Selection of Stable Biomarker Signature
for Prediction of Metabolic Phenotypes
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In biomarker research, the goal is to con-
struct an prediction rule on the basis of a
small number of predictors. Formally, this
means representing a macro-level response
as a function of molecular features (DNA
variants, transcript or protein abundancies)
with minimal error.

Develop a framework for selection of a
composite biomarker: an ensemble of small
number of predictors, that is able to predict
the macro-level response.

To benchmark the process of construc-
tion of the composite biomarker, we use
a mouse model. Mouse model has an ad-
vantage over human samples, as many con-
founding factors are controlled. Here we
use measurements of 35 murine strains
from the BXD recombinant inbred strain
panel exposed to high-fat and chow diets.

We use 2100 liver proteins measured
with SWATH mass-spectrometry, used as a
features to predict metabolic traits.
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Totally, 115 metabol-
ic traits have been meas-
ured during the phenotyp-
ing program. Ve selected
6 traits, representative
of each highly correlated
group of phenotypes, but
also representative of liv-
er physiology.
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Biomarker identification procedure can be
formulated as a feature selection problem.
As omics datasets are inherently multivari-
ate with both independent and multicolline-
ar variables and only a few samples are typi-
cally available, this task is very challenging.
However, feature selection can also intro-
duce optimistic bias into statistical infer-
ence.

To realistically assess algorithm perfor-
mance, cross-validation approach is com-
monly used. If data-specific optimization pa-
rameters cannot be determined beforehand,
internal cross-validation is also required.
Each fold of cross-validation delivers a dif-
ferent signature. To be able to translate the
combined signature to the clinic, we suggest
to assess the stability of the signature iden-
tified.

Therefore, to determine which algorithms
perform optimally, both feature selection
stability and overall performance must be
evaluated together.

We benchmark this pipeline on the Random
Forest algorithm [1].
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It is well known that algorithm parameters
affect the performance, however, this aspect
is much less explored for the stability stud-
ies.VWe show that the algorithm parameters
(ntree and mtry for Random Forest heavi-
ly affect the stability of the top features, see
Fig.l).

The model performance and the stability

of the signature heavily depend on the rel-
evance of the molecular profile to the phe-
notype it aims to predict. For our dataset,
biomarker signature derived from liver pro-
teome is stable for fat mass and glucose lev-
el, which are traits related to liver metabo-

lism (Fig.2).

Algorithm parameter choice
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Fig !. Correlation heatmap of variable importance rank for top 100 variables. Each ntree & mtry
combination was repeated |0 times, the resulting variable ranks were compared for each setup by cor-
relating ranks. Default forest size (500 trees) produces different importance ranking for each realisation:
the resulting ranks don’t correlate neither within 500-tree forests, nor with the ranks of bigger forests.
However, forests of 5000-40000 of trees yield ranks that are more similar to each other. Thus, to get

a reliable importance-ordered list of variables, bigger forest size is necessary. Mtry influence is lower.
However, for mtry value, close to default (1/3 of variables, here 1030), a middle-size forest of 5000 trees
yields a variable list, very similar to list of 20000-40000 trees.
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For highly correlated features, also predic-
tors selected are shared (see Venn diagram)

Trait Correlation Matrix
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