
hxform and Coordinate Transform Standards

Bob Weigel
George Mason University

DASH Meeting, Session 6
Interoperability between Python Packages

10/10/2023



Outline

1. hxform
○ Thin wrapper for coordinate transforms with back-ends of 

SpacePy (Native Python and IRBEM Fortran versions), 
Tsyganenko's Geopack-08 library (Fortran), cxform (c); Spiceypy 
and SunPy support may be added.

2. Space Time Coordinate Transform (STCT) Standards Working Group
○ See Draft Poster and Meeting Notes
○ Motivation: Experience with HAPI and hxform

3. Answers to Rebecca’s Questions

https://github.com/rweigel/hxform
https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=Tsyganenko%20Magnetic%20Field
https://github.com/edsantiago/cxform
https://docs.google.com/presentation/d/1tM7zvZY4N8mBCmXi97h3B4Z6B9RlOGhQ/edit#slide=id.p1
https://docs.google.com/document/d/1ZAVi_0wSdQuzl4FlEJ1smGgjM0iGKCN3kcvH3v1Xzgc/edit#heading=h.5wru9fjjgrne


1. hxform
● Thin wrapper for coordinate transforms with back-ends of SpacePy 

(Native Python and IRBEM Fortran versions), Tsyganenko's 
Geopack-08 library (Fortran), cxform (c); Spiceypy and SunPy support 
may be added.

● Motivation: Not one lib worked as-needed for all projects due to speed, 
compilation issues, up-to-date IGRF, needed transforms, bugs, etc.

● Has in-development code for intercomparing results and demos for 
non-wrapped packages such as SpiceyPy and SunPy.

● Not quite ready for sharing; developed for use by my students but not 
the general community (no pip install, docs need work, some poor 
implementation choices).

https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=Tsyganenko%20Magnetic%20Field
https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=Tsyganenko%20Magnetic%20Field
https://github.com/edsantiago/cxform


2. STCT Standards Working Group

NASA-sponsored project; started this year. Involves

● the development of a comprehensive standard for acronyms and 
definitions

and, at some level,

● the implementation of comprehensive software, services, and unit tests 
for coordinate transforms; and 

● understanding the uncertainty of transforms due to implementation 
choices.

Email list: https://groups.io/g/hdrl-stct/; Contact rweigel@gmu.edu for bi-weekly (Thursday @ noon) telecon invite

https://groups.io/g/hdrl-stct/
mailto:rweigel@gmu.edu


1. Why did your package choose the current method for coordinate 
representation and conversion?

Decision was based on 1. Ease to get working, 2. What worked for my given 
application.

3. Answers



2. What in Astropy coordinates is missing or incompatible with heliophysics 
coordinate systems & transformations in your work?

Does not support many common heliophysics transforms out-of-the box. 
Much time to learn their interface and conventions. 

I need to know if it fast for many transforms and how it handles IGRF 
updates?

3. Answers



3. If AstroPy is enough for your application, what changes need to be made in 
your software to adopt Astropy?

Comprehensive support of all existing transforms (those provided by 
SpacePy, cxform, and GEOPACK)

Very clear instructions on how to add new transforms.

3. Answers



4. If AstroPy is not enough, what capabilities are missing?

I am not sure if AstroPy is option I want.

Does it make sense for AstroPy to support transforms that require field line 
tracing? This will add many dependencies.

3. Answers



3. Answers

5. What do we need and what will that look like?

An important issue to work out is the fact that AstroPy (and SpiceyPy/SPICE) and 
Heliophysics developers work in fundamentally different ways. 

AstroPy/SpiceyPy/SPICE transform implementations account for more details. 
Heliophysics packages tend to be much easier to use, but omit options for 
possibly important details.

Current preference is for SpiceyPy/SunSpice/SPICE approach because it does 
one thing only, all details are stored in files that can be used in many languages, 
and it is what Heliophysics missions often use. 


