

### OSM seen from a GIS researcher: experiences & perspectives

Marco Minghini

Aizu-Wakamatsu, Fukushima, Japan | August 19, 2017



- Postdoctoral Research Fellow at Politecnico di Milano, Italy
  - research topics: Volunteered Geographic Information (VGI), Citizen Science, (geo)crowdsourcing & OpenStreetMap
- Secretary of the ISPRS (International Society for Photogrammetry and Remote Sensing) WG IV/4 "Collaborative Crowdsourced Cloud Mapping (C<sup>3</sup>M)" since 2016
- Charter Member of the Open Source Geospatial Foundation (OSGeo) since 2015
- OSM contributor since 2014 [username: mingo23]
- OSM teacher and mapathon organizer since 2015
- ✓ Voting Member of HOT since 2017
- Faculty Advisor of PoliMappers a YouthMappers chapter based at Politecnico di Milano, since 2016
  - https://wiki.openstreetmap.org/wiki/User:Mingo23



### Research on OSM

- Over the last few years, OSM has become a research topic on its own
  - → 5 core research areas (+ 50 research trends) were identified [1]:
    - x quality assessment and analysis
    - x assessment of contributors' behavior
    - x application to navigation and disaster
    - x traffic simulation and mobility
    - x indoor navigation models
- This presentation will focus on 3 recent research works on OSM:
  - 1. quality assessment of OSM road networks
  - 2. analysis of OSM contribution patterns
  - 3. use of OSM to generate Land Use/Land Cover maps

[1] Sehra S.S., Singh J. & Rai H.S. (2017). Using Latent Semantic Analysis to Identify Research Trends in OpenStreetMap. *ISPRS International Journal of Geo-Information*, 6(7), 195.

# Quality assessment of OSM road networks

Marco Minghini | Aizu-Wakamatsu – August 19, 2017

### **OSM** quality

- Increasing availability of open data from National Mapping Agencies and Commercial Mapping Companies usable as a source of comparison for VGI (and OSM) data, i.e. for extrinsic quality assessment
- Literature provides plenty of works assessing or comparing OSM quality against that of authoritative datasets:
  - strongly focused on road network
  - OSM compared to data from NMA (UK Ordnance Survey, French NMA, USGS TNM/TIGER, etc.) and CSC (Navteq, TeleAtlas, etc.)
  - semi- or fully-automated
- Comparison techniques are very strong and fit for purpose, but mostly application and dataset specific:
  - hard to replicate
  - difficult to extend to other dataset comparisons

5

### **Our methodology**

- Novel methodology to compare OSM and authoritative road datasets:
  - fully automated
  - Focused on spatial accuracy and completeness
  - flexible, i.e. not developed for a specific dataset
  - built with FOSS4G (Free and Open Source Software for Geospatial)
    - **x** reusable and extensible in case of need

### Our methodology – Overview

- Currently developed as 3 GRASS GIS modules:
  - written in Python
  - available with a Graphical User Interface (GUI)
- Comparison between the OSM & the reference road network datasets composed of 3 consecutive steps:
  - I. Preliminary comparison of the datasets and computation of global statistics
  - 2. Geometric preprocessing of the OSM dataset to extract a subset which is fully comparable with the reference dataset
  - 3. Evaluation of OSM spatial accuracy using a grid-based approach
- Source code: https://github.com/MoniaMolinari/OSM-roads-comparison

### Case study: Paris



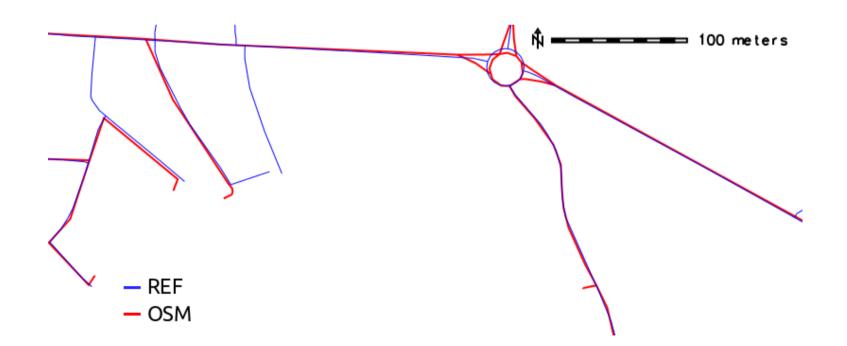
#### Marco Minghini | Aizu-Wakamatsu – August 19, 2017

POLITECNICO DI MILANO

8

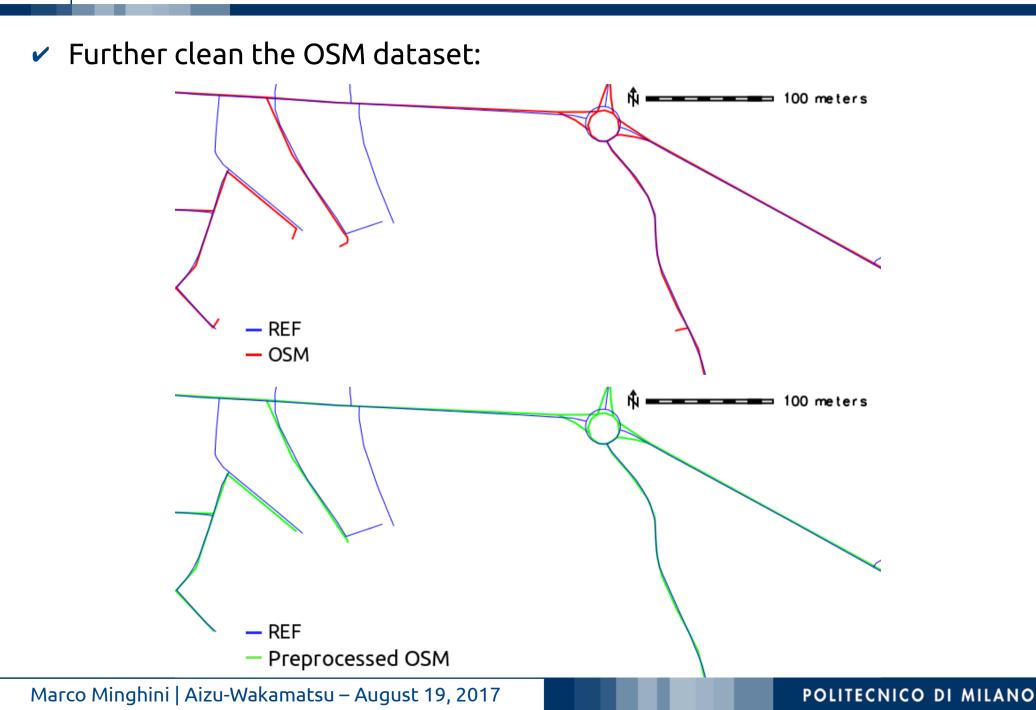
#### Step 1: Preliminary comparison of the datasets

- Compute the total length of the OSM and IGN datasets and their length difference, both in map units and percentage [*required*]
  - output values are returned in a text file


REF length: 2686373.1 m OSM length: 3124627.0 m REF-OSM difference: -438253.9 m (-16.3%)

 $x \cong 450$  km more in OSM than IGN dataset!

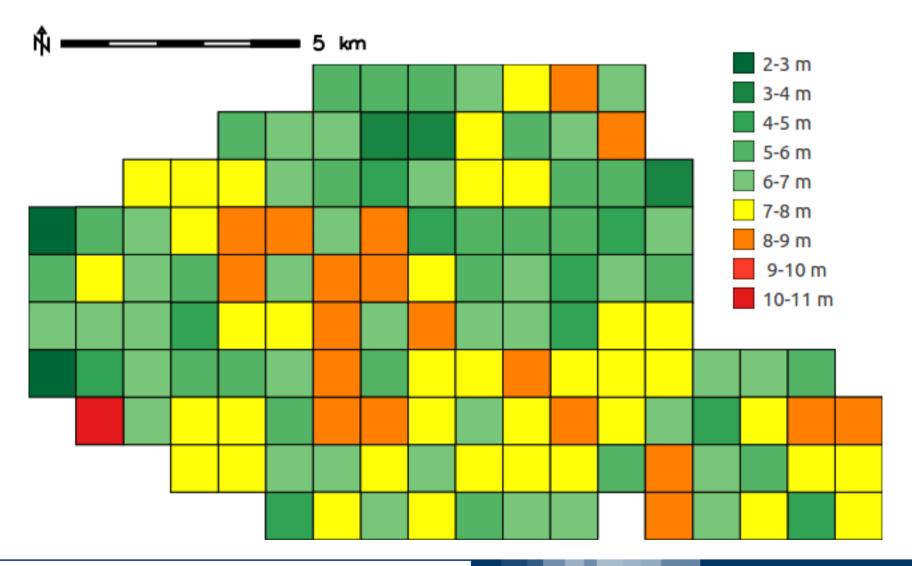
```
BUFFER(m)|OSM IN(m)|OSM IN(%%)|OSM OUT(m)|OSM OUT(%%)|REF IN(m)|REF IN(%%)|REF OUT(m)|REF OUT(%%)
1.0 | 1374755.9 | 44.0 | 1749871.2 | 56.0 | 1366471.0 | 50.9 | 1319902.1 | 49.1
2.0 2014259.9 64.5 1110367.2 35.5 1982713.7 73.8 703659.4 26.2
3.0 2298072.4 73.5 826554.6 26.5 2223153.5 82.8 463219.6 17.2
4.0 2464185.0 78.9 660442.0 21.1 2329270.3 86.7 357102.8 13.3
5.0 2582784.2 82.7 541842.9 17.3 2387687.7 88.9 298685.4 11.1
6.0 2671758.8 85.5 452868.2 14.5 2424463.5 90.3 261909.6 9.7
7.0 2738327.0 87.6 386300.0 12.4 2451476.9 91.3 234896.2 8.7
8.0 2792053.8 89.4 332573.2 10.6 2471557.1 92.0 214816.0 8.0
9.0 2828903.0 90.5 295724.1 9.5 2488514.1 92.6 197859.0 7.4
10.0 2859512.1 91.5 265114.9 8.5 2501974.7 93.1 184398.4 6.9
11.0 2886190.1 92.4 238436.9 7.6 2513592.9 93.6 172780.2 6.4
12.0 2908071.9 93.1 216555.1 6.9 2523138.5 93.9 163234.6 6.1
13.0 2925602.0 93.6 199025.1 6.4 2532070.5 94.3 154302.6 5.7
14.0 2941922.8 94.2 182704.2 5.8 2540322.9 94.6 146050.2 5.4
15.0 2956112.7 94.6 168514.3 5.4 2548274.0 94.9 138099.1 5.1
16.0 2967813.5 95.0 156813.5 5.0 2555431.5 95.1 130941.6 4.9
17.0 2977318.7 95.3 147308.3 4.7 2562238.1 95.4 124135.0 4.6
18.0 2986371.8 95.6 138255.2 4.4 2568276.5 95.6 118096.6 4.4
19.0 2994833.4 95.8 129793.7 4.2 2574052.2 95.8 112320.9 4.2
20.0 3001796.0 96.1 122831.1 3.9 2579434.1 96.0 106939.0 4.0
```


### Step 2: preprocessing of the OSM dataset

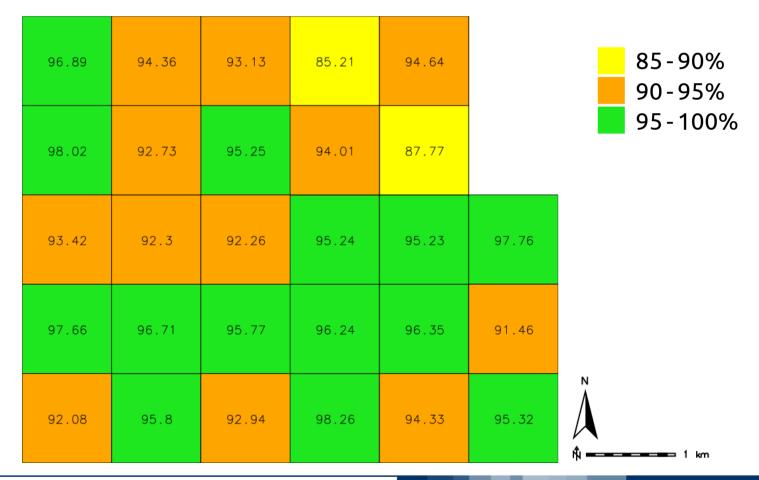
- Cleaning of OSM dataset to make it comparable with IGN dataset
- Apply a buffer of user-specified width around the IGN dataset
  - suitable buffer width derived from Step 1
  - delete all the OSM roads falling outside the buffer



data © IGN and © OpenStreetMap contributors


#### Step 2: preprocessing of the OSM dataset

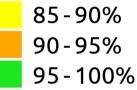



Use a grid to take into account OSM heterogeneous nature:

| 😣 🗖 🗊 v.osm.ac     | c [vector, OSM, accuracy]                         |                   |
|--------------------|---------------------------------------------------|-------------------|
| Tool for accura    | cy assessment of OSM data                         |                   |
| Required           | Vector grid for comparison:                       | (grid=name)       |
| Grid               | GRID_2                                            |                   |
| Deviation analysis | Coordinates of the upper left grid corner (x,y):  | (ul_grid=string)  |
| Optional           | Coordinates of the lower right grid corner (x,y): | (lr_grid=string)  |
| Command output     |                                                   |                   |
|                    | Width and height for boxes in grid (map units):   | (box_grid=string) |
|                    | Name for the grid vector output map:              | (output=name)     |
|                    | Close Run Copy                                    |                   |
| v.osm.acc osm=OSM  | M_2_PREPROC ref=IGN_2 grid=GRID_2                 |                   |

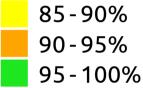
- ✓ For each grid cell, find the OSM maximum deviation from IGN:
  - generalization threshold = 0.5 m, buffer = 11 m, OSM length % = 95




- For each grid cell, evaluate OSM accuracy against one or more target values of OSM deviation from IGN:
  - Iength percentage of OSM roads included in the target buffer
  - Area 2: target buffer = 6 m



POLITECNICO DI MILANO


- For each grid cell, evaluate OSM accuracy against one or more target values of OSM deviation from IGN:
  - Iength percentage of OSM roads included in the target buffer
  - Area 2: target buffer = 8 m

| 98.42 | 97.29 | 96.35 | 93.23 | 98.1  |       | 8.<br>9   |
|-------|-------|-------|-------|-------|-------|-----------|
| 99.03 | 95.86 | 97.86 | 95.85 | 94.22 |       | 9.        |
| 95.92 | 95.64 | 95.11 | 97.87 | 97.93 | 99.37 |           |
| 99.2  | 98.38 | 98.84 | 98.22 | 98.42 | 97.44 |           |
| 96.35 | 98.23 | 97.92 | 99.25 | 97.1  | 98.53 | ŵ <b></b> |



- For each grid cell, evaluate OSM accuracy against one or more target values of OSM deviation from IGN:
  - Iength percentage of OSM roads included in the target buffer
  - Area 2: target buffer = 10 m

| 99.67 | 98.82 | 97.68 | 97.39 | 99.32 |       | 8<br>9           |
|-------|-------|-------|-------|-------|-------|------------------|
| 99.44 | 99.13 | 99.17 | 98.78 | 98.22 |       | 9                |
| 99.16 | 98.87 | 98.39 | 99.57 | 99.44 | 99.88 |                  |
| 99.81 | 99.65 | 99.59 | 99.57 | 99.71 | 99.47 |                  |
| 99.3  | 99.43 | 99.3  | 99.8  | 98.81 | 99.56 | ĥ <b>— — — —</b> |





### Analysis of OSM contribution patterns

Marco Minghini | Aizu-Wakamatsu – August 19, 2017

### Tagging in OSM

- OSM applies a folksonomy approach to tagging with no formal rules or ontologies forced
  - tagging rule-book is the OSM Map Features wiki page
    - **x** guidance on which tags and combinations of tags to use

#### Used on these elements



#### Useful combination

- name=\*
- Address
- operator=\*
- cuisine=\*
- opening\_hours=\*
- website=\*
- phone=\*

### Tagging in OSM

- OSM applies a folksonomy approach to tagging with no formal rules or ontologies forced
  - tagging rule-book is the OSM Map Features wiki page
    - **x** guidance on which tags and combinations of tags to use
  - taginfo shows that this guidance may not be universally adopted!

| menity=i                  | restaurant   |          |           |         |           |                           |
|---------------------------|--------------|----------|-----------|---------|-----------|---------------------------|
| Overview                  | Combinations | Мар      | Wiki      | Pro     | ojects    |                           |
| Combinat<br>This table sh |              | st commo | on comb   | oinatio | ons of th | ne most common tag        |
| ┥ 🖣 🛛 Page                | a 1 of 13    |          | ې ل       | SON     | Displa    | ying 1 to 11 of 135 items |
|                           | Count →      |          | Other ta  | ags     |           |                           |
| 687 829                   | 91.36%       |          | name=*    |         |           |                           |
| 329 005                   | 43.70%       |          | cuisine=  | :*      |           |                           |
| 246 939                   | 32.80%       |          | addr:str  | eet=*   |           |                           |
| 204 893                   | 27.22%       |          | addr:ho   | usenum  | iber=*    |                           |
| 180 841                   | 24.02%       |          | addr:city | y=*     |           |                           |
| 168 643                   | 22.40%       |          | addr:pos  | stcode= | :*        |                           |
| 140 042                   | 18.60%       |          | building  | =*      |           |                           |
| 127 409                   | 16.92%       |          | building  | =yes    |           |                           |
| 113 375                   | 15.06%       |          | phone=*   | •       |           |                           |
| 111 769                   | 14.85% 💻     |          | website   | =*      |           |                           |
| 93 607                    | 12.43%       |          | source=   | *       |           |                           |

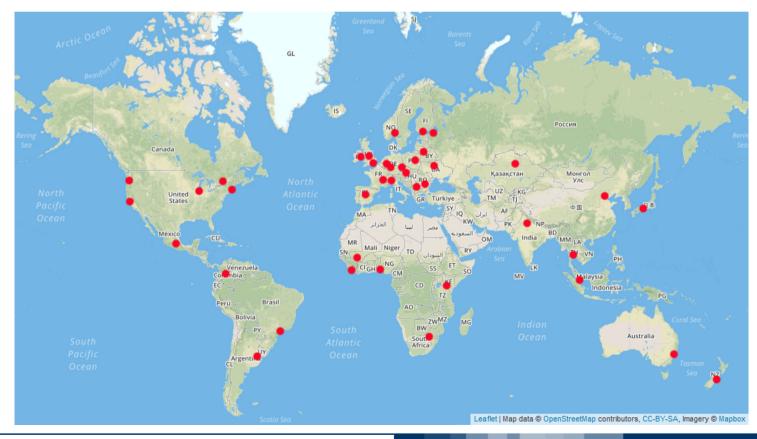
#### Used on these elements



#### Useful combination

- name=\*
- Address
- operator=\*
- cuisine=\*
- opening\_hours=\*
- website=\*
- phone=\*

#### Marco Minghini | Aizu-Wakamatsu – August 19, 2017


#### Analysis of OSM tagging practices

- Research questions:
  - do OSM contributors comply to the suggested combinations of tags?
  - does this compliance vary spatially?
- Selection of 10 among the most frequently occurring tags in OSM

| Target Tag          | TagInfo Ranking | Number of Objects |
|---------------------|-----------------|-------------------|
| highway=residential | 2               | 34,688,039        |
| natural=tree        | 17              | 7,019,552         |
| highway=footway     | 18              | 6,126,861         |
| highway=path        | 24              | 4,506,593         |
| highway=tertiary    | 25              | 4,328,513         |
| amenity=parking     | 52              | 2,061,012         |
| highway=primary     | 59              | 1,869,021         |
| highway=bus_stop    | 66              | 1,677,724         |
| railway=rail        | 69              | 1,584,142         |
| leisure=pitch       | 93              | 977,983           |

#### Analysis of OSM tagging practices

- Research questions:
  - do OSM contributors comply to the suggested combinations of tags?
  - does this compliance vary spatially?
- Selection of 10 among the most frequently occurring tags in OSM
- Selection of 40 world cities



Marco Minghini | Aizu-Wakamatsu – August 19, 2017

21

#### Methodology

- For each city, for each target tag and for each of the suggested tags to be used in combination:
  - computation of the fraction of objects containing both the target tag and the suggested tag
  - mapping of the fraction to a 5 part Likert Scale
    - **×** 0-20% POOR
    - × 20-40% FAIR
    - **×** 40-60% AVERAGE
    - **×** 60-80% GOOD
    - × 80-100% EXCELLENT
- Example: Christchurch (New Zealand), tag *leisure=pitch*

Report for Tag: leisure=pitchTotal number of objects: 470sport36477.5%GOODsurface429.0%POORTotal number of different tags used: 26

Marco Minghini | Aizu-Wakamatsu – August 19, 2017

### **Results**

#### highway=residential

| KEY            | Poor    | Fair   | Average | Good   | Excellent |
|----------------|---------|--------|---------|--------|-----------|
| name<br>oneway | 8<br>34 | 1<br>5 | 7<br>1  | 5<br>0 | 19<br>0   |
| oneway         | 54      | 5      | 1       | 0      | 0         |

✓ natural=tree

| KEY           | Poor | Fair | Average | Good | Excellent |
|---------------|------|------|---------|------|-----------|
| circumference | 38   | 0    | 1       | 0    | 1         |
| taxon         | 38   | 0    | 0       | 0    | 2         |
| leaf_type     | 34   | 2    | 2       | 1    | 1         |
| start_date    | 39   | 0    | 0       | 1    | 0         |
| height        | 37   | 0    | 1       | 0    | 2         |
| denotation    | 36   | 1    | 2       | 0    | 1         |
| genus         | 38   | 1    | 1       | 0    | 0         |
| species       | 35   | 1    | 2       | 0    | 2         |

highway=primary

| KEY   | Poor | Fair | Average | Good | Excellent |
|-------|------|------|---------|------|-----------|
| lanes | 10   | 10   | 6       | 6    | 8         |
| ref   | 8    | 10   | 6       | 2    | 14        |
| name  | 0    | 2    | 4       | 10   | 24        |

#### **Results**

|   | highway=bus_stop |                     |            |         |       |        |         |      |       |           |
|---|------------------|---------------------|------------|---------|-------|--------|---------|------|-------|-----------|
|   | nignway=bus_s    | ыор                 | KE         | Y       | Poor  | Fair . | Average | Good | d Exc | ellent    |
|   |                  |                     | opera      | tor     | 28    | 4      | 2       | 3    |       | 3         |
|   |                  |                     | public_tra | ansport | 21    | 7      | 5       | 3    |       | 4         |
|   |                  |                     | nam        | ie      | 3     | 4      | 3       | 9    |       | 21        |
|   |                  |                     |            |         |       |        |         |      |       |           |
| ~ | leisure=pitch    | KEY                 |            | Poor    | Fair  | Aver   | age G   | ood  | Exce  | llent     |
|   |                  |                     | sport      | 0       | 2     | 7      |         | 16   | 1     | 5         |
|   |                  |                     | surface    | 40      | 0     | 0      |         | 0    | С     | )         |
|   |                  |                     |            |         |       |        |         |      |       |           |
| ~ | Summary:         | Tag                 |            | Keys    | Poor  | Fair   | Avera   | ge   | Good  | Excellent |
|   |                  | highway=p           | rimary     | 3       | 15.00 | 18.33  | 13.3    | 3    | 15.00 | 38.33     |
|   |                  | highway=te          | 0          | 4       | 40.00 | 20.00  | 13.7    | 5    | 14.38 | 11.88     |
|   |                  | highway=bu          | is-stop    | 3       | 43.33 | 12.50  | 8.33    |      | 12.50 | 23.33     |
|   |                  | railway=            | rail       | 9       | 46.39 | 18.61  | 12.7    | 3    | 11.67 | 10.56     |
|   |                  | leisure=p           | itch       | 2       | 50.00 | 2.50   | 8.75    |      | 20.00 | 18.75     |
|   |                  | highway=residential |            | 2       | 52.50 | 7.50   | 10.0    | )    | 6.25  | 23.75     |
|   |                  | amenity=parking     |            | 6       | 90.83 | 6.67   | 2.50    |      | 0.00  | 0.00      |
|   |                  | highway=path        |            | 7       | 91.78 | 5.71   | 2.50    |      | 0.00  | 0.00      |
|   |                  | natural=            | tree       | 8       | 92.19 | 1.56   | 2.81    |      | 0.62  | 2.81      |
|   |                  | highway=fo          | otway      | 6       | 94.58 | 4.58   | 0.83    |      | 0.00  | 0.00      |

#### POLITECNICO DI MILANO

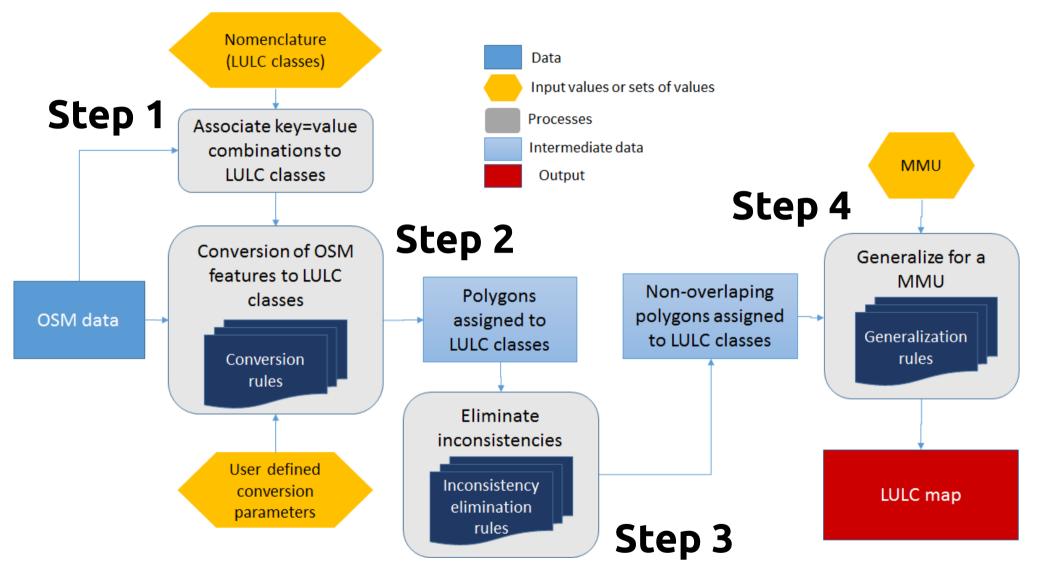


### Use of OSM to generate Land Use/ Land Cover maps

#### Land Use/Land Cover (LULC) maps

- LULC maps are crucial products for multiple areas of application:
  - modeling climate and biochemistry of the Earth
  - biodiversity monitoring
  - natural resources management
  - planning/urban studies
  - many others
- LULC maps are created through the classification of satellite imagery and validated using reference data:
  - the creation and updating process is long, costly & time-consuming

     insufficient to describe rapidly-changing environments
  - the level of detail and spatial coverage are inadequate for many applications


### **OSM** as a source of LULC maps

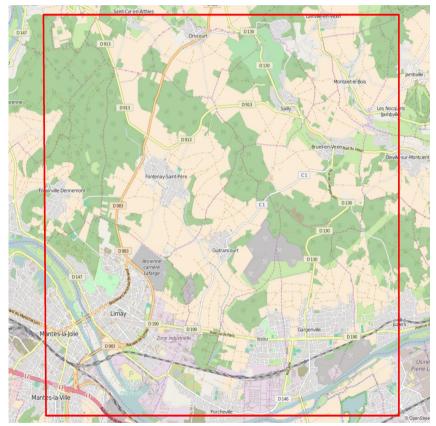
- Exploiting OSM as a source for LULC maps has a number of advantages:
  - OSM full spatial coverage in the world
  - OSM richness
  - OSM non-stop updating
  - OSM open license
- Exploiting OSM as a source for LULC maps has some disadvantages:
  - OSM uneven spatial coverage
  - OSM positional accuracy & geometrical inconsistencies
  - OSM semantic inconsistencies
- Purpose: creating an automated procedure which converts OSM data in a specific area into a LULC map
  - reference nomenclatures of current EU and global LULC maps (e.g. Urban Atlas, Corine Land Cover, GL30)

#### Example of nomenclature: Urban Atlas

| Level 1                         | Level 2                                                                                      | Level 3                                                                                                                                                                                         |
|---------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | <b>1.1</b> Urban Fabric                                                                      | <ul> <li>1.1.1 Continuous urban fabric</li> <li>1.1.2 Discontinuous urban fabric</li> <li>1.1.3 Isolated Structures</li> </ul>                                                                  |
| <b>1</b> Artificial<br>Surfaces | <b>1.2</b> Industrial,<br>commercial,<br>public, military,<br>private and<br>transport units | <ul> <li>1.2.1 Industrial, commercial, public, military and private units</li> <li>1.2.2 Road and rail network and associated land</li> <li>1.2.3 Port areas</li> <li>1.2.4 Airports</li> </ul> |
|                                 | <b>1.3</b> Mine, dump<br>and construction<br>sites                                           | <ul> <li><b>1.3.1</b> Mineral extraction and dump sites</li> <li><b>1.3.3</b> Construction sites</li> <li><b>1.3.4</b> Land without current use</li> </ul>                                      |
|                                 | <b>1.4</b> Artificial non-<br>agricultural<br>vegetated areas                                | <b>1.4.1</b> Green urban areas<br><b>1.4.2</b> Sports and leisure facilities                                                                                                                    |
| 2 Agricultur                    | al, semi-natural area                                                                        | s, wetlands                                                                                                                                                                                     |
| <b>3</b> Forests                |                                                                                              |                                                                                                                                                                                                 |
| 5 Water                         |                                                                                              |                                                                                                                                                                                                 |

#### Methodology to convert OSM into LULC maps

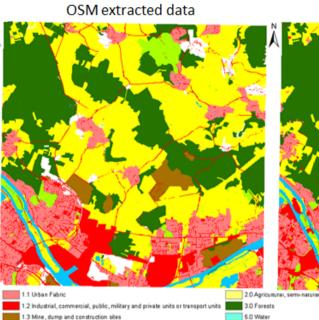



Source code: https://github.com/JoaquimPatriarca/senpy-for-gis

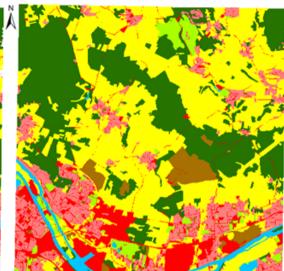
Web service: http://vgi.mat.uc.pt/vgi/osm/osm2lulc – work in progress!

Marco Minghini | Aizu-Wakamatsu – August 19, 2017

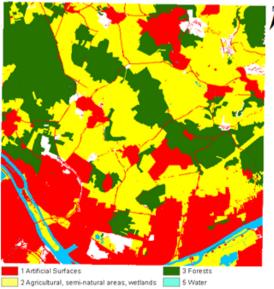
#### Case studies


Paris area




© OpenStreetMap contributors

evel 1.


Level 2



1.3 Mine, dump and construction sites 1.4 Artificial non-agricultural vegetated areas



Urban Atlas



 Klometers

Marco Minghini | Aizu-Wakamatsu – August 19, 2017

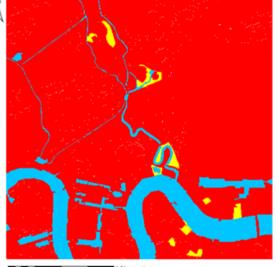
Case studies

#### London area



© OpenStreetMap contributors




OSM extracted data

Level 2

Level 1

<image>





0 0.5 1 2 3 4



Areas [ha] occupied by Level 2 classes associated to the overlapping regions in the Urban Atlas & the OSM-derived maps – Paris study area

| PARIS                 |     | Class | ons in | Match/ |     |      |      |     |                |
|-----------------------|-----|-------|--------|--------|-----|------|------|-----|----------------|
|                       |     | 1.1   | 1.2    | 1.3    | 1.4 | 2    | 3    | 5   | Row<br>Sum (%) |
|                       | 1.1 | 967   | 106    | 1      | 11  | 50   | 24   | 1   | 83             |
| Classes               | 1.2 | 186   | 640    | 37     | 20  | 50   | 13   | 3   | 67             |
| assigned to           | 1.3 | 19    | 24     | 227    | 0   | 45   | 7    | 0   | 71             |
| the<br>overlapping    | 1.4 | 56    | 26     | 0      | 161 | 57   | 6    | 5   | 52             |
| regions in            | 2   | 108   | 148    | 33     | 43  | 3545 | 124  | 10  | 88             |
| UA                    | 3   | 21    | 28     | 11     | 44  | 138  | 2425 | 5   | 91             |
|                       | 5   | 3     | 4      | 1      | 1   | 6    | 5    | 221 | 92             |
| Match/Colu<br>Sum (%) |     | 71    | 66     | 73     | 57  | 91   | 93   | 90  | 85             |



Areas [ha] occupied by Level 2 classes associated to the overlapping regions in the Urban Atlas & the OSM-derived maps – London study area

| LONDON                |     | Class | ons in | Match/ |     |    |   |      |                |
|-----------------------|-----|-------|--------|--------|-----|----|---|------|----------------|
|                       |     | 1.1   | 1.2    | 1.3    | 1.4 | 2  | 3 | 5    | Row<br>Sum (%) |
|                       | 1.1 | 2346  | 796    | 16     | 86  | 8  | 2 | 21   | 72             |
| Classes               | 1.2 | 525   | 2323   | 214    | 174 | 32 | 8 | 86   | 69             |
| assigned to           | 1.3 | 25    | 51     | 18     | 26  | 5  | 3 | 7    | 14             |
| the<br>overlapping    | 1.4 | 19    | 111    | 5      | 644 | 17 | 5 | 18   | 79             |
| regions in            | 2   | 5     | 18     | 41     | 23  | 3  | 3 | 9    | 3              |
| ŪA                    | 3   | 0     | 0      | 0      | 0   | 0  | 0 | 0    | 0              |
|                       | 5   | 12    | 22     | 8      | 5   | 0  | 0 | 1107 | 96             |
| Match/Colu<br>Sum (%) |     | 80    | 70     | 6      | 67  | 4  | 0 | 89   | 73             |

### **References**

- Antunes F., Fonte C.C., Brovelli M.A., Minghini M., Molinari M.E. & Mooney P. (2015) Assessing OSM Road Positional Quality with Authoritative Data. *Proceedings of the VIII Conferência Nacional de Cartografia e Geodesia*, Lisbon (Portugal), October 29-30, 2015.
- Brovelli M.A., Minghini M., Molinari M.E. & Mooney P. (2017) Towards an automated comparison of OpenStreetMap with authoritative road datasets. *Transactions in GIS* 21(2), 191-206.
- Brovelli M.A., Minghini M. & Molinari M.E. (2016) An automated GRASS-based procedure to assess the geometrical accuracy of the OpenStreetMap Paris road network. *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, Volume XLI-B7, 919-925.
- Brovelli M.A., Minghini M., Molinari M.E. & Mooney P. (2015) A FOSS4G-based procedure to compare OpenStreetMap and authoritative road network datasets. *Geomatics Workbooks* 12, 235-238.
- Davidovic N., Mooney P., Stoimenov L. & Minghini M. (2016) Tagging in Volunteered Geographic Information: An Analysis of Tagging Practices for Cities and Urban Regions in OpenStreetMap. ISPRS International Journal of Geo-Information 5(12), 232.
- Fonte C.C., Minghini M., Patriarca J., Antoniou V., See L. & Skopeliti A. (2017) Generating Up-to-Date and Detailed Land Use and Land Cover Maps Using OpenStreetMap and GlobeLand30. *ISPRS International Journal of Geo-Information* 6(4), 125.
- ✓ Fonte C.C., Patriarca J., Minghini M., Antoniou V., See L. & Brovelli M.A. (2017) Using OpenStreetMap to Create Land Use and Land Cover Maps: Development of an Application. In: *Volunteered Geographic Information and the Future of Geospatial Data*. IGI Global, 113-137.
- Fonte C.C., Minghini M., Antoniou V., See L., Patriarca J., Brovelli M.A. & Milcinski G. (2016) An automated methodology for converting OSM data into a land use/cover map. *Proceedings of the 6th International Conference on Cartography & GIS* 1, 462-473, Albena (Bulgaria), June 13-17, 2016.

- Thanks to all the amazing people I have worked with on these exciting topics!
  - Vyron Antoniou
  - Francisco Antunes
  - Maria Antonia Brovelli
  - Cidália Costa Fonte
  - Nikola Davidovic
  - → Monia Elisa Molinari
  - Peter Mooney
  - Joaquim Patriarca
  - → Linda See
  - Andriani Skopeliti
  - Leonid Stoimenov
- Thanks to all OSM contributors for making this possible :)



## **Thank you!** Marco Minghini

#### Politecnico di Milano Dept. Of Civil and Environmental Engineering | GEOlab

marco.minghini@polimi.it | @MarcoMinghini

This presentation can be downloaded from here:



### Special Issue on JGS on VGI

- The Journal of Geographical Systems (JGS) is an interdisciplinary journal aiming to encourage and promote high quality scholarship on important theoretical, methodological & empirical issues with a central spatial or regional dimension
  - Impact Factor: 1.314 (2016), Journal Citation Reports®
- Special Issue "Volunteered Geographic Information: Looking Towards the Next 10 Years":
  - the first 10 years of VGI have seen an explosion of activity, particularly in the form of projects such as OpenStreetMap – but what will the next 10 years hold?
  - Guest Editors:
    - × Linda See, IIASA, Austria
    - × Cidália Costa Fonte, University of Coimbra, Portugal
    - × Vyron Antoniou, Hellenic Military Geographical Service, Greece
    - 🗴 Marco Minghini, Politecnico di Milano, Italy