Available data from South African Voyages in the Southern Ocean

Authors: Riesna R. Audh, Jessica Burger, Dayna Collins, Amelia Deary, Sarah E. Fawcett, Katye Altieri, and Marcello Vichi

This document provides an overview of data produced during South African voyages in the Southern Ocean aboard the R/V S.A. Agulhas II and is accompanied by a .xlsx file that contains the metadata and links to the published datasets. Each voyage has a dedicated sheet within the .xlsx file.

This document will be updated, and a new version published as more data becomes available. Please refer to the most recent version on <u>https://zenodo.org/communities/scale_south_africa/</u>

This is a data curation document only. Any use of the data mentioned in this document should reference the original dataset and authors.

1. South African voyages in the Southern Ocean

Table 1. Voyages in the Southern Ocean aboard the R/V S.A. Agulhas II.

Voyage	Dates	Report
Winter 2017	28/06/2017 - 13/07/2017	https://doi.org/10.5281/zenodo. 7038073
SANAE58/Weddell Sea Expedition 2019	07/12/2018 - 15/03/2019	https://doi.org/10.17863/CAM. 58103
SCALE Winter 2019	18/07/2019 - 07/08/2019	https://doi.org/10.5281/zenodo. 5906324
SCALE Spring 2019	12/10/2019 - 20/11/2019	https://doi.org/10.5281/zenodo. 5906324
SCALE Winter 2022	12/07/2022 - 31/07/2022	https://doi.org/10.5281/zenodo. 7902557

2. Data

Figure 1. Map of data generated during South African cruises in the Southern Ocean aboard the R/V S.A. Agulhas II from 2017 - present. Ocean data are indicated by the triangles, sea-ice data by the circles and atmospheric data by the thick shaded lines. The solid lines indicate the ship track during the voyage as well as the continuous surface ocean measurements from the vessel underway system. The symbols and lines are coloured according to the voyage. The AMSR-2 satellite-derived location of the sea ice edge during each voyage is indicated by the correspondingly coloured dashed lines (Spreen et al., 2008).

A common term is used to refer to a group of variables in a specific dataset. Any extra variables are listed accordingly. Note: methods for the collection and processing of the data are available it the published works (section 3) and with the published datasets.

Table 2.	Variables	associated	with the	common	term used	in the	.xlsx document.	

Common Term	Variables Associated	
BGC	Chlorophyll (Chl-a) Ammonium (NH ₄) Nitrate + Nitrite (NO ₃ +NO ₂) Nitrite (NO ₂) Phosphate (PO ₄) Silicate (Si) Nitrate (NO ₃)	
Ocean Physics	Temperature Salinity Oxygen Isotopes (δ ¹⁸ Ο) Oxygen	

Sea ice Physics	Temperature Salinity
Sea ice Crystal Structure	Ice texture classification Cross polarised images
Atmospheric NO ₃ ⁻ isotopes	Nitrate concentration (NO ₃ ⁻) Nitrogen isotopes (δ^{15} N-NO ₃ ⁻) Oxygen Isotopes (δ^{18} O-NO ₃ ⁻ and Δ^{17} O-NO ₃ ⁻)
Inorganic aerosol species (Fine (<1µm) and coarse (>1µm) modes)	Chloride Sulphate Phosphate Sodium Potassium Magnesium Calcium Nitrate Ammonium
Aerosol precursor gasses	DMS Ammonia
Meteorological data	SLP Wind direction Wind speed Air temperature Humidity

3. Publications

	Data used		
Publication	Voyage	Variables	
Skatulla, S., Audh, R.R., Cook, A., Hepworth, E., Johnson, S., Lupascu, D.C., MacHutchon, K., Marquart, R., Mielke, T., Omatuku, E. and Paul, F., 2022. Physical and mechanical properties of winter first-year ice in the Antarctic marginal ice zone along the Good Hope Line. <i>The</i> <i>Cryosphere</i> , <i>16</i> (7), pp.2899-2925.	SCALE Winter 2019	Ice core physics Ice core texture	
Johnson, S., Audh, R.R., de Jager, W., Matlakala, B., Vichi, M., Womack, A. and Rampai, T., 2023. Physical and morphological properties of first-year Antarctic sea ice in the spring marginal ice zone of the Atlantic-Indian sector. <i>Journal of Glaciology</i> , pp.1-14.	SCALE Spring 2019	Ice core physics Ice core texture Ice core BGC (δ^{18} O only)	
Burger, J.M., Granger, J., Joyce, E., Hastings, M.G., Spence, K.A. and Altieri, K.E., 2022. The importance of alkyl nitrates and sea ice emissions to atmospheric NO x sources and cycling in the summertime Southern Ocean marine boundary layer. <i>Atmospheric Chemistry and</i> <i>Physics</i> , 22(2), pp.1081-1096.	WSE2019	Atmospheric NO ₃ - isotopes	
Burger, J.M., Joyce, E., Hastings, M.G., Spence, K.A. and Altieri, K.E., 2023. A seasonal analysis of aerosol NO_3^- sources and NO_x oxidation pathways in the Southern Ocean marine boundary layer. <i>Atmospheric Chemistry and Physics</i> , 23(10), pp. 5605-5622.	WSE2019 SCALE Spring 2019 SCALE Winter 2019	Atmospheric NO3 ⁻ isotopes	
Zhou, L., Booge, D., Zhang, M., and Marandino, C. A.: Winter season Southern Ocean distributions of climate- relevant trace gases, Biogeosciences, 19, 5021–5040, https://doi.org/10.5194/bg-19-5021-2022, 2022.	SCALE Winter 2019	Aerosol precursor gasses	
Altieri, K. E., Spence, K. A. M., & Smith, S. (2021). Air- sea ammonia fluxes calculated from high-resolution summertime observations across the Atlantic Southern Ocean. Geophysical Research Letters, 48, e2020GL091963. https://doi.org/10.1029/2020GL091963	WSE2019	Aerosol precursor gasses	

Table 3. Publications associated with the data presented in this document.