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Fig !. Correlation heatmap of variable importance rank for top 100 variables. Each ntree & mtry 
combination was repeated 10 times, the resulting variable ranks were compared for each setup by cor-
relating ranks. Default forest size (500 trees) produces different importance ranking for each realisation: 
the resulting ranks don’t correlate neither within 500-tree forests, nor with the ranks of bigger forests. 
However, forests of 5000-40000 of trees yield ranks that are more similar to each other.  Thus, to get 
a reliable importance-ordered list of variables, bigger forest size is necessary. Mtry influence is lower. 
However, for mtry value, close to default (1/3 of variables, here 1030), a middle-size forest of 5000 trees 
yields a variable list, very similar to list of 20000-40000 trees.
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In biomarker research, the goal is to con-
struct an prediction rule on the basis of a 
small number of predictors. Formally, this 
means representing a macro-level response 
as a function of molecular features (DNA 
variants, transcript or protein abundancies) 
with minimal error. 

Develop a framework for selection of a 
composite biomarker: an ensemble of small 
number of predictors, that is able to predict 
the macro-level response.

To benchmark the process of construc-
tion of the composite biomarker, we use 
a mouse model. Mouse model has an ad-
vantage over human samples, as many con-
founding factors are controlled. Here we 
use measurements of 35 murine strains 
from the BXD recombinant inbred strain 
panel exposed to high-fat and chow diets.  

We use 2100 liver proteins measured 
with SWATH mass-spectrometry, used as a 
features to predict metabolic traits.

Biomarker identification procedure can be 
formulated as a feature selection problem. 
As omics datasets are inherently multivari-
ate with both independent and multicolline-
ar variables and only a few samples are typi-
cally available, this task is very challenging.
However, feature selection can also intro-
duce optimistic bias into statistical infer-
ence.
To realistically assess algorithm perfor-
mance, cross-validation approach is com-
monly used. If data-specific optimization pa-
rameters cannot be determined beforehand, 
internal cross-validation is also required. 
Each fold of cross-validation delivers a dif-
ferent signature. To be able to translate the 
combined signature to the clinic, we suggest 
to assess the stability of the signature iden-
tified.
Therefore, to determine which algorithms 
perform optimally, both feature selection 
stability and overall performance must be 
evaluated together.
We benchmark this pipeline on the Random 
Forest algorithm [1]. 

Algorithm parameter choice

Algorithm Performance

For highly correlated features, also predic-
tors selected are shared (see Venn diagram) 
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Totally, 115 metabol-

ic traits have been meas-
ured during the phenotyp-
ing program.  We selected 
6 traits, representative 
of each highly correlated 
group of phenotypes, but 
also representative of liv-
er physiology.

It is well known that algorithm parameters 
affect the performance, however, this aspect 
is much less explored for the stability stud-
ies. We show that the algorithm parameters 
(ntree and mtry for Random Forest heavi-
ly affect the stability of the top features, see 
Fig.I).
The model performance and the stability 
of the signature heavily depend on the rel-
evance of the molecular profile to the phe-
notype it aims to predict. For our dataset, 
biomarker signature derived from liver pro-
teome is stable for fat mass and glucose lev-
el, which are traits related to liver metabo-
lism (Fig.2). 
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