that the improvement of accuracy is not very substantial, even with manually
annotated onsets (around 3 absolute %). In fact, for particular cases (for ex-
ample vowels held long on the same pitch) onsets are not conceptually capable
of bringing any benefit. However, we believe that, the derived phoneme tran-
sition rules are an important linguistic contribution that can be exploited in
other singing styles, because the rules could be easily transferred to languages,
other than Turkish.
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A limitation of the syllable-duration-aware model is the requirement for exter-
nal source of syllable reference durations — for example the music scores. In
contrast, the onset-aware alignment is not dependent on external sources, since
the onsets are automatically extracted. Based on evidence that in OTMM the
position of note events in vocal melodies is influenced by the position in a
metrical cycle, we designed a model for simultaneously tracking vocal onsets
and metrical accents. Vocal onset detection in multi-instrumental music oc-
curred, in fact, to be one of the hardest MIR problems (scoring in the order of
35-40 % f-measure). It is arguably even harder in OTMM because of the ex-
pressive singing style: vocal onsets are often approached by portamentos. The
complementary metrical accent context proved to be an important ’stepping
stone’: the accuracy of vocal onset detection was increased reasonably for two
different usul types. We believe that the biggest potential of the model lies
in its generalisibility — applying it to singing material with different singing
style and meter is as easy as tuning its parameters.

The most important advantage of the metric-accent models is that they do not
necessarily depend on external sources of information such as music scores.

6.2 Summary of contributions
A summary of the specific contributions from the work presented in the dis-
sertation are listed below.

6.2.1 Scientific contributions
We hope that the outcomes of this work will motivate researchers to use more
often music context knowledge in future work. Some particular contributions
are:

• We showed that a model of complementary context can be adapted to
a different music tradition (the syllable-duration-aware model has been
applied to two different traditions). Both the temporal structure and the
metrical cycle are facets, characteristic for many music tradition. This
means that transferring the model to another music style is a matter
of compacting the music knowledge context into an appropriate set of
rules/patterns.

• We conceptualized the interaction of phoneme transitions to other mu-
sical facets. These interactions were represented as hidden variables and
their dependences in DBNs. DBNs are an elegant modeling tool (we
presented illustrated the model dependencies in diagrams).

• Inference in DBNs is computationally demanding. Therefore, we pro-
posed several implementation simplifications.
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6.2.2 Other contributions

• We compiled several datasets of OTMM and jingju with annotations of
different music facets including lyrics, vocal sections, onsets of singing
voice, beats.

• The most successful LAA approach developed, the syllable-duration-
aware LAA, was integrated into Dunya-web. It can enable musicologists
to track not only the aligned lyrics, but also complementary musical
facets and music-specific phenomena.

• All the methodologies presented in this thesis are implemented as modu-
lar and easy-to-extend software. A special focus has been put on making
them reproducible. To our knowledge this is the first open source soft-
ware for lyrics-to-audio alignment that is based on computational study.

6.3 Future directions
In chapter 5, the relation of metrical accents to lyrics is not modeled directly.
Instead, we built two separate DBNs: one for the relation of metrical accents
to the positions of onsets (attacks) of sung notes (Section 5.3) and one for
the relation of phoneme transitions on vocal onsets (Section 5.4). In this way,
the influence of metrical events on syllable transitions is represented implicitly
through its influence on note onsets, which are in turn influenced by metrical
events. The two models can be combined in the future by adding to the vocal
note state detection DBN (Figure 5.1) a hidden state for the phoneme state
that is dependent on the vocal note state. This dependence is presented in
the DBN in Figure 5.4.

In fact, for cases of vowels held long on the same pitch, conceptually the
presence of the onset is not capable of bringing any benefit. Same pitched long
vowels can be handled by the syllable-duration-aware model. In this respect
the models aware of different context facets of chapters 4 and 5 complement
each other. Therefore, we expect that in the future it will be beneficial that
they are combined into one.

We believe that the methods presented in this dissertation generalize to any
musics, which share principles akin to these of the evaluated music traditions.
Highly variable durations of sung syllables is common in some genres such
as for example soul and jazz singing. Still, deviation from the reference note
values in the musical score is acceptable only to a limited extent. This set-
ting is similar to that of OTMM. Applying insights and methodologies from
this culture-specific study can open up and make the existing computational
methods more versatile. We hope that in the future researchers can apply
and extend the outcomes of this work to improve and enrich existing MIR
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methods, thus fulfilling one of the ultimate goals of the CompMusic project
(Serra et al., 2013).

A web page with links to materials accompanying this manuscript is available
at http://compmusic.upf.edu/phd-thesis-georgi

http://compmusic.upf.edu/phd-thesis-georgi


Appendix A

Applications

Researchers of the CompMusic team have created a web application called
Dunya-web1 to showcase the technologies developed within the CompMusic
project. Dunya-web is an application aimed at culture-aware music discovery
(Porter et al., 2013). Dunya-web has a makam part, representing algorithms
developed for the computational analysis of OTMM (Şentürk et al., 2015).
Dunya-web stores all the audio recordings (including the datasets described
in Section 3.2) and music scores, together with the lyrics.

The users can navigate the audio collection by searching or filtering by record-
ings, compositions, artists, makams, musical forms and/or usuls. Users can
play the recordings and examine musical facets synchronous to the audio play-
back. Musical facets like pitch, the score, the tonic are visualized in a user-
intuitive way.

The most successful LAA approach, developed in this thesis, is the phonetic
recognizer, aware of syllable durations. We integrated its python implementa-
tion into Dunya-web for a subset of the OTMM corpus available in Dunya-web
(see Fig. A.1). This subset includes vocal recordings in the şarkı form with
music scores and lyrics information available.

The ease of use of Dunya-web and its intuitive interface allows expert users
(e.g. music aficionados, musicologists and/or music students) to follow the
aligned lyrics, while listening to the audio. Simultaneously, the acoustic fea-
tures, representing the timbral differences of phonemes are displayed. The
MFCC feature vectors are hard to interpret visually. Instead, it is a com-
mon practice to invert the first 12 coefficients back to mel-bands domain for
visualization2.

1http://dunya.compmusic.upf.edu/makam
2MFCC are inverted by https://tinyurl.com/y9swfbhf
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Figure A.1: Dunya-web: an interface for the discovery of the music traditions
of the world. The part on aligning automatically lyrics in vocal recordings of
the OTMM şarkı form is presented.
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Rong Gong, Nicolas Obin, Georgi Dzhambazov, and Xavier Serra. Score-
informed syllable segmentation for jingju a cappella singing voice with
mel-frequency intensity profiles. In Proceedings of 7th International Work-

shop on Folk Music Analysis (FMA 2017), Malaga, Spain, 14/06/2017
2017. doi: https://doi.org/10.5281/zenodo.556820. URL http://mtg.

upf.edu/node/3732.

Publication outside the CompMusic project, relevant to an extent for

the thesis

Georgi Dzhambazov. Towards a drum transcription system aware of bar
position. In Audio Engineering Society Conference: 53rd International Con-

ference: Semantic Audio. Audio Engineering Society, 2014. URL https:

//www.researchgate.net/publication/283599561_Towards_

a_drum_transcription_system_aware_of_bar_position.

Georgi Dzhambazov and Rolf Bardeli. Automatic sentence boundary
detection for German broadcast news. In Proceedings of 10. ITG Sym-

posium on Speech Communication, pages 1–4. VDE, 2012. URL https:

//www.researchgate.net/publication/260133087_Automatic_

Sentence_Boundary_Detection_for_German_Broadcast_News.
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